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Enhancing dopaminergic signaling and histone acetylation
promotes long-term rescue of deficient fear extinction
N Whittle1,4,5, V Maurer1,5, C Murphy1, J Rainer2, D Bindreither2, M Hauschild1, A Scharinger1, M Oberhauser1, T Keil1, C Brehm1,
T Valovka3, J Striessnig1 and N Singewald1

Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its
limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear
phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we
revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced
expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex
(mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the
extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone
acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction
training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction
learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation
in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa
treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-
independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to
improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and
context-independent fear-inhibitory memory.
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INTRODUCTION
Fear-, anxiety- and trauma-related disorders are highly prevalent
today.1–3 Psychotherapeutic interventions such as exposure-based
cognitive behavioral therapy are effective treatments;4–6 however,
many patients retain symptoms after initial treatment7–9 and
return-of-fear is often reported.10,11 Recent research has expanded
understanding of the neural12 and molecular13–15 mechanisms
underlying fear extinction, which is the basis of exposure-based
cognitive behavioral therapy. However, there is a paucity of
information regarding the critical neurobiological mechanisms
required to overcome treatment resistance (extinction resistance)
in exposure-based cognitive behavioral therapy and to protect
against return-of-fear phenomena such as spontaneous fear
recovery and fear renewal.14

To gain insight into molecular pathways that support long-
lasting rescue of deficient fear extinction in a context-independent
manner, we used 129S1/SvImJ (S1) mice that exhibit normal fear
learning, but deficient fear extinction acquisition16–22 and
impaired fear extinction consolidation/retrieval.23 This deficit in
fear extinction is associated with a failure to properly engage
corticolimbic extinction circuitry, including, the medial prefrontal
cortex (mPFC) and amygdala.20,22 Using these mice, we aimed to
identify mechanisms that are associated with persistent and

context-independent rescue of deficient fear extinction, using
dietary zinc restriction (ZnR) as an experimental tool that we have
previously revealed to rescue impaired fear extinction.22 We
assessed gene expression changes in extinction-relevant brain
regions after the ZnR-induced rescue of impaired fear extinction in
S1 mice, given that long-lasting fear extinction memories require
the coordinated transcription of specific genes coding for
learning-associated transcription factors, neurotransmitter recep-
tors, cytoskeletal proteins and other cellular substrates.15,24,25 To
confirm the functional significance of the identified molecular
pathways for long-term extinction rescue, we performed beha-
vioral proof-of-principle experiments by administering pharmaco-
logical adjuncts that target the identified pathways and revealed
the effects on rescue of extinction acquisition, spontaneous
recovery and/or fear renewal.

MATERIALS AND METHODS
Animals and husbandry
Male 3-month-old S1 mice (Charles River, Sulzfeld, Germany) were housed
(four to five per cage) in a temperature- (22 ± 2 °C) and humidity- (50–60%)
controlled vivarium under a 12 h light/dark cycle. The Austrian Animal
Experimentation Ethics Board (Bundesministerium für Wissenschaft
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Forschung und Wirtschaft, Kommission für Tierversuchsangelegenheiten)
approved all experimental procedures.

Fear conditioning and extinction procedure
Fear conditioning, extinction and extinction retrieval was carried out as
previously described.23 Persistence and context independence of fear
extinction memories was assessed using spontaneous fear recovery tests in
the extinction context26 and fear renewal tests in a novel context27 (see
Supplementary Materials and Methods for full details).

Drug treatments and experimental manipulations
Dietary ZnR. Animals were fed food pellets (ssniff Spezialdiäten, Soest,
Germany) containing low Zn (ZnR; 12.3 mg kg− 1 or 40% of the
recommended daily intake requirement28) or standard food pellets
containing normal quantities of Zn (Ctl; 65 mg kg− 1) in control mice as
previously described.22 Mice were randomly selected to be subjected to
either the Ctl diet or ZnR diet. The duration of each experiment’s diet
regimen is provided in the respective figure.

Drug administration. MS-275 (Entinostat, Selleck Chemicals, Vienna,
Austria; 10 mg kg− 1 dissolved in saline+25% dimethylsulfoxide vehicle)
was administered immediately (o1 min) following an extinction training
session and L-dopa (Sigma-Aldrich, Vienna, Austria; 20 mg kg− 1 dissolved
in saline) was administered either 1 h before or immediately following an
extinction training session. All drugs were administered intraperitoneally in
a volume of 10 ml kg− 1 body weight. Control animals received the
respective vehicle. Mice were randomly selected to be administered either
vehicle or pharmacological compund.

Immunofluorescence staining
Mice were perfused 2 h after the extinction training session started.
Coronal sections were incubated with primary antibodies raised against
either Zif268, acLYS, ac-H4K5,8,12,16 (acH4) and/or NeuN, followed by
incubation with fluorescent-labeled secondary antibodies (see
Supplementary Materials and Methods for full details).

Genome-wide expression profiling
We extracted RNA (Qiagen, Hilden, Germany) from mPFC, amygdala, dorsal
hippocampus and ventral hippocampus punches 2 h after the extinction
training session started. The RNA was quality-controlled (Bioanlayzer,
Agilent, Vienna, Austria) and analyzed using Affymetrix Mouse Genome
430 2.0 gene chip arrays (Affymetrix UK, High Wycombe, UK). Genes
exhibiting a fold change of ⩾ 1.6 and a significance of 0.3 false-discovery
rate were considered differentially expressed. We used quantitative reverse
transcriptase-PCR (qRT-PCR) following standard procedures (SYBR green)
with exon-specific primers to validate gene expression. Gene ontology
analysis was performed on genes exhibiting differential expression (see
Supplementary Materials and Methods for full details).

Chromatin immunoprecipitation
mPFC and amygdala tissue punches were formaldehyde crosslinked and
chromatin immunoprecipitation was performed following a modification
of the Active Motif ChIP-IT Express kit protocol with an acH4 antibody.
Quantitative qRT-PCR was performed using standard procedures (SYBR
green) and DNA expression was normalized to input with promoter-
specific DNA primers (see Supplementary Materials and Methods for full
details).

Statistical analysis
Data were assessed for normal distribution before performing parametric
tests. All behavioral, immunohistochemistry, qRT-PCR and ChIP experi-
ments were analyzed using parametric tests (t-test or one-way analysis of
variance (ANOVA) or multiple-way ANOVA with repeated measures for trial
(behavior)). Main effects and interactions for significant ANOVAs are
described. Fisher least significant difference post hoc tests are listed for
each condition examined. All t-tests were two-tailed. Throughout, Po0.05
was considered significant. Sample size for behavior and molecular
analysis was decided on the basis of our previous experience in the
field and published studies (for molecular analysis) and was not pre-
determined by a sample size calculation. Data are presented as mean± s.e.

m. Detailed listing of statistical results are presented in Supplementary
Table S1.

RESULTS
Enduring and context-independent rescue of impaired fear
extinction by dietary ZnR
We have previously shown that dietary ZnR can rescue extinction
deficits in S1 mice and restore the aberrant recruitment of
extinction-related brain areas while leaving fear acquisition and
fear expression unaffected.22 Given that long-term effects of this
intervention has not been studied, we now assessed spontaneous
fear recovery and fear renewal in a novel context (Figure 1a) to
determine whether this ZnR-induced rescued extinction memory
is enduring and context-independent. Replicating our previous
finding of deficient fear extinction rescue,22 present data revealed
lower freezing in ZnR-fed mice compared with control diet-fed
counterparts during extinction training and extinction retrieval
sessions (Figure 1b). Importantly, we now found that this induced
fear extinction memory was long-lasting and context-independent
as, compared with control-diet-fed mice, ZnR-fed mice exhibited
lower freezing during spontaneous fear recovery and fear renewal
tests (Figure 1b). These effects were specific to extinction induced
by the combination of ZnR and extinction training as spontaneous
fear recovery and fear renewal has been observed following
successful fear extinction and extinction retrieval induced by other
pharmacological means in S1 mice.29 To reveal whether memory
update mechanisms30 influenced the ZnR-induced rescue of
impaired fear extinction, we subjected an additional group of
ZnR-treated mice to fear expression only and assessed freezing
during subsequent retrieval tests (Figure 1a). Following fear re-
activation, ZnR-fed mice did not differ in freezing responses
compared to control diet-fed mice during subsequent fear
expression sessions (Figure 1b), suggesting that interference with
memory update mechanisms does not significantly contribute to
ZnR-induced rescue of impaired fear extinction. Taken together,
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Figure 1. Dietary Zn restriction rescues impaired fear extinction in
an enduring and context-independent manner. (a) Scheme illustrat-
ing experimental paradigm. Cond., ‘normal’ 0.6 mA fear condition-
ing in context A; Ext., extinction training in context B; ER, extinction
retrieval in context B; SR, spontaneous recovery in context B; RN,
fear renewal in context C; Ctl, Control diet; ZnR, zinc-restricted diet.
(b) Freezing during Cond., Ext., ER, SR and RN in Ctl, ZnR-Ext and
ZnR-Exp groups. 0, pre-tone freezing. During fear extinction training
(trial blocks), ER, SR and RN individual freezing data are presented as
the average freezing during two conditioned stimulus (CS)
presentations. n= 10 per group. *Po0.05 post hoc testing Ctl-Ext
versus ZnR-Ext, #Po0.05 ZnR-Exp versus ZnR-Ext.
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current data suggest that ZnR is an ‘extinction inducer’ that
endurably rescues deficient fear extinction in a context-
independent manner and is therefore considered an ideal model
tool to study mechanisms supporting long-term context-indepen-
dent rescue of impaired fear extinction.

Rescue of impaired fear extinction initiates select gene expression
changes, including, in particular, genes of dopamine signaling
We next sought to reveal the molecular mechanisms that are
associated with ZnR-induced rescue of impaired fear extinction.
Following extinction acquisition, a period of neuronal plasticity is
initiated, which is thought to transform the newly formed labile
fear extinction memory into a stable long-term memory. Changes
in gene expression in extinction-relevant brain regions are
essential mechanisms governing neuronal plasticity.14 To gain
insight into the genomic response initiated with successful rescue
of impaired fear extinction, we used whole-genome mRNA
expression to identify differentially expressed RNAs in extinguish-
ing ZnR mice compared with non-extinguishing control-diet-fed
mice in the mPFC, amygdala and hippocampus (Figure 2a).
Extinction-relevant brain regions31 were chosen based on findings
showing enhanced neuronal activity (assessed via Zif268
immediate-early gene mapping32,33) in infralimbic (IL) and
prelimbic (PL) areas of the mPFC, in the basal amygdala (BA) and
in the dorsal and ventral hippocampal CA1 area following successful
rescue of deficient fear extinction acquisition (Supplementary
Figures S1–S6 and Supplementary Tables S2–S5). Rescue of
impaired fear extinction was associated with a restricted
transcriptional response, involving 491 differentially regulated
genes in the mPFC and 52 in the amygdala (Figure 2b,

Supplementary Tables S6 and S7). No changes in gene expression
were observed in dorsal and ventral hippocampal regions.
Pathway and gene ontology analysis revealed the differentially
regulated genes’ participation in biological processes related to
neuronal plasticity, including learning- or memory-related pro-
cesses, and regulation of extinction-relevant downstream signal-
ing pathways including cAMP, MAPK and ERK1/2 cascades, among
others (Figure 2c). Strikingly, genes coding for dopamine receptors
D1 (Drd1a) and D2 (Drd2) and the dopamine receptor downstream
target dopamine- and cAMP-regulated phosphoprotein DARPP-32
(Ppp1r1b) exerted the greatest statistical contribution to the
transcriptional response in mPFC and amygdala regions of
extinguishing ZnR S1 mice (Figure 2c). qRT-PCR confirmation in
independent experiments (Figure 3a) confirmed the enhanced
gene expression of Drd1a, Drd2 in the mPFC and the amygdala
(Figure 3b). Moreover, extinguishing mice showed a significant
increase of Ppp1r1b in the amygdala and a nonsignificant increase
in the mPFC.
To control for possible dietary effects of ZnR and reveal the

extinction specificity of the observed gene changes following fear
expression, which are components in early extinction training, we
quantified gene expression changes in control diet-fed and ZnR-
fed mice also following fear expression (Figure 3a). Results
revealed that within the mPFC the observed increases in Drd1a
and Drd2 in ZnR-treated mice were extinction-specific and not
observed in ZnR-fed mice subjected to fear expression only
(Figure 3c). In contrast, enhanced expression of Ppp1r1b was also
revealed in the mPFC of ZnR-fed mice following fear expression
(Figure 3c). In the amygdala, only the increase in Drd1a expression
was specifically related to the rescue of impaired fear extinction.
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Figure 2. Rescue of impaired fear extinction induces a select transcriptional response in the medial prefrontal cortex (mPFC) and amygdala. (a)
Scheme illustrating experimental paradigm. Mice were subjected to ‘normal’ 0.6 mA fear conditioning (Cond.) in context A and fear extinction
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Compared with control diet-fed mice, ZnR-fed mice exhibited
enhanced expression of Drd2 and Ppp1r1b following fear
expression (Figure 3c).
Dopamine receptors are clustered in two families: the D1-like

family composed of D1 and D5 receptors, and the D2-like family
composed of D2, D3 and D4 receptors.34 To ascertain whether the
gene expression profiles of Drd1a and Drd2 reflect their family, we
performed a comprehensive expression analysis of dopamine D3,
D4 and D5 receptors after the rescue of impaired fear extinction
and fear expression (Figure 3a): we observed enhanced mPFC
expression of Drd3, Drd4 and Drd5 in ZnR-fed mice, compared
with the control group (Figure 3b), whereas no changes were
observed following fear expression (Figure 3c). No changes in
amygdala Drd3, Drd4 or Drd5 expression were observed in any
experimental group after rescue of impaired fear extinction
(Figure 3b) or after fear expression (Figure 3c), underscoring the
specificity of the observed gene changes. Taken together, these
results suggest that rescue of deficient fear extinction, leading to
the formation of an enduring and context-independent fear
extinction memory, is associated with a general enhancement in
genes coding for D1-like and D2-like families of dopaminergic

receptors in the mPFC. In contrast, only a select enhancement in
the gene coding for dopamine D1 receptor is elicited in the
amygdala.

Enhancing dopaminergic signaling rescues impaired fear
extinction but does not protect from long-term fear recovery
phenomena
To prove functional relevance of these findings, we next
investigated whether drug-induced activation of dopaminergic
signaling pathways indeed affects the rescue of impaired fear
extinction. To do so, we administered L-dopa, which enhances
central dopaminergic signaling,35 before extinction training
(Figure 3d) and observed lower freezing in L-dopa-treated mice
compared with vehicle controls during extinction training and
retrieval sessions (Figure 3e), revealing that enhancing dopami-
nergic signaling can rescue extinction acquisition and consolida-
tion/retrieval deficits in S1 mice. No difference in spontaneous
locomotor activity was detected between L-dopa-treated S1 mice
and their vehicle-treated counterparts during the pre-tone period
during extinction training (Distance traveled (L-dopa,
97.7 ± 11.7 cm; VEH, 104.8 ± 17.0 cm; n= 10 per group)) and thus
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negated the possibility that the reduced freezing during the
extinction training session was due to L-dopa per se. To gain
greater insight into L-dopa’s ability to overcome impaired
extinction consolidation/retrieval in S1 mice, we used the recent
finding from a ‘weak’ fear-conditioning paradigm where S1 mice
show an extinction training effect but are unable to consolidate or
retrieve the extinction memory.23 We therefore administered
L-dopa following extinction training to boost the impaired
extinction consolidation (Figure 3f). Results revealed that lower
freezing was observed in L-dopa-treated mice compared with fear
extinction-deficient vehicle-treated controls during the extinction
retrieval session 24 h later (Figure 3g), demonstrating that L-dopa
can rescue extinction consolidation/retrieval deficits in S1 mice. It
is unlikely that L-dopa itself influenced freezing during the
extinction retrieval session, given that the half-life of L-dopa in
rodents is less than an hour36 and central levels of L-dopa peak 1–
2 h after peripheral administration in mice.37 However, during the
spontaneous fear recovery and fear renewal tests, no differences
in freezing was observed in L-dopa-treated mice, compared with
vehicle (Figure 3e). Collectively, these results behaviorally indicate
that enhancing dopaminergic signaling rescues impaired extinc-
tion acquisition and improves deficient consolidation/retrieval;
however, it is not sufficient to promote enduring protection from
return-of-fear in extinction-impaired individuals.

HDAC inhibition facilitates formation of an enduring and context-
independent fear extinction memory
We assessed whether enhanced histone acetylation is associated
with the ZnR-induced long-term rescue of impaired fear extinc-
tion, given the evidence that enhancing histone acetylation can
induce enduring and context-independent fear extinction mem-
ories in normal extinguishing rodents23,38–47 and that zinc
deprivation inhibits zinc-dependent histone deacetylases (HDACs)
and increases acetylation of lysine residues on histone proteins.48

We therefore quantified lysine acetylation in the IL, PL and BA and
hippocampus 2 h after the rescue of impaired fear extinction and
revealed enhanced lysine acetylation in extinction-activated
(Zif268 positive) cell populations in the IL, PL, BA and the dorsal
and ventral CA1 hippocampal regions (Supplementary Figures S1–
S6 and Supplementary Tables S2–S5). No alterations in lysine
acetylation were observed in cells not activated after fear
extinction rescue, highlighting the extinction specificity of these
changes (Supplementary Figures S1–S5 and Supplementary Tables
S2–S5). To unequivocally demonstrate that ZnR-induced fear
extinction rescue stimulates enhanced acetylation on histone
proteins and contributes to the differential expression of
extinction-regulated genes, we quantified the abundance of
acetylated histone H4 in the promoter region of Drd1a and Drd2
in the mPFC and the amygdala (Figure 4a). We chose this specific
histone mark based on a study in normal extinguishing mice,
showing that histone H4 acetylation is enhanced in the promoter
region of the BNDF gene in the mPFC.45 Results revealed that
compared with non-extinguishing control-fed mice, extinguishing
ZnR-fed mice displayed enhanced mPFC histone H4 acetylation in
the promoter region of the Drd2 gene (Figure 4b) and a trend of
increase around the Drd1a promoter (Figure 4b). Importantly,
histone H4 acetylation was not altered at the Drd2 promoter in
ZnR mice that underwent fear expression only (Figure 4c),
indicating a selective role of Drd2 in extinction learning rescue.
Following fear extinction or expression, no alterations in Drd1a or
Drd2 histone H4 acetylation levels were observed in the amygdala
(Figure 4b and c). These results suggest that histone H4
acetylation is an important, but not exclusive mechanism
contributing to enhanced dopamine receptor gene expression
following ZnR-induced fear extinction in S1 mice.
To gain functional (behavioral) evidence that enhancing histone

acetylation contributes to the enduring and context-independent

rescue of fear extinction, we built on our previous finding showing
that the HDAC inhibitor MS-275, targeting primarily HDAC1,
HDAC2 and HDAC3 isoforms,49 can improve fear extinction
consolidation/retrieval in ‘weak’ conditioned S1 mice23 and
assessed now the long-term consequence of this strategy
(Figure 4d). Results revealed that, compared with vehicle-treated
controls, MS-275-treated mice exhibited lower freezing rates
during extinction retrieval, spontaneous fear recovery and fear
renewal tests (Figure 4e). This finding demonstrates that MS-275
can facilitate the formation of an enduring and context-
independent rescue of impaired extinction consolidation/retrieval
in a paradigm where S1 mice reduce freezing during extinction
training.

Combination of HDAC inhibition and successful fear extinction
acquisition is required to enhance histone acetylation in the mPFC
and amygdala
We next focused on revealing in greater detail the brain regions
that show enhanced histone acetylation after MS-275-induced
rescue of impaired fear extinction consolidation in the weak fear-
conditioning paradigm (Figure 4d and e). To this end, we
compared histone acetylation levels in neuronal (NeuN+) and
non-neuronal (NeuN− ) cell populations in the IL, PL and BA
following MS-275 administration in conditioned mice (CS+) and in
basal non-fearful non-conditioned mice (CS− ). Results revealed
that only a combination of extinction acquisition and MS-275, but
not MS-275 treatment alone, enhanced histone H4 acetylation in
neuronal (NeuN-positive) cell populations in layers II and III of the
IL (Figure 4f–i) and in the BA (Figure 4j–l). No such combination
effects were observed in the PL (Figure 4m–p), revealing brain
region specificity of this response. Interestingly, compared with
basal non-conditioned control mice, enhanced neuronal histone
H4 acetylation was observed in layer II of the PL in conditioned
mice following fear extinction acquisition, independent of whether
mice were administered MS-275 or vehicle (Figure 4m–p). Given
that there is evidence showing that activity in the PL supports fear
memories,50–53 our finding of enhanced PL histone H4 acetylation
(Figure 4m–p) may point to a potential molecular ‘fear’ correlate.
This idea, however, needs further confirmation. We observed no
changes in histone H4 acetylation in non-neuronal (NeuN− ) cell
populations within any experimental group in any brain region
examined (Supplementary Figure S7).

Combination of treatments that enhance dopaminergic signaling
and HDAC inhibition promotes an enduring, context-independent
rescue of impaired fear extinction
We lastly assessed whether the transient L-dopa-induced extinc-
tion rescue can be made enduring and context-independent by
co-administering of the HDAC inhibitor MS-275, similar to its effect
in the 'weak' conditioning paradigm (see above). To assess this, we
administered L-dopa before an extinction training session in
‘normal’ conditioned mice, and, additionally, administered MS-275
immediately following this extinction training session (Figure 5a).
Replicating our earlier finding (see Figure 3d and e), L-dopa-
treated mice displayed reduced freezing rates during extinction
training and retrieval (Figure 5b). Importantly, in contrast to
L-Dopa/vehicle-treated mice, L-dopa/MS-275-treated mice
showed lower freezing rates during spontaneous recovery and
fear renewal tests (Figure 5b). These results reveal that co-
treatment with the HDAC inhibitor MS-275 transforms the labile
L-Dopa-induced fear extinction memory into an enduring and
context-independent fear extinction memory.

DISCUSSION
The present findings provide novel insights into mechanisms
supporting long-term rescue of deficient fear extinction. This was
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achieved by identifying molecular pathways associated with the
behavioral rescue of impaired fear extinction in S1 mice using
dietary ZnR, an experimental multitarget tool that induces
normalization of aberrant activation in extinction-related brain

areas22 and as revealed here elicits long-lasting and context-
independent fear extinction in extinction-impaired mice. We
observed enhanced dopaminergic gene expression and histone
acetylation in the mPFC and amygdala of extinction-rescued mice,
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using a combination of genome-wide expression analysis,
immunohistochemistry and chromatin immunoprecipitation,
among other methods. Functional (behavioral) validation of these
identified mechanisms revealed that boosting dopaminergic
signaling, via single L-dopa administration, rescued impaired
extinction acquisition and temporarily rescued extinction con-
solidation deficits, whereas enhancing histone acetylation via
single administration of the HDAC inhibitor MS-275 failed to
correct deficient fear extinction acquisition during extinction
training but facilitated enduring and context-independent fear
inhibition once extinction learning was initiated. Finally, as proof-
of-principle, we found that a combined treatment approach
administering L-dopa and MS-275 around extinction training
indeed rescued deficient extinction and rendered this effect
enduring and context-independent, mimicking the extinction-
related effects of ZnR.
Using genome-wide transcriptome analysis, we showed the

association between enduring and context-independent ZnR-
induced rescue of impaired fear extinction and the differential
expression of a select number of genes in the mPFC and
amygdala. Our molecular analysis focused on the mPFC, amygdala
and hippocampus because these interconnected brain regions,
which display aberrant neuronal activation in extinction-deficient

S1 mice,18,20,22 exhibited enhanced neuronal activity after ZnR-
induced fear extinction acquisition. This result extends findings in
extinction-intact rodents20,22,54–61 and healthy humans62–64 to
show that activity in these regions is associated with fear
extinction. We found that successful fear extinction acquisition
led to the regulation of a restricted number of neuroplasticity-
associated genes, which is reminiscent of a recent finding
revealing a specific, restricted transcriptional response after fear
extinction.47 In the current study, we observed alterations in gene
expression in the mPFC and amygdala, but not hippocampus. The
lack of hippocampal gene expression changes seems surprising,
given our finding showing that ZnR S1 mice show no renewal of
fear. One possibility to reconcile the lack of hippocampal gene
expression changes with the formation of a context-independent
extinction memory in ZnR S1 mice could be the differential
involvement of hippocampal subregions to the context depen-
dency of extinction.65 Using immunohistochemistry experiments
we demonstrated that rescue of impaired fear extinction in ZnR S1
mice was associated with increased activation of the CA1 subfield
of the hippocampus only, which is in line with recent studies
showing the importance of this region in the context specificity of
extinction.65,66 Hence, we propose that the absence of extinction-
related hippocampal gene expression changes in the present
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Figure 5. Combined treatments that enhance dopaminergic signaling and histone deacetylase inhibition are necessary to rescue impaired
fear extinction in an enduring and context-independent manner. (a) Scheme illustrating experimental paradigm. Cond., ‘normal’ fear
conditioning; Ext., fear extinction; ER, extinction retrieval, SR, spontaneous recovery; RN, fear renewal. (b) During extinction training and
compared with VEH/VEH control group, reduced freezing was observed in L-dopa/VEH-treated mice during extinction trial blocks 9–10, 11–12
and 15–16 and in L-dopa/MS-275 during extinction trial blocks 9–10 through to 15–16. During ER reduced freezing was observed in L-dopa/
VEH and L-dopa/MS-275 compared with VEH/VEH. L-dopa/MS-275-treated mice exhibited lower freezing compared with VEH/VEH during SR
and VEH/VEH and L-dopa/VEH during RN. * VEH/VEH versus L-dopa/VEH, # VEH/VEH versus L-dopa/MS-275, §Po0.05 post hoc testing L-dopa/
VEH versus L-dopa/MS-275. n= 8–10 per group.

Figure 4. Enhancing histone acetylation promotes enduring and context-independent rescue of newly formed extinction memories. (a)
Scheme illustrating experimental paradigm for b, c. Cond., ‘normal’ fear conditioning; Exp, fear extinction; Exp, fear expression; Ctl, control
diet; ZnR, zinc-restricted diet. n= 3–8 per group. (b) Enhanced abundance of acH4 was observed in the promoter region of Drd2 following fear
extinction in the medial prefrontal cortex (mPFC). (c) No changes in any group were observed following fear expression. (d) Scheme
illustrating experimental paradigm for e–p. ER, extinction retrieval; SR, spontaneous recovery; RN, renewal. (e) Freezing was lower in MS-275
administered mice during ER, SR and RN. n= 9–10 per group. *Po0.05 post hoc testing MS-275 versus VEH. (f) Representative epifluorescent
photomicrograph of a coronal section (Bregma +1.78 mm) stained for acH4 immunoreactivity. IL, infralimbic cortex; PL, prelimbic cortex. Scale
bar= 500 μm. (g) Representative epifluorescent photomicrographs delineating the cortical layers within the IL. Scale bar= 100 μm. (h, i)
Enhanced acH4 epifluorescence was observed in NeuN-positive (NeuN+) cell populations following MS-275 administration and following
successful fear extinction (CS+) in layer II and in layer III, but not layer V/VI, compared with vehicle-treated counterparts (VEH). **Po0.01 post
hoc testing MS-275 versus VEH in conditioned (CS+) groups. n= 4–6/group. Scale bar= 20 μm. (j) Representative epifluorescent
photomicrograph of a coronal section (Bregma − 1.56 mm) delineating the basal amygdala region quantified. BA, basal amygdala; Ce,
central amygdala; LA, lateral amygdala. Scale bar= 250 μm. (k, l) Enhanced acH4 epifluorescence was observed in NeuN-positive nuclei (NeuN
+) only successful fear extinction acquisition and MS-275 administration. Scale bar= 20 μm. **Po0.01 post hoc testing MS-275 versus VEH in
conditioned (CS+) groups. n= 4–6/group. (m) Representative epifluorescent photomicrograph of a coronal section (Bregma +1.78 mm)
stained for acH4 immunoreactivity. IL, infralimbic cortex; PL, prelimbic cortex. Scale bar= 500 μm. (n) Representative epifluorescent
photomicrographs delineating the cortical layers within the PL. Scale bar= 100 μm. (o,p) Enhanced acH4 epifluorescence was observed in
NeuN-positive (NeuN+) cell populations following successful fear extinction (CS+) in mice administered VEH and MS-275 to a similar level in
layer II, but not layers II or V/VI, compared to vehicle-treated counterparts (VEH). Scale bar= 20 μm. *Po0.05, **Po0.01 post hoc testing
MS-275 versus VEH in conditioned (CS+) groups. n= 4–6 per group.
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study might be because of limitations in resolution, as whole
hippocampus tissue was used for gene array experiments. Future
experiments should therefore aim at investigating gene expres-
sion in hippocampal subregions to clarify the possible involve-
ment of hippocampal gene expression changes in the context-
independent rescue of impaired fear extinction in ZnR S1 mice.
Among the identified differentially regulated genes in the mPFC
and amygdala following successful ZnR-induced fear extinction in
S1 mice, extinction-induced alterations in dopaminergic gene
expression, which contributed most to the overall observed
transcriptional response, were of particular interest, given the
proposed critical role for dopamine in fear and extinction
learning.15 Rescue of impaired fear extinction was specifically
associated with enhanced expression of genes encoding the
dopamine D1 class (D1 and D5) and D2 class (D2, D2 and D4)
receptors in the mPFC. This result extends findings in normal
extinguishing rodents, showing that enhanced mPFC dopamine
release is observed during and following successful fear extinction
training67 and activity of dopamine D1- and D2 class signaling,68–70

is necessary for fear extinction. In the amygdala, expression
of the gene coding for the dopamine D1 receptor (Drd1a) was
selectively enhanced after rescue of impaired fear extinction,
pointing to the contribution of amygdala dopamine D1 receptor-
mediated activity. This hypothesis is supported by evidence
showing that antagonizing Dopamine D1 class (D1 and D5)
receptors in the basolateral amygdala during an extinction
training session can antagonize fear extinction acquisition and
subsequent extinction memory retrieval in normally extinguishing
rats.68

To confirm dopaminergic signalings' contribution in the rescue
of deficient fear extinction, we administered L-dopa before
extinction training, which resulted in an extinction-facilitating
effect during a subsequent retrieval test. This extinction-inducing
effect is likely not due to L-dopa per se as class I and II
dopaminergic receptor agonists facilitate fear extinction only
when combined with an extinction training session.70,71 This
current finding extends data from extinction-intact rodents
showing that dopaminergic signaling can influence fear extinction
consolidation mechanisms.15 However, we could not demonstrate
in S1 mice enduring rescue of impaired fear extinction, which
contrasts with a recent finding showing that L-dopa can induce
enduring fear extinction and protection from return-of-fear
phenomena in extinction-intact mice and healthy humans.72 From
a clinical perspective, these results reveal a distinction between
extinction augmented in a non-pathological system with intact
fear extinction, and extinction induced in pathological systems
with deficient fear extinction.
The finding that the L-dopa-induced fear extinction memory

was only temporary suggests that other mechanisms are involved
after ZnR-induced rescue of impaired fear extinction to promote
the observed long-term effects. For example, epigenetic priming
of extinction-regulated genes73,74 is associated with formation of
long-lasting fear extinction memories.47 Indeed, quantifying
histone abundance in the promoter region of the extinction-
regulated dopaminergic genes revealed that increased mPFC
histone H4 acetylation abundance accompanied the gene-
transcription program initiated after the rescue of impaired fear
extinction. We believe, to our knowledge, that this is the first
report demonstrating an extinction-related acetylated histone
abundance in genes coding for dopaminergic receptors. Future
studies will be necessary to identify enhanced histone acetylation
in additional genes whose activity can promote long-term fear
extinction rescue. Our finding that treatment with the HDAC
inhibitor MS-275, following extinction acquisition, facilitated
enduring and context-independent rescue of deficient extinction
retrieval also underscores the behavioral significance of histone
acetylation mechanisms on long-term context-independent
fear inhibition. Moreover, this current result adds to a growing

body of literature showing that HDAC inhibitors can facilitate
formation of enduring and context-independent fear extinction
memories43,46,47 even when extinction consolidation/retrieval is
deficient.
Given the potential therapeutic use of MS-275 as adjunct

therapy,14 we investigated the underlying mechanisms in HDAC-
inhibitor-induced rescue of deficient extinction consolidation/
retrieval. A striking finding was that a combination of successful
fear extinction acquisition and HDAC inhibition was necessary to
enhance histone H4 acetylation levels in layers II and III of the IL
and within the BA. The specific dynamics and circuit organization,
particularly of output neurons within cortical layers of the IL,
remain largely unknown;75 however, our results reveal novel
insight into circuits mediating the rescue of impaired fear
extinction. By quantifying epigenetic changes after the rescue of
impaired fear extinction we have demonstrated enhanced histone
H4 acetylation in neurons within layers II and III of the IL, which
may project to the basolateral amygdala.75 Given circuit-level
evidence showing that fear extinction is associated with IL top-
down control of the BA,18,53,76–78 our present finding of enhanced
histone acetylation in the IL layers that specifically project to the
BA, as opposed to other IL layers that project to other brain
structures (for example, layer V IL neurons project to the
periaqueductal gray),75 raises the possibility that fear extinction
memories are stored within discrete IL layers that project to the
amygdala.
Finally, using a two-step pharmacological intervention, we

showed that prior extinction training administration of L-dopa can
initiate extinction acquisition in extinction-impaired mice, and this
new memory can be made enduring and context-independent
using MS-275. This finding suggests that dual strategy approaches
are necessary to overcome high resilience to inhibit learned fear
by targeting extinction (present findings) or reconsolidation
mechanisms.29,79

Collectively, these data have provided novel insight into
molecular mechanisms that rescue deficient fear extinction in an
enduring and context-independent manner. These results reveal
that discrete signaling pathways can modulate different phases of
disturbed fear extinction learning, and that therapeutically
targeting dopaminergic and epigenetic mechanisms is a promis-
ing strategy to improve exposure-based cognitive behavior
therapy in extinction-impaired individuals.
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