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Behavioral and Neurobiological Effects of Deep Brain
Stimulation in a Mouse Model of High Anxiety- and
Depression-Like Behavior
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Nicolas Singewald*,1
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Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel

therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain

largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated

behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment with one of three different selective

serotonin reuptake inhibitors (SSRIs) or received NAcb-DBS for 1 h per day for 7 consecutive days. Animals were tested in established

paradigms revealing depression- and anxiety-related behaviors. The enhanced depression-like behavior of HAB mice was not influenced

by chronic SSRI treatment. In contrast, repeated, but not single, NAcb-DBS induced robust antidepressant and anxiolytic responses in

HAB animals, while these behaviors remained unaffected in normal depression/anxiety animals (NAB), suggesting a preferential effect of

NAcb-DBS on pathophysiologically deranged systems. NAcb-DBS caused a modulation of challenge-induced activity in various stress-

and depression-related brain regions, including an increase in c-Fos expression in the dentate gyrus of the hippocampus and enhanced

hippocampal neurogenesis in HABs. Taken together, these findings show that the normalization of the pathophysiologically enhanced,

SSRI-insensitive depression-like behavior by repeated NAcb-DBS was associated with the reversal of reported aberrant brain activity and

impaired adult neurogenesis in HAB mice, indicating that NAcb-DBS affects neuronal activity as well as plasticity in a defined, mood-

associated network. Thus, HAB mice may represent a clinically relevant model for elucidating the neurobiological correlates of

NAcb-DBS.
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INTRODUCTION

Major depression is a highly debilitating and life-threaten-
ing disorder with a lifetime prevalence of 16.5% (Kessler
et al, 2005) affecting 6.9% of the population every year
(Wittchen et al, 2011). Available treatments include
pharmacological approaches targeting mainly monoami-
nergic systems and non-pharmacological treatments,
including psychotherapy, vagus nerve stimulation, trans-
cranial magnetic stimulation, and electroconvulsive
treatment (Moreines et al, 2011). Nevertheless, a significant
number of patients remains inadequately treated displaying

non-response or partial response after all treatment options
have been explored (for a review see Al-Harbi, 2012; Vieta
and Colom, 2011). This treatment-resistant depression
(TRD) is particularly associated with great economic
burden (Fostick et al, 2010), high social and familial impact
(for a review see Luciano et al, 2012), and personal
suffering. New hope is now given to these individuals by
clinical studies demonstrating long-term effects of high-
frequency deep brain stimulation (DBS) in terms of
improving depressive symptoms of helplessness, anhedonia
and anxiety, and, thus, enhancing quality of life (Bewernick
et al, 2012; Lozano et al, 2012). Interestingly, physical and
psychiatric side effects elicited by DBS can be minimized or
abolished by adjustment of the stimulation settings
(Bewernick et al, 2012) or, if unacceptable, DBS can be
stopped at any time according to the basic principles of
medical ethics and, in particular, those issues pertinent to
DBS treatment (Schermer, 2011).

Although the ideal targets of DBS for eliciting therapeutic
effects in TRD are a matter of debate (Lim et al, 2011), it has
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been suggested that any brain region of the proposed
dysfunctional depression neurocircuitry (Krishnan and
Nestler, 2008) may be interesting as affected network
components are overlapping (Gutman et al, 2009). Accord-
ingly, DBS has been applied to the subgenual cingulate
cortex (Lozano et al, 2012), the ventral striatum (Malone
et al, 2009), the nucleus accumbens (NAcb) (Bewernick
et al, 2012), and the lateral habenula (Hoyer et al, 2012) of
small TRD patient populations. Specifically, promising
results have been obtained by DBS to the NAcb (NAcb-
DBS), which has induced solid antidepressant, anxiolytic,
and antianhedonic effects in patients with TRD (Bewernick
et al, 2012). The unique position of the NAcb in the brain
enables it to act as a gateway for information being
transmitted from emotional centers to motor control
regions (Haber and Knutson, 2010). Functionally, the NAcb
processes reward and pleasure information and is dysfunc-
tional in patients suffering from depression (Tremblay et al,
2005). This is relevant, as anhedonia is one of the core
symptoms of depression and reflects a lack of reward and
reward-motivated behavior (Gorwood, 2008). The NAcb
receives inputs from midbrain areas, such as the ventral
tegmental area, the medial substantia nigra, the dorsal and
medial raphe nuclei, the locus coeruleus, as well as from
limbic structures, including the amygdala, the hippocampus
(HPC), and the prefrontal cortex (Nauta and Domesick,
1984). In turn, it projects to cortical areas (including the
infralimibic cortex and the orbitofrontal cortex (OFC)), and
to the ventral pallidum, the thalamus, the amygdala, and the
hypothalamus (Kelley and Stinus, 1984). Interestingly, as
projections of the NAcb are glutamatergic as well as
GABAergic, stimulation of the NAcb can modulate neuronal
activity of emotion and motivation centers implicated in the
pathophysiology of depression in a dual way (also see
Schlaepfer et al, 2008).

The mechanisms through which DBS act are poorly
understood (Kringelbach et al, 2010). While early observa-
tions in Parkinson patients led to the proposal of a
functional block of the target region by DBS (Benabid
et al, 2002), it is thought nowadays that DBS causes axonal
activation and neuronal inhibition (Dostrovsky and Lozano,
2002; Vitek, 2002; see also McIntyre and Grill, 1999; Nowak
and Bullier, 1998a, b). Therefore, clinically relevant animal
models are pivotal to further study the neurobiological
mechanisms underlying the beneficial effects of NAcb-DBS.

This study was aimed at providing the first comprehen-
sive behavioral evaluation of NAcb-DBS in the HAB mouse
line selectively bred for high trait anxiety (Landgraf et al,
2007; Sartori et al, 2011a). A characteristic comorbidity in
HAB mice is the preference of immobility/passive stress-
coping strategies, indicative of enhanced depression-related
behavior reflecting depressive patients with comorbid
anxiety. To gain insights into neurobiological mechanisms
of action of successful NAcb-DBS treatment, we additionally
studied stress-induced expression of the immediate-early
gene c-Fos as the marker for neuronal activation, as well as
a possible alteration of the amount of newly born cells and
immature neurons in HAB mice. These sets of experiments
were stimulated by studies showing that clinically estab-
lished antidepressant drugs affect deranged bran activity
patterns and adult hippocampal neurogenesis in humans
and/or rodents (for a review see Samuels and Hen, 2011).

MATERIALS AND METHODS

Animals

Experiments were carried out on male (12–15 weeks old)
HAB and normal depression/anxiety animals (NAB) mice
bred for their innate level of anxiety-related behavior at the
Department of Pharmacology and Toxicology (University of
Innsbruck, Austria) (for details see Sartori et al, 2011a).
Animals were group-housed under standard laboratory
conditions (12 : 12 light/dark cycle with lights on at 07:00
hours, 22±2 1C, 50–60% humidity) with pelleted food and
water available ad libitum. All experiments were designed to
minimize animal suffering as well as the number of animals
used. Experiments comprising this study were approved by
the national ethical committee on animal care and use
(Bundesministerium für Wissenschaft und Forschung) in
compliance with international laws and policies.

Drug Treatments

Reboxetine (40 mg/kg per day; Ochem, Chicago, IL),
desipramine (30 mg/kg per day; Sigma-Aldrich, Vienna,
Austria), fluoxetine (18 mg/kg per day; Eubio, Vienna,
Austria), paroxetine (10 mg/kg per day; Ochem), and
citalopram (10 mg/kg per day, kindly provided by Lundbeck,
Denmark) were administered via the drinking water for 3
weeks. A drug intake of the dose indicated above was
achieved by adapting the concentrations of the drug in the
drinking solutions according to mean drinking volume and
body weight per cage (Sartori et al, 2012). Mice were kept
on drug treatment until completion of all experiments.
Control mice received tap water. 5-Bromo-20-deoxyuridine
(BrdU) (Sigma-Aldrich) was injected at a dose of 100 mg/kg
(intraperitoneally) once per day for 4 days for the labeling of
newly born cells.

Deep Brain Stimulation

Before surgery, animals were handled for 3 days to
habituate them to the experimenter and the stimulation
procedure. Using a stereotaxic frame, anesthetized animals
(ketamine/xylazine 80/5 mg/kg, intraperitoneally) were im-
planted with electrodes (MS303-3-B-SPC, bipolar, twisted,
8 mm; Plastics One, Roanoke, VA) reaching the NAcb core
(coordinates: 1.10 mm anterior, 1.45 mm lateral, and
4.65 mm ventral to bregma). After surgery, animals were
individually caged, and received buprenorphine (0.1 mg/kg
intraperitoneally) every 8 h over 3 days to minimize pain.
Following 4–5 days of recovery, animals received high-
frequency stimulations daily (130 Hz, 100 mA, 60 ms pulse
width; A310 Accupulser and A365 Stimulus Isolator; World
Precision Instruments, Berlin, Germany) for 1 h per day
(NAcb-DBS). Control animals (NAcb-sham) were connected
to the stimulator without current being applied. At the end
of the experiments, localization of electrodes in the NAcb
was confirmed on cresyl violet-stained coronal sections (see
Figure 2b). Animals with misplaced electrodes were
excluded from all data sets.
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Experiments

In Experiment 1, the sensitivity of HAB mice to the
antidepressant efficacy of different selective serotonin
reuptake inhibitors (SSRIs) was explored in the forced
swim test (FST) (Figure 1). Experiments 2–4 (Figure 2a)
were designed to investigate the effect of single and repeated
NAcb-DBS (i) on the anxiety- and depression-related
behavior displayed by HAB mice, using a battery of
established tests, (ii) on adult hippocampal neurogenesis,
and (iii) on challenge-induced neuronal activation patterns
in different brain regions, using immunohistochemistry.

Behavior

All behavioral tests were performed on HAB and NAB mice
1 h after completion of NAcb-DBS or NAcb-sham. The FST
and tail suspension test (TST) were used to assess
depression-like behavior (for a review see Cryan and
Mombereau, 2004; Cryan et al, 2005). Anxiety-related
behavior was investigated using the novelty-suppressed
feeding paradigm, while general locomotor activity was
measured in the open field. All behavioral tests were
performed according to previous protocols established in
our laboratory (Sartori et al, 2012; Whittle et al, 2011),
details of which are provided in the Supplementary
Information.

Immunohistochemistry

At 2 h after the last challenge, when expression levels of
c-Fos protein are at their peak (Zangenehpour and
Chaudhuri, 2002), mice were deeply anesthetized with an
overdose of sodium pentobarbital (200 mg/kg) and trans-
cardially perfused with saline followed by 4% paraformal-
dehyde (in 0.1 mol/l phosphate buffer, pH 7.4), as described

previously (Muigg et al, 2009). One-in-eight of the free-
floating coronal sections (50 mm) throughout the entire
murine HPC were processed for BrdU, doublecortin (DCX),
and c-Fos immunohistochemistry, respectively, following
established protocols (Couillard-Despres et al, 2009; Muigg
et al, 2009). Sections were incubated with one of the
following primary antibodies: rat anti-BrdU (1 : 350; Serotec,
Dusseldorf, Germany), goat anti-DCX C18 (1 : 250; Santa
Cruz Biotechnology, Santa Cruz, CA), rabbit anti c-Fos
(1 : 10 000; Santa Cruz Biotechnology). Subsequently, they
were incubated with the corresponding biotinylated goat
anti-rat, rabbit anti-goat, or goat anti-rabbit secondary
antibody (all 1 : 200; Vector laboratories, Burlingame, CA).
The formed antigen-antibody-complexes were visualized
by the avidin-biotin-horseradish peroxidase procedure
(Vectastain Elite ABC kit; Vector Laboratories) using
3,30-diaminobenzidine as the chromogen.

Immunoreactive cells were quantified in the regions of
interest using a light-optical microscope (Olympus, Vienna,
Austria) and a computer-assisted image analysis system
(cellSens Dimension; Olympus). A cell was considered as
labeled (positive) for c-Fos, DCX, or BrdU when the brown-
black DAB staining was unambiguously darker than the
background, and this included all cells from low to high
intensities of staining.

Data Analysis

Data are presented as mean±standard error of the mean
(SEM). Exact n numbers are given in the table and figure
legends. Statistical analysis was performed using STATIS-
TICA 8.0 (StatSoft, Tulsa, OK) after data had been screened
for outliers using the Grubb’s test. All data were further
tested for homoscedasticity using Levene’s test. Data were
statistically analyzed using one-way ANOVA (post hoc
Bonferroni) or unpaired Student’s t-test. Statistical signifi-
cance was set at Po0.05.

RESULTS

HAB Mice Displayed Behavioral Insensitivity to SSRIs

To investigate whether the HAB mouse model mimics
features of treatment resistance, we first examined the
efficacy of different classes of antidepressant drugs in
reducing the enhanced depression-like behavior displayed
by HAB mice in comparison with NAB mice. Reproducing
our previous results (Sah et al, 2012), the immobility
displayed in the FST was enhanced in HAB animals
compared with their NAB counterparts. Chronic treatment
with one of three SSRIs did not change the high immobility
scores of male HAB mice in the FST (F4,31¼ 156.8, Po0.001;
Figure 1). We observed that treatment resistance seemed to
be restricted to drugs targeting solely the serotonergic
system, as both the selective noradrenaline re-uptake
inhibitor reboxetine and the tricyclic antidepressant desi-
pramine significantly reduced the depression-like behavior
of HAB mice assessed in the FST (F2,22¼ 8.761, P¼ 0.002)
(Supplementary Figure S1).

Figure 1 Sensitivity of high anxiety-related behavior (HAB) mice to
chronic treatment with selective-serotonin reuptake inhibitors. Relative to
their normal depression/anxiety (NAB) counterparts, untreated HAB mice
displayed enhanced depression-like behavior, as indicated by an increased
period of immobility in the forced swim test. Chronic treatment with
citalopram (CIT) (10 mg/kg, per os), paroxetine (PAR) (10 mg/kg, per os), or
fluoxetine (FLX) (18 mg/kg, per os) was not able to rescue the depressive
phenotype of HABs. Data represent means±SEM. N¼ 8–10 animals per
group. ###Po0.001 for untreated control (CTL) HAB vs untreated CTL
NAB mice.
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NAcb-DBS Reduced Depression-Like Behavior in HAB,
but not NAB Mice

We next examined whether NAcb-DBS would be able
to alter the enhanced depression-like behavior of SSRI-
insensitive HAB mice. A single session of NAcb-DBS had
no effect and resulted in unaltered time spent immobile
compared with NAcb-sham HAB animals both in the
FST (t¼ 0.576, P¼ 0.577; Figure 3a) and TST (t¼ � 0.580,
P¼ 0.573; Figure 3b). In contrast, HAB mice receiving
repeated (7� ) NAcb-DBS displayed a reduced amount
of time spent immobile both in the FST (t¼ 3.021,
P¼ 0.007; Figure 3a) and the TST (t¼ 3.001, P¼ 0.008;
Figure 3b), indicating a robust antidepressant effect.
Next, we investigated whether NAcb-DBS could affect the
depression-like behavior of NAB mice, which similar to
non-depressed human subjects (Barr et al, 1997;
Gelfin et al, 1998) do not respond to pharmacological
interventions (Sah et al, 2012). Indeed, neither single
(t¼ 0.949, P¼ 0.356) nor repeated (t¼ 0.302, P¼ 0.767)
NAcb-DBS altered the depression-like behavior of NAB
mice (Supplementary Figure S2A), suggesting that
repeated NAcb-DBS is only effective in deranged, that is,

pathophysiological, systems using the present stimulation
conditions.

NAcb-DBS Reduced Anxiety-Related Behavior in HAB,
but not NAB Mice

Given that HAB mice are characterized by enhanced
anxiety-related behavior (Kromer et al, 2005), we also
studied possible effects of NAcb-DBS on emotionality in
HABs. In comparison with NAcb-sham HAB controls, four
repetitions of NAcb-DBS greatly reduced the latency to eat a
preferred food offered in the center of the testing area of the
novelty suppressed feeding paradigm (t¼ 3.064, P¼ 0.007;
Figure 3c), indicating a clear anxiolytic effect in HAB mice.
In contrast, there was no significant anxiolytic effect of
repeated NAcb-DBS as compared with NAcb-sham in NAB
animals (t¼ 1.684, P¼ 0.111; Supplementary Figure S2B).

NAcb-DBS did not Influence Locomotor Activity of HAB
Mice

To exclude the possibility that the observed behavioral
changes following repeated NAcb-DBS were affected by

Figure 2 Experimental details of deep brain stimulation of the nucleus accumbens (NAcb-DBS) studies performed in high anxiety-related behavior (HAB)
mice. (a) Timeline of NAcb-DBS experiments. Following surgery and recovery, NAcb-DBS was performed for 1 h per day for 7 consecutive days, whereas
5-bromo-20-deoxyuridine (BrdU) was injected for 4 days. Effects of single and repeated (7� ) NAcb-DBS on depression- and anxiety-like behavior was
assessed by forced-swim test (FST), tail suspension test (TST), and novelty suppressed feeding test (NSF). Locomotor activity was measured in the open field
(OF). (b) Schematic figure (retrieved from Franklin and Paxinos, 2007) showing the localization of the electrode tips of all animals that participated in this
study. Closed circles represent NAcb-DBS; open circles represent NAcb-sham animals.
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unspecific alterations in general locomotion, locomotor
activity of animals was studied in an open field (see scheme
in Figure 2a). Following five DBS stimulations, the distance
traveled in the open field by HAB mice did not differ within
the first 5 min (t¼ 1.410, P¼ 0.178), reflecting the testing
period of the TST and FST, or during the total 10 min
testing time (t¼ 0.007, P¼ 0.994; Table 1).

NAcb-DBS Enhanced Adult Hippocampal Neurogenesis
in HAB Mice

To examine possible underlying mechanisms of successful
NAcb-DBS, we next studied whether repeated NAcb-DBS
would increase adult hippocampal neurogenesis in HAB
mice, as this has been previously shown for various other

antidepressant interventions, including pharmacotherapy
and electroconvulsive seizures (for a review see Samuels
and Hen, 2011). Indeed, in HAB mice, DCX immunohis-
tochemistry revealed an enhanced number of immature
neurons in the dentate gyrus of the HPC following repeated
NAcb-DBS as compared with NAcb-sham conditions
(t¼ 2.706, P¼ 0.015; Figures 4a and c or t¼ 2.914,
P¼ 0.001; Figures 4e and g). In addition, BrdU was injected
either before NAcb-DBS or during NAcb-DBS (see
Figure 2a, Experiments 3 and 4) to reveal putatively
different effects of NAcb-DBS at different developmental
stages of newly born cells. It was observed that the number
of BrdU-positive cells was increased following NAcb-DBS
treatment as compared with NAcb-Sham condition when
BrdU was injected before NAcb-DBS (t¼ 2.361, P¼ 0.030;

Table 1 Effects of NAcb-DBS in HAB Mice on Locomotor
Activity Displayed in the Open Field Test

Time frame (min) NAcb-Sham (cm) NAcb-DBS (cm)

0–5 1101±123 1200±151

6–10 1268±59 1047±115

0–10 2368±148 2248±242

Data represent the distance traveled (in cm) in the open field and are given as
means±SEM. N¼ 8–10 animals per group.

Figure 4 Effect of repeated deep brain stimulation of the nucleus
accumbens (NAcb-DBS) on adult hippocampal neurogenesis in high
anxiety-related behavior (HAB) mice. 7 days of NAcb-DBS enhanced the
number of doublecortin-positive (DCXþ ) cells in the dentate gyrus of the
entire hippocampus (a, c and e, g). 5-Bromo-2’-deoxyuridine (BrdU)
injection before NAcb-DBS resulted in an enhanced number of BrdU-
labeled cells in the dentate gyrus of the hippocampus (b, d), whereas the
number of BrdU-positive cells born during NAcb-DBS did not differ
between treatment groups (f, h). Representative photographs (scale
bar¼ 100 mm) showing DCX- and BrdU-positive cells in the dentate gyrus
of the hippocampus of NAcb-DBS and NAcb-sham HAB mice when BrdU
was injected either before NAcb-DBS (c, d) or during NAcb-DBS (g, h).
Data represent means±SEM. N¼ 9-10 animals per group; *Po0.05 for
NAcb-DBS vs NAcb-sham HAB mice.

Figure 3 Effect of single and repeated deep brain stimulation of the
nucleus accumbens (NAcb-DBS) on depression- and anxiety-related
behaviors in high anxiety-related behavior (HAB) mice. Repeated (7� ),
but not single, NAcb-DBS robustly decreased the period of immobility
during the forced swim test (a) and the tail suspension test (b),
demonstrating antidepressant effects. Four repetitions of NAcb-DBS
reduced the latency to eat the preferred food offered in the center of
the testing area during the novelty suppressed feeding paradigm (c),
indicating an anxiolytic effect. Data represent means±SEM. N¼ 7–11
animals per group; **Po0.01, for NAcb-DBS vs NAcb-sham HAB mice.
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Figures 4b and d), but not during NAcb-DBS (t¼ 0.268,
P¼ 0.792; Figures 4f and h).

NAcb-DBS Modulated Challenge-Induced Neuronal
Activation Patterns in HAB Mice

An overview of c-Fos expression in the analyzed brain areas
and P-values are given in Table 2. Repeated NAcb-DBS
modulated stress-induced neuronal activity in four out
of seven investigated areas. In comparison with their
NAcb-sham controls, in NAcb-DBS-treated HAB mice the
numbers of c-Fos-positive cells were significantly enhanced
in the lateral OFC, lateral habenula, and dentate gyrus of the
HPC, while c-Fos induction was reduced in the prelimbic
cortex only (Figure 5).

DISCUSSION

The applicability of DBS is currently being evaluated in
various psychiatric indications including TRD (Fisher et al,
2010; for a review see Luigjes et al, 2012). Yet, the
investigation of its underlying mechanisms is limited in
humans for understandable reasons, and preclinical data
showing the behavioral efficacy of DBS as well as its
neurobiological correlates are rare in psychopathologically
relevant animal models. Motivated by these facts, we
initially further validated the unique HAB mouse model of

comorbid trait anxiety- and depression-like behavior
(Kromer et al, 2005; Landgraf et al, 2007; Sah et al, 2012)
by demonstrating that these mice are resistant to the
antidepressant effects of chronic SSRI treatment, the first-
line therapy for depression as well as many anxiety
disorders (Koenig and Thase, 2009). In contrast, repeated
NAcb-DBS rescued the enhanced depression- and anxiety-
related behavior of HAB animals. This effect coincided with
(i) distinct changes in stress-induced neuronal activation of
depression-related brain areas, including cortical areas and
the HPC, as well as (ii) increased adult hippocampal
neurogenesis.

HAB Mice Displayed Features of TRD

HAB mice display enhanced depression-like behavior as
well as altered stress-induced neuronal activity in

Table 2 Modulation of Swim Stress-Induced c-Fos Expression by
NAcb-DBS in HAB mice

Brain regions (brain level) HAB-Sham HAB-DBS P-value

Cortical areas

Prelimbic cortex (þ 1.94 mm
and þ 1.70 mm)

15.8±0.5 13.3±0.5 0.008

Infralimbic cortex (þ 1.94 mm
and þ 1.70 mm)

11.7±0.4 13.0±0.6 0.163

Cingulate cortex 1 (þ 1.94 mm
and þ 1.70 mm)

31.6±2.4 34.2±2.7 0.706

Orbitofrontal cortex, lateral
(þ 1.94 mm)

33.4±3.7 43.3±2.0 0.027

Thalamus

Lateral habenular nucleus
(� 1.06 mm)

50.9±1.8 57.8±0.9 0.003

Medial habenular nucleus
(� 1.06 mm)

28.9±1.1 28.0±2.6 0.770

Hippocampus

Dentate gyrus (� 0.94 to
� 3.80 mm)

3040±137.2 3664±234.7 0.040

Dentate gyrus, superior arm
(� 0.94 to � 3.80 mm)

2356±98.6 2924.3±94.0 o0.001

Dentate gyrus, inferior arm
(� 0.94 to � 3.80 mm)

738.7±57.7 911.0±66.4 0.068

Data represent means±SEM numbers of c-Fos-positive cells per 0.01 mm2

(except dentate gyrus of the hippocampus where total c-Fos expression was
quantified). N¼ 9–11 animals per group.
Bold and italic numerals indicate significant differences in the number of c-Fos-
positive cells between Nacb-DBS and NAcb-sham HAB mice. Po0.05.

Figure 5 Effect of repeated deep brain stimulation of the nucleus
accumbens (NAcb-DBS) on c-Fos induction in high anxiety-related
behavior (HAB) mice following swim stress. With the help of a mouse
brain atlas (Franklin and Paxinos, 2007), those selected brain regions in
which c-Fos expression was quantified were delineated in representative
photographs comparing NAcb-DBS and NAcb-sham HAB mice. High
magnification photographs of c-Fos expression are inserted for selected
brain regions (scale bars as indicated). LHb, lateral habenula; MHb, medial
habenula; DG, dentate gyrus; HPC, hippocampus; lOFC, lateral orbito-
frontal cortex; fmi, forceps minor of the corpus callosum; PrL, prelimbic
cortex; IL, infralimbic cortex.
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networks related to depression and anxiety in comparison
with their normal depression/anxiety NAB counterparts
(Sah et al, 2012; Sartori et al, 2011b). In this study, we
demonstrate for the first time that male HABs are insensi-
tive to at least three SSRIs differing in half-life, plasma-
binding, active metabolites, and Ki values of 5-HT uptake
(Hiemke and Hartter, 2000). Interestingly, we observed that
treatment resistance seemed to be restricted to drugs
targeting solely the serotonergic system, as both the selec-
tive noradrenaline re-uptake inhibitor reboxetine and the
tricyclic antidepressant desipramine significantly reduced
the depression-like behavior of HAB mice. This finding was
surprising further suggesting that male HAB mice represent
a valid model to study treatment resistance against SSRIs in
humans. Indeed, at least 33% of patients do not respond to
first-line pharmacotherapies such as the SSRI citalopram
(Koenig and Thase, 2009; Trivedi et al, 2006). Changed
responsiveness to SSRI treatment in humans has been
linked to SNPs affecting 5-HT synthesis and polymorphism
in the 5-HTT promoter region as well as functional
polymorphisms in the 5-HT1A and 5-HT1B receptor genes
(for a review see Kroeze et al, 2012). However, while an
aberrant 5-HT neurotransmission has been reported in male
HAB rats (Keck et al, 2005), pathophysiological correlates
underlying the selective insensitivity to SSRIs in HAB mice
remain to be elucidated in further experiments.

To date, there are only a few reports on TRD in animal
models of depression. For example, the Flinders sensitive rat
line has recently been described as being insensitive to
citalopram and nortryptilin when subjected to repeated
maternal separation (Borsini, 2012; Carboni et al, 2010).
Furthermore, congenital learned-helplessness rats and about
a quarter of rats subjected to unpredictable mild stress do
not respond to chronic treatment with desipramine or
fluoxetine, or to electroconvulsive therapy, respectively
(Sartorius et al, 2007; Wang et al, 2011). It is possible that
in the past insensitivities to certain drug classes were less
likely to be reported. However, more recently the restriction
of predictive validity of animal models for depression has
been (partially) eased as a consequence of the need to model
TRD (Borsini, 2012; Samuels and Hen, 2011) and to test new
antidepressant approaches not primarily acting via mono-
aminergic systems.

NAcb-DBS Elicited Antidepressant and Anxiolytic
Effects in HAB Mice

In this study, we show for the first time that NAcb-DBS
reduced depression-like behavior in an SSRI-insensitive
animal model for enhanced depression-like behavior. While
acute stimulation was not sufficient, repeated high-frequency
stimulation caused a robust antidepressant effect in HAB
mice. Similarly, in patients with TRD, significant reductions
in depressive symptomatology reaching response or remis-
sion end points also seem to require more time (Bewernick
et al, 2010; Lozano et al, 2008), despite some rapid effects on
specific symptoms seen during or following early phases of
DBS (Schlaepfer et al, 2008; Mayberg et al, 2005). These
findings, thus, suggest that at least some of the behavioral
changes induced by NAcb-DBS may require long-term
changes such as modulation of neuroplasticity. Indeed, in
rats, pERK expression (an early marker of cell plasticity) is

enhanced in prefrontal and orbitofrontal regions as well as in
the amygdala following DBS of the NAcb/ventral striatum
(Rodriguez-Romaguera et al, 2012). In addition to its anti-
depressant effects, repeated NAcb-DBS reduced the enhanced
trait anxiety of HAB mice to an extent comparable to that
achieved after anxiolytic treatment (Gaburro et al, 2011;
Kromer et al, 2005; Sartori et al, 2011a; for a review see
Sartori et al, 2011b). Underlining the translational value of the
present findings in HAB mice, similar effects were also
observed in humans (Bewernick et al, 2012; Denys et al, 2010).

Various behaviors, including locomotion, seem to be
rapidly altered by interference with the NAcb function. As
both ablation (Parkinson et al, 1999) and electrical
stimulation (van Kuyck et al, 2007) of the NAcb affect
activity and exploratory behavior in animals and/or hu-
mans, we tested whether NAcb-DBS under our stimulation
condition produces changes in general locomotor activity,
which could potentially influence behavioral assessment of
anxiolytic and antidepressant effects. This possibility could
be excluded, as it was found that NAcb-sham and NAcb-
DBS mice did not differ in terms of distance traveled in the
open field, indicating no effect on locomotion using the
present high-frequency stimulation settings.

To clarify whether the behavioral effects of NAcb-DBS
were restricted to acting only on pathophysiologically
deranged as opposed to physiological networks, we
investigated the behavioral outcome of repeated NAcb-
DBS in NABs. Neither single nor repeated NAcb-DBS
affected the level of depression- and anxiety-like behavior
in NAB mice, indicating that NAcb-DBS (at the chosen
stimulation settings) preferentially acts on systems of
altered/enhanced emotionality. In support of this idea,
van der Plasse et al (2012) recently reported inefficacy of
NAcb-DBS in terms of its ability to affect depression-like
behavior displayed by normal rats. Mood-elevating effects
of antidepressants are predominantly observed in depressed
patients (Barr et al, 1997; Gelfin et al, 1998; Yeragani et al,
2003), suggesting that the neurobiological targets of
antidepressants in pathophysiologically deranged systems
differ from those in intact systems (Berton and Nestler,
2006). Therefore, while some aspects of therapeutic efficacy
of DBS may be shared by normal animals (Hamani et al,
2010; Rodriguez-Romaguera et al, 2012) and pathophysio-
logical models (Falowski et al, 2011; Friedman et al, 2012;
Hamani et al, 2012), some critical changes underlying their
antidepressant effect will remain undetected if animals
reflecting physiological but not pathophysiological condi-
tions are used.

Neurobiological Changes Induced by NAcb-DBS in HAB
Mice

Alteration of challenge-induced neuronal activation
patterns. The NAcb receives projections from the main
monoaminergic nuclei including the raphe nuclei and the
locus coeruleus and from regions associated with locomo-
tion, emotion, and memory, including the globus pallidus,
the amygdala, the cortex, and the HPC (Nauto and
Domesick, 1984). In turn, NAcb projects to pallidal and
nigral complexes, to cortical areas such as the medial
prefrontal cortex, and to the thalamic and hypothalamic
regions. Several of these brain areas have been implicated in
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the pathophysiology of depression and/or in the processing
of antidepressant effects (Krishnan and Nestler, 2008).
Furthermore, many of these areas are positioned along the
superolateral arm of the medial forebrain bundle, a
structure related to the reward circuitry, likely to be
stimulated by most of, if not all, the different electrode
placements (eg the anterior limb of the internal capsule, the
subgenual cingulate gyrus, the NAcb) used in the treatment
of TRD patients (Coenen et al, 2011). Regarding potential
mechanisms of action identified so far, DBS preferentially
modulates network fibers passing the electrode, while local
effects of DBS on somatodendritc structures are minor
(McIntyre and Grill, 1999; McIntyre et al, 2004; Nowak and
Bullier, 1998a, b). Specifically, direct inhibition of the
electrode target area by muscimol injections or radio-
frequency lesions does not seem to resemble effects of DBS
on anxiety/depression networks (Hamani et al, 2010;
Rodriguez-Romaguera et al, 2012). To identify distant parts
of circuitries affected by NAcb-DBS at the present stimula-
tion conditions, which may underlie the antidepressant
effect observed in HAB mice, we used c-Fos mapping in
specific brain areas (Singewald, 2007). The focus was laid
upon those brain areas that have been previously shown to
be associated with therapeutic modulation of enhanced
depression-like behavior (Muigg et al, 2007; Sah et al, 2012;
Winter et al, 2011).

One candidate area is the HPC, a highly stress-sensitive key
brain structure dysregulated in depression (Floresco et al,
2001; Kingwell, 2010) in terms of reduced volume and
dysfunctional activation under emotional challenge
(Kempton et al, 2011; Lee et al, 2007; Milne et al, 2012; Tan
et al, 2012; also see Disner et al (2011)). Interestingly, HAB
rats (Muigg et al, 2007; Salomé et al, 2004), and more recently
HAB mice (Muigg et al, 2009; Sah et al, 2012), display
hypoactivation of the dentate gyrus (DG) by stress challenge.
Here, we observed that NAcb-DBS enhanced the c-Fos
induction in response to FST stress, suggesting that (i)
neuronal DG activity is restored in HAB mice, and (ii) DG
activity is strongly correlated with depression-like behavior.
To our knowledge, so far changes in DG/HPC activity have
not been reported in TRD patients undergoing DBS, while
activity of the HPC is enhanced in addicted patients
undergoing NAcb-DBS (Heldmann et al, 2012).

In addition, the c-Fos response was enhanced in the
OFC and the lateral habenula, but attenuated in the
prelimbic cortex following FST. In line with our results,
pERK expression is enhanced in prefrontal regions,
including the OFC, following ventral striatum/NAcb-DBS,
suggesting functional connectivity between these spatially
distinct structures (Rodriguez-Romaguera et al, 2012). In
further support of our findings, McCracken and Grace
(2007, 2009) propose an antidromic activation of NAcb-
input fibers descending from the OFC by NAcb-DBS,
resulting in the modulation of activity within the OFC
and, thus, potentially affecting disturbed communication
between prefrontal areas, limbic areas, and the OFC in an
ultimately beneficial way.

NAcb-DBS enhanced the number of immature neurons in
the DG of the HPC. Whereas stress as a triggering factor
for depression attenuates adult neurogenesis in the HPC,

antidepressant treatment enhances proliferation and survi-
val in the hippocampal neurogenic niche and has been
proposed to be at least partially required for antidepressant
efficacy (for a review see Samuels and Hen, 2011). Given
that HAB mice display reduced adult hippocampal neuro-
genesis in comparison with NABs (Sah et al, 2012), we also
investigated whether the blunted neurogenesis of HABs
would be affected by NAcb-DBS. Indeed, the number of
DCX-positive cells was enhanced in the DG in NAcb-DBS-
treated HAB mice in comparison with NAcb-sham controls.
This finding points towards enhanced adult hippocampal
neurogenesis, as DCX is exclusively expressed in neuronal
precursors and not fully differentiated neurons reflecting
the developmental stages of neuroblast 1 and 2 cells as well
as immature neurons (for a review see Encinas et al, 2006).
Similarly, DBS of the anterior thalamic nucleus slightly
increases the number of neuroblast 1 cells in the HPC, while
the symmetric division of amplifying neuronal progenitors
is its main effect (Encinas et al, 2006, 2011; Toda et al,
2008). To gain insight into the effect of NAcb-DBS on
different developmental stages of newly born cells, BrdU
staining was used. Interestingly, only when BrdU was
injected before, but not during NAcb-DBS, an enhanced
number of BrdU-positive cells was found. These results
suggest that the higher number of DCX-positive neurons
reflects a cell cohort, which was actually born before the
NAcb-DBS intervention and whose survival was then
increased by NAcb-DBS. This is supported by a recent
study showing that a single DBS session of the entorhinal
cortex increases the survival rate of cells born up to 10 days
before DBS in the DG (Stone et al, 2011). In this context, it
is speculated that 1- to 3-week-old progenitors are
especially sensitive to life events that promote survival (eg
environmental enrichment) or deteriorate it (eg through
stressful condition; Zhao et al, 2008). However, future work
will need to verify whether these cells contribute to the
reduction of depressive symptoms.

In summary, the data presented here demonstrate
that NAcb-DBS selectively rescued the enhanced depres-
sion- and anxiety-related behaviors in an SSRI-resistant
psychopathological mouse model of high trait depression/
anxiety without affecting these behaviors in normal
depression/anxiety NAB controls. The specific changes
that occurred in challenge-induced neuronal activation
suggest that the beneficial effects of NAcb-DBS are mediated
via a distributed network that includes the HPC, and
cortical and thalamic areas. Furthermore, enhanced adult
neurogenesis following repeated NAcb-DBS indicates that
long-term alterations may also be an important part of the
mechanism(s) of NAcb-DBS, leading to a rescue of
exaggerated anxiety- and depression-like symptoms.
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