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Large Data with Heterogeneous Covariate Effects

Julian Granna, Stefan Lang, Nikolaus Umlauf

February 13, 2024

Abstract

Modeling real estate prices in the context of hedonic models often involves fitting a Generalized
Additive Model, where only the mean of a (lognormal) distribution is regressed on a set of vari-
ables without taking other parameters of the distribution into account. Thus far, the application
of regression models that model the full conditional distribution of the prices, has been infeasible
for large data sets, even on powerful machines. Moreover, accounting for heterogeneity of effects
regarding time and location, is often achieved by naive stratification of the data rather than on a
model basis.
A novel batchwise backfitting algorithm is applied in the context of a structured additive distri-
butional regression model, which enables us to efficiently model all distributional parameters of
the price distribution. Using a large German dataset of apartment asking prices with over one
million observations, we employ a model-based clustering algorithm to capture the heterogeneity
of covariate effects on the parameters with respect to location. We thus identify clusters that are
homogeneous with respect to the influence of location on price. A boosting type algorithm of the
batchwise backfitting algorithm is then used to automatically determine the variables relevant for
modelling the location and scale parameters in each regional cluster. This allows for a different
influence of variables on the distribution of prices depending on the location and price segment of
the dwelling.

1 Introduction

Rosen (1974) interprets hedonic prices as the sum of implicit prices of attributes of a good. These
directly unobservable prices, hence often referred to as ”shadow prices”, are estimated employing re-
gression models. Hedonic price models are of major importance, e.g. for the compilation of unbiased
hedonic house price indices, as discussed in Granna, Brunauer, and Lang (2022). There exists a vast
literature that extents the basic linear regression model discussing model assumptions and improving
predictive accuracy.
The use of generalised additive models (GAM; Hastie and Tibshirani, 2017; Wood, 2017) allows fitting
smooth effects without making restrictive assumptions about the corresponding functional relationship
between the price and dwelling attributes. Applications include those of Waltl (2016), Brunauer, Lang,
and Feilmayr (2013) or Hill and Scholz (2018). The latter model geospatial dependence of prices by
estimating a spline surface of the longitude and latitude of houses. Razen and Lang (2020) fit smooth
covariate effects on the price by employing penalised splines.

Another widely discussed issue in the literature is possible heterogeneity of effects on prices with
respect to a) the location of a dwelling and b) its price segment. The former stems from the recog-
nition that diverse local conditions lead to varying price effects, as documented in numerous works
such as Straszheim (1975) or Malpezzi, Ozanne, and Thibodeau (1980). There exists a large body of
literature that segments global markets into smaller submarkets. Some authors explain the formation
of such submarkets by market imperfections, e.g. Can (1992) or Goodman and Thibodeau (2003).
In functioning markets, they would expect prices to equalise across regions to eliminate arbitrage op-
portunities. Other authors, such as Nesheim (2002) or Ekeland, Heckman, and Nesheim (2004), see
the formation of submarkets as an integral component of the price-setting mechanism in functioning
markets.
In terms of model methodology, heterogeneous effects on prices is often modeled using some form of
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clustering. There exists a wide spectrum of techniques aimed at identifying such homogeneous clus-
ters. A popular strategy is k-means clustering. Examples include Abraham, Goetzmann, and Wachter
(1994), Bourassa et al. (1999) and Tomal (2021). The latter use k-means clustering to identify county
housing markets in Poland. Abraham, Goetzmann, and Wachter (1994) identify three groups of homo-
geneous markets in the US: West Coast, East Coast and Central US. Bourassa et al. (1999) combine
principal component analysis (PCA) with k-means clustering to identify housing submarkets in Aus-
tralia. Although the choice of clusters in these examples is data-driven, the clustering algorithm is not
related to the actual hedonic modelling and the modelling itself is carried out separately. In contrast,
examples of model-based clustering include Day, Bateman, and Lake (2004), who fit a finite mixture
model to a dataset of house and bungalow sales from Birmingham, UK, to identify observations that
are ”close” to each other, although not in a spatial sense. McMillen and Redfearn (2010) apply non-
parametric locally weighted regression (LWR) to a dataset in Chicago, USA, allowing for spatially
varying coefficients. In this way, they investigate how house sales prices vary regarding their proximity
to a rapid transit line. Still, all of these applications do not consider the full distribution of prices, but
rather a single moment. Thus, these attempts fail in identifying varying effects of the covariates on
the price depending on the underlying price segment.

Regression models that consider only a single moment of the distribution, e.g. the mean, fail to
achieve this objective. Hence arises the need for models that take into account the entire distribution
of prices, i.e. distributional or quantile regression. However, there are much fewer attempts to simul-
taneously account for spatial heterogeneity and the full conditional distribution of prices. Zietz, Zietz,
and Sirmans (2008) apply a quantile regression approach (Koenker and Bassett, 1978) on data investi-
gating home sales from the Orem/Provo area in Utah, USA. Considering 1,366 sales between 1999 and
2000, they find that housing characteristics are not equally valued across the price distribution. Waltl
(2019) also adopts a quantile regression approach and examines the differential influence of character-
istics in three different price segments, i.e. quantiles, and three locational clusters for 565,587 houses
in Sydney, Australia. She finds differing price developments both in urban versus suburban areas and
in low-cost versus high-cost dwellings. Razen and Lang (2020) apply distributional regression with
cluster-specific heterogeneity using random scaling factors (Wechselberger, Lang, and Steiner, 2016),
assuming a homogeneous functional form between clusters but heterogeneity in their scaling. Using
data on nearly 100,000 single-family homes in Germany, they find spatially diverse effects, especially
with respect to differences between former East and West Germany.
Regarding the use of quantile versus distributional regression, Razen et al. (2014) provide a comparison
of the two and find that distributional regression is superior to quantile regression in the real estate
context.
However, none of these approaches form the clusters on a model basis. Furthermore, while they allow
for the varying influence of dwelling characteristics, they do not take into account the actual relevance
of the covariates in each cluster.

Overall, three main problems still persist in the context of hedonic models of real estate data:

1. Many applications still do not consider the full conditional distribution of prices, thus neglecting
heterogeneous effects depending on the price segment. In the context of quantile and distribu-
tional regression, there exists no model-based clustering mechanism for identification of locally,
spatially coherent, homogeneous submarkets.

2. One possible reason for the lack of use of distributional models within the scope of real estate
data, is that fitting distributional models has not been feasible so far because of the computational
complexity. This is especially true for (very) large data sets.

3. Applications to date have completely ignored variable selection with the locally identified sub-
markets. Potential variation in the relevance, in addition to the magnitude, of covariate effects
is a facet that has been completely ignored in the literature.

In addressing all of the aforementioned challenges, the contribution of this paper can be distilled into
the following aspects:

• We propose a model-based clustering algorithm that partitions the data into more homogeneous,
spatially coherent regions. We use a tree-based partitioning algorithm where each leaf in the re-

2



gression tree is associated with a distributional regression model. This achieves optimal clustering
such that the global negative log-likelihood is minimised.

• By using a boosting type algorithm in each cluster, we are able to automatically identify (ir)relevant
covariates responsible for price formation. Thereby, we not only account for the varying influence
of dwelling characteristics on the price, but also take their relevance into account.

• We apply a novel batchwise backfitting algorithm (Umlauf et al., 2023) that is able to fit distri-
butional regression models efficiently even for very large data on a conventional machine. Our
dataset of more than 1.2 million apartments in Germany is, to our knowledge, the largest dataset
ever used in the context of distributional hedonic real estate models.

Thus, our proposed method combines model-based clustering, which accounts for spatial heterogeneity,
and distributional regression, which sheds light on the entire distribution of prices rather than a single
moment.

The rest of the paper is structured as follows. In section 2 we present our general estimation strategy
and model design. In addition, we detail the methodological ideas behind the applied structured addi-
tive distributional regression framework and the applied model-based clustering algorithm. In section
3, we apply the introduced methodology to a dataset of over 1.2 million apartment prices in Germany
and discuss our findings regarding effect heterogeneity. Finally, we conclude our work in section 4.

2 Methodology

In this section, we begin with a description of our estimation strategy for identifying heterogeneous
effects across location and price segments. We then provide details about the utilised methods in the
context of hedonic real estate modelling.
Our estimation strategy can be verbally summarised as follows.

1. We identify spatially homogeneous clusters of apartment rents by employing a model-based
recursive partitioning algorithm. The algorithm is a tree-based method similar to a regression
tree, where each leaf in the tree is not associated with a simple average, but instead, a fully
specified structured additive distributional regression model. For clustering, we use a model
containing all available variables. We choose the longitude and latitude of the centroids of the
counties, which are similar to counties, as partitioning variables.

2. Following the identification of clusters, we perform variable selection in all of the clusters by
applying a boosting-type variant of the computationally highly efficient batchwise-backfitting
algorithm.

3. Finally, after identification of relevant variables in the clusters, we fit a final distributional re-
gression model containing all relevant covariates.

2.1 Hedonic Structured Additive Distributional Regression

Early applications of hedonic regression go back to Haas (1922) and Wallace (1926), both of whom
relate farmland prices to land attributes. Later applications include those of Court (1939), who
constructed hedonic price indexes for automobiles. Rosen (1974) is the first to develop a theory of
hedonic pricing in the context of housing, the idea being to decompose housing prices into the sum of
the prices at which buyers value the characteristics of the dwellings. Thus, as stated by Sopranzetti
(2015), the simplest hedonic model is given by

pi =

J∑
j=1

βjxij + ϵi, (1)

where pi is the price (per square metre) of the dwelling is regressed on a set of J house characteristics
xij with the corresponding coefficients, βj . To deal with nonlinearities in the pricing structure as well
as favourable distributional properties, a semilog form of equation 1 is often preferred. For notational
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simplicity, we refer to the log price per square metre as pi.
To allow for smooth effects of the covariates that do not assume a specific relationship between housing
attributes and the price, this model is often extended using generalised additive models (GAM; Hastie
and Tibshirani, 2017), such that

pi =

J∑
j=1

βjxij +

L∑
l=1

fl(zil) + ϵi,

where fj is a function that smoothly relates a covariate z to the dependent variable. This smooth
function is usually modelled by basis, P(enalised) or thin-plate splines. Models incorporating splines as
smooth functions are of increasing popularity in the literature. Brunauer, Lang, and Feilmayr (2013)
fit P-splines to model the effects of the metric covariates used in their analysis. Schäfer and Hirsch
(2017) compare the performance of ordinary least squares (OLS) regression with that of a GAM model
on data from Berlin, Germany. They find that GAMs outperform OLS regression models and better
capture effects on price related to spatial attributes of a dwelling, such as distance to amenities.

The hedonic approaches described thus far only model the mean of the prices’ distribution by regress-
ing it on a set of covariates. Quantile and distributional regression consider either multiple quantiles
(quantile regression) or the full conditional distribution of prices. Razen et al. (2014) carry out a
comparison of both approaches in the context of hedonic real estate regression and find distributional
regression to be favourable.
Structured additive distributional models are employed to capture the relationship between a response
variable and covariates while accounting for all distributional parameters of the response distribution.
Using distributional regression, we are able to account for heterogeneous effects with regard to the
price segment of the dwelling. By modeling all parameters of the distribution, we are able to identify
varying influences on the price for varying quantiles of the price. Only considering the mean (or any
single moment of a distribution) provides only very restricted insights on the covariate effects and com-
pletely disregards varying influence depending on the price segment. Zietz, Zietz, and Sirmans (2008)
find that buyers of high-priced dwellings in Utah, USA, value dwelling characteristics differently from
buyers of lower-priced dwellings. Waltl (2019) also examines data from Sydney with a particular focus
on differential effects across price segments and finds varying influences of features across price seg-
ments. She then constructs indices and shows differences in price trends between high- and low-cost
dwellings.
The following notation follows that of Umlauf, Klein, and Zeileis (2018). In the context of distri-
butional regression, the distribution of the response variable can be defined very broadly to follow
any desired distribution. In our application, the response is the log price per square metre, p, and is
defined, given a set of covariates x = x1, . . . , xJ , and z = z1, . . . , zL as

p|x, z ∼ Dp

(
θ1(x, z) = h−1 (η1(x, z)) , θ2(x, z) = h−1

2 (η2(x, z)), . . . , θK(x, z) = h−1
K (ηK(x, z))

)
.

Dp represents an arbitrary parametric distribution of the log price p with K parameters θk, where each
θk(x) is a function of x, i.e., the covariates. h−1

k denote inverse link functions that relate the additive
predictors ηk to the parameters of the distribution. ηk, representing the additive predictor for the k-th
parameter θk(x), is then specified as

ηk = β1kx1 + . . .+ βJkkxJk
+ f1k(z1) + . . .+ fLkk(zLk

),

where flk represents one of Lk functions of the predictor variables z. Each function captures an un-
specified relationship between the predictors and the k-th parameter. They could be specified as, e.g.,
B-spline basis functions or, as in our application, as thin plate splines. βjk corresponds to one of Jk
coefficients capturing a linear effect of covariate x. Note that each predictor ηk is not required to
contain the same set of predictor variables x and z. For each predictor, we actually allow different
predictor variables based on automatic variable selection. However, we do not include this in the
formula to keep the notation simple.

In our application, we assume a log-normal distribution for the prices for apartment prices given
by

p ∼ logNO(η1 = µ, η2 = log(σ)),
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where µ is the mean and σ the corresponding standard deviation. In the course of our analysis,
we modelled the price using a variety of distributions. In general, we found very little difference
between the fitted distributions. In our view, the log-normal distribution offers a good marriage of
high predictive accuracy and simplicity. η1 is the predictor for the µ-parameter of the distribution
with identity link. The additive predictor for the σ-parameter is given by η2. We use a log link to
ensure strictly positive values for σ.
To account for spatial heterogeneity, we further allow for varying effects of covariates based on model-
based cluster membership. For each of the identified clusters identified using the model-based rescursive
partitioning algorithm (see section 2.2.1), we further perform automatic variable selection using a
boosting variant of the batchwise backfitting algorithm (see section 2.2.2). In this way, we also allow
covariates to be included only in those regional clusters where they are relevant to price formation.

2.2 Strategy for Model Choice and Variable Selection

2.2.1 Model-Based Identification of Clusters

There are few examples in the literature, where spatial heterogeneity of effects is modelled in the
context of distributional or quantile regression using real estate data. Waltl (2019) employs a quantile
regression approach and considers varying effects of characteristics in three different price segments
and three locational clusters (inner city, metropolitan area, and suburban districts) for houses in
Sydney, Australia. She finds differing price developments both in urban versus suburban areas and
in low-cost versus high-cost dwellings. Razen and Lang (2020) apply distributional regression with
cluster-specific heterogeneity using random scaling factors (Wechselberger, Lang, and Steiner, 2016),
assuming a homogeneous functional form between clusters but heterogeneity in their scaling. Using
data on single-family homes in Germany, they find different effects across clusters, especially with
respect to clusters in former East and West Germany. However, the choice of clusters is based on
administrative boundaries rather than on a model. To date, there has been no application in the
residential real estate context that combines distributional regression with a model-based clustering
approach.

We achieve the identification of locally homogeneous clusters by adopting the model-based recursive
partitioning algorithm as introduced by Zeileis, Hothorn, and Hornik (2008). Like generalised additive
models, model-based recursive partitioning is a supervised statistical learning technique. The result-
ing model is similar to a standard regression tree, where each terminal node, i.e. leaf, is associated
with a model (in our case a distributional regression model) rather than a simple average. Since this
algorithm is a tree-based method, we introduce its idea by embedding it in a regression tree context.
Our structure and notation follow the work of Hastie, Tibshirani, and Friedman (2009).

In general terms, regression trees are tree-based models fitted to a metric dependent variable. They
present a relatively simple yet powerful tool. The feature space is partitioned into rectangles called
nodes. In each of these nodes, a simple mean of the corresponding data is fitted. The rationale behind
the concept is to identify split points within the explanatory variables that divide the characteristic
space into two regions. The data are split until some stopping criterion, such as a pre-specified mini-
mum number of observations in a node, is met. The final model can be visualised as a tree depicting
the regions into which the data is split.
Formally, a dependent variable, the log price per square metre, p, is considered along with L explana-
tory variables for n observations. For simplicity, we refer to all explanatory variables as z, including
the linearly modelled covariates as x. The algorithm is designed to identify splitting variables and
splitting points. We then create a partition with M regions R1, R2, . . . , Rm and model the response
as a constant cm in each region such that

g(z) =

M∑
m=1

cmI(z ∈ Rm).

If we then set the minimisation of the sum of squares
∑

(pi − f(zi))
2, we get the optimal ĉm as

ĉm = ave(pi | zi ∈ Rm),
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which is simply the average of pi in Rm. Since computing an optimal partition in terms of the sum of
squares is usually infeasible, a greedy algorithm is adopted: First, a splitting variable l is defined for
which the characteristic space is split at point s such that

R1(l, s) = {z | zl ≤ s} and R2(l, s) = {z | zl > s}

are obtained. Finally, the splitting variable l and split point s are received by solving

min
l,s

min
c1

∑
zi∈R1(l,s)

(pi − c1)
2 +min

c2

∑
zi∈R2(l,s)

(pi − c2)
2

 ,

where
ĉ1 = ave(pi | zi ∈ R1(l, s)) and ĉ2 = ave(pi | zi ∈ R2(l, s))

solve the inner minimisation. In this way, the optimal pair (l, s) is obtained and the procedure is
typically repeated until some minimum terminal node size is reached. The tree can then be pruned to
avoid overfitting (Hastie, Tibshirani, and Friedman, 2009).

We now extend the concept of regression trees by fitting a structured additive distributional regression
model in each partition instead of the simple mean. This methodology, called model-based recursive
partitioning, was introduced by Zeileis, Hothorn, and Hornik (2008), whose notation we adapt to briefly
introduce the method. Model-based recursive partitioning is an integration of parametric models into
regression trees:
Suppose a global parametric model M(p, θ) is given with observed log prices per square metre p and
parameter vector θ. The model is then estimated by minimization of the objective function Ψ(p, θ),
which is the negative log-likelihood, resulting into

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(pi, θ), (2)

where θ̂ is the parameter estimate given n observed prices pi(i = 1, . . . , n). Then, instead of a global
model M, the characteristic space is divided into regions, or partitions, R1, R2, . . . , Rm. Thus, each
cell Rm holds a model Mm(p, θm) corresponding to a cell-specific parameter θm yielding a globally
segmented model MM (p, {θm}). {θm}m=1,...,M thereby corresponds to the full combined parameter.
Equation (2) formulated over all regions can then be written as the optimization problem

M∑
m=1

∑
i∈Im

Ψ(pi, θm) → min, (3)

over all partitions {Rm} with the indexes Im,m = 1, . . . ,M . Equation (3) corresponds to a single model
corresponding to each terminal node in a tree. The fitting of a model-based recursive partitioning model
can then be summarised in the following algorithm:

1. In a possible node, fit the model with θ̂ to all corresponding observations by minimising the
objective function Ψ, in our case the negative log likelihood.

2. Calculate the split point s that locally minimises Ψ.

3. Split the current node into a set of child nodes and repeat the previous steps.

4. Grow a large tree until a defined minimum of observations is reached in each node. Then
postprune the tree using BIC for regularisation.

Note: The original algorithm includes an optional fluctuation test in the second step, to evaluate
whether the parameter estimates are stable with respect to any order in the partitioning variables j.
However, we choose not to apply the fluctuation test and instead grow and post-prune a very large
tree. For a more detailed description of the steps, see Zeileis, Hothorn, and Hornik (2008). The above
algorithm is implemented in the partykit package by Hothorn and Zeileis (2015), which includes the
mob() function.
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2.2.2 Efficient Estimation of Models with Automated Variable Selection

Until now, one of the main drawbacks of distributional regression models has been the computational
complexity of their estimation. Maximising the (penalised) likelihood of the model is achieved by a
backfitting algorithm introduced by Rigby and Stasinopoulos (2005), based on Marx (1996)’s iteratively
reweighted (penalised) least squares (IRPLS), which incorporates first- and second-order information
of the penalised likelihood. For a more detailed description of the algorithm, see Umlauf et al. (2023)
or Umlauf, Klein, and Zeileis (2018).
Although estimation of the model is feasible for smaller datasets, estimation using the standard back-
fitting algorithm based on IRPLS is not feasible for large datasets such as those used in our analysis.
This is especially true since the identification of clusters, as introduced in section 2.2.1, requires the
fitting of hundreds of models to identify the optimal split point.
Batchwise backfitting (Umlauf et al., 2023) is based on the idea of updating model coefficients based
on a random batch (or batches) of data. Given a randomly drawn subset [i] ⊆ {1, . . . , n}, the model
coefficients are updated in step [t+ 1] with

β
[t+1]
jk = (1− ν) · β[t]

jk + ν · β[i],jk (4)

where ν is the step length control parameter, or learning rate, at which the coefficient β
[t]
jk is updated

to β
[t+1]
jk . For each iteration of the batchwise backfitting algorithm, (4) is run on a random batch.

The batch size is considerably smaller than the full sample. This approach has two main advantages
towards fitting the model on the full data:

• The estimation of the distributional regression model is feasible even for very large data sets like
the one we have here. For the clustering algorithm explained in section 2.2.1, the model has to
be fitted hundreds of times to compare improvements in the objective function, i.e. the negative
log likelihood. This would be impractical if the model were fitted to the full data. In this way,
the estimation of the models would easily be computable on a conventional laptop within a day’s
computing time.

• Similar to stochastic gradient descent, batchwise backfitting carries less risk of getting stuck in
a local minimum of the objective function.

A central contribution of this paper is to include the automated choice of relevant variables for mod-
elling distribution parameters. For variable selection, (4) is altered such that not all model terms are
updated, but only the term with the highest improvement in some information criterion, e.g. out-of-
sample log-likelihood or AIC. This corresponds to a boosting-type algorithm. In our application, we
only update the model term that maximises the reduction in AIC.
The estimation of the final model after variable selection is achieved by applying a resampling variant

of the algorithm: We set the step size parameter ν = 1 so that the updated coefficient β
[t]
jk consists

only of the new estimate β[i],jk based on the batch [i]. In this way, we obtain samples of a distribution

of βjk and obtain β̂ by taking the mean (or median) of the coefficient paths after a burn-in period.
In Figure 1, we demonstrate the functionality of both approaches for a model fit on the pooled data
with a batch size of 10, 000 and 350 iterations. Panel 1a corresponds to the boosting-type flavor of the
algorithm. The stepwise coefficient updates lead to the shown coefficient paths that converge towards
their final estimated value. The resampling flavor is shown in Figure 1b. After a, in this applica-
tion rather short, burn-in phase, each update resembles a sample from the coefficient’s distribution.
Because, ν = 1, the updated coefficient is solely the estimate based on the current batch and the
estimated values of the coefficient fluctuate around a steady state.

A considerable advantage of the algorithm is that, apart from specifying the model, we only have to
specify the step length parameter ν, the number of batches and the batch size.
For the step length, simulations show that ν = 0.1 represents a reasonable balance between conver-
gence and numerical stability.
Regarding batch size and number of batches, no universally appropriate size exists. Increasing the
batch size increases the stability of the estimates, but also increases the computation time of the mod-
els. As advised by Umlauf et al. (2023), we estimate intercept only models and increase the batch size
until the coefficient paths become stationary. We also consider the convergence of the log-likelihood
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(a) Boosting.
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(b) Resampling.

Figure 1: Selection of paths for six coefficients a global model using batchwise backfitting with boosting
and resampling variants of the algorithm.

contribution plots of the full model, which track the contribution path of the corresponding variable
to the (log) likelihood.
With respect to the number of batches, a high number of batches ensures convergence of the algorithm
at the cost of increased computational time. For both the boosting and resampling variants of the
algorithm, we find that a batch size of 5000 and a number of batches of 350 is a good choice. Figure 2
depicts the contribution to the Log Likelihood of corresponding variables. The plotted Figure indicates
convergence of the paths from circa iteration 200.

The described methodology along with other functionalities is implemented in the R package bamlss
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Figure 2: Log Likelihood contribution paths for model terms.

(Umlauf et al., 2021). We apply the method using the included bamlss()-function. For the boost-
ing variant, we apply opt bbfit as an optimizer, and for resampling, we use opt bbfitp. For de-
tails on the estimation see also Umlauf et al. (2023), as well as the vignettes on the official website
http://bamlss.org/.
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3 Case Study

3.1 Data

The data set we exploit for our application, is provided by DataScience and Service GmbH, located in
Vienna, Austria. The sample contains (log) asking prices for 1,235,002 observed dwellings comprising
40 variables distributed over 400 Landkreise (which we will refer to as counties) in Germany. Asking
prices generally come with advantages and disadvantages. Major advantages lie in a larger sample size
and earlier availability in contrast to transaction prices. This implies smaller standard errors in the
predicted prices and price indices next to larger variability in the explanatory variables. The major
disadvantage is a potential upward bias of the asking prices as the last offer price is usually greater
than transaction prices. In our work, we disregard this upward bias of the prices.
Figure 3 illustrates the spatial distribution of observations across the counties in Germany. The density
of observations is higher in rural areas and lower in urban areas. The maximum number of observations
is in county 11000, which is the Berlin, where we observe 90,907 units. County 12070, Prignitz in the
state of Brandenburg, contains only 83 observations, representing the global minimum in our data.

Figure 3: Number of observations over counties in Germany.

For our analysis, we consider a time horizon from the first quarter in 2016 to the third quarter
in 2022. We offer a comprehensive list of variables considered in our analysis in Tables 2 and 3. For
continuous covariates, we present the (arithmetic) mean, standard deviation, minimum, and maximum
values. For discrete variables, we provide the relative frequencies of their respective values.

3.2 Identified Housing Clusters

As explained in more detail in the algorithm outlined in section 2, we fit a tree with a structured
additive distributional model in each leaf to the data. Because the algorithm does not take into
account the neighborhood structure of the counties, it does not necessarily yield spatially contiguous
clusters. Thus, we postprocess the obtained clusters to ensure that all counties within each cluster are
spatially contiguous:

1. Identify all clusters that contain spatially non-contiguous counties and split them into sub-
clusters, such that all counties within each sub-cluster are spatially contiguous.

2. For each sub-cluster, identify all neighboring clusters.
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3. Assign the sub-cluster to each neighbor and compute the corresponding prediction accuracy,
measured as the out-of-sample mean squared error (MSE). Additionally, compute the out-of-
sample MSE when the sub-cluster becomes its own cluster.

4. Identify the cluster for which the union with the sub-cluster yields the minimum MSE, and assign
the sub-cluster to the corresponding cluster.

Figure 4 provides an overview of the obtained clusters. The first panel, Figure 4a, displays the clusters
as obtained from the model-based recursive partitioning algorithm. While most counties within the
clusters are contiguous, some, like cluster 36, are not. Figure 4b shows the clusters obtained after
applying the postprocessing algorithm described above. The number of clusters increases from 58 to
75. Regarding predictive accuracy, the postprocessing of clusters improves the out-of-sample MSE
from 0.122 to 0.113, which corresponds to a reduction of roughly 7.4%

(a) Preprocessed clusters. (b) Postprocessed clusters.

Figure 4: Resulting clusters from Model-Based Recursive Partitioning and postprocessing.

3.3 Heterogeneity in effects across location and price segment

We account for spatial heterogeneity in covariate effects on µ and σ parameters of the lognormally
distributed prices by fitting a distributional regression model in each identified cluster. A boosting
flavor of the estimation procedure allows automated variable selection in each cluster and distributional
parameter. Figure 5 indicates whether variables have been selected for the µ and σ terms. The graph
allows us to assess how homogenous log-prices are in general within each cluster. If a cluster contains
homogenous flats, we expect in general very little variables to be included for modeling prices within
each cluster. Moreover, we can assess, whether the same variables are (not) relevant within each
cluster. If some variables are relevant to determination of prices only in specific clusters, we are able
to identify the concerning clusters in this graph.
For some clusters, not all underlying categories of the corresponding variable are observed. Thus,
variable selection is not possible for these variables in the concerned clusters (indicated with an ”NA”).
Both panels consist of a grid of 39 variables across 75 clusters, resulting in a total of 2925 fields in
each graph.
The variables chosen for the µ term of the distribution are illustrated in Figure 5a. Out of all the 2925
selection choices, 1460 indicate that a variable has been selected, while 1403 indicate that a variable has
not been selected. Variables age and quarter are chosen for all clusters, while the continuous variable
area is included in all clusters except for two. These results are in line with our expectations, as one
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would typically anticipate age, quarter, and area to consistently influence prices. Conversely, variables
such as skyscraper, use of garden, and geothermal heating are infrequently selected for inclusion in the
model.
The infrequent selection of the skyscraper variable highlights the benefit of automated variable selection
within the model framework. In many regions, incorporating this variable would be impractical due
to the limited presence of skyscrapers in Germany, which are concentrated in a few specific locations.
Additionally, the inclination of residents to live in skyscrapers may differ from city to city based on
the area’s characteristics. Manually selecting such variables would be arduous, whereas automated
selection based on the model streamlines the process and provides meaningful criteria for including or
excluding variables in each cluster. Our model indicates that the skyscraper variable is relevant only
in close proximity to large cities such as Frankfurt, Düsseldorf, or Cologne.
Figure 5b displays the variables (not) chosen for the σ term of the distribution. Out of all 2925 selection
choices, 1322 fields indicate that the corresponding variable has been selected in the respective cluster.
In 1542 cases, the variable of interest is not selected in the given cluster. Overall, the number of
relevant variables for the σ term is lower compared to the µ term. Similarly to the variable selection
in the µ term, the continuous variables age, area, and quarter are consistently chosen to be included
in the model, with few exceptions. While there are some variations between the panels, the overall
insight is that both the location and scale of the distribution are influenced by a substantial number
of variables, and the selection of relevant variables in each cluster exhibits heterogeneity.
The figures indicate that identified clusters are very homogeneous with respect to the influence of
location on the price. The county variable KGS05a, which gives the region ID, is only selected to be
included into both the µ and σ parameter of the model in three out of 75 clusters. This shows that
the identified clusters are quite homogeneous regarding the influence of location.

To gain an impression of the heterogeneity of the metric covariates’ effects, we depict the marginal
effects at median for variables age, area, and time in Figure 6. For better interpretability, we show
all effects on a linear scale instead of a log-scale. To correct for bias, we apply the bias correction as
described by Greene (2017). For all effects, we see that the effects’ levels differ substantially between
the clusters: Specifically, clusters 53 and 54, which pertain to counties surrounding the greater Munich
metropolitan area in Bavaria, exhibit the highest curves in all panels. Conversely, the lowest curve,
representing cluster ID 68, corresponds to a rural area south of Leipzig in the state of Saxony.
Regarding the effect of age on flat prices, some spatial heterogeneity is present. In many clusters, prices
per square meter decline monotonously with increasing age of the dwelling. However, in other areas,
both new buildings and buildings over 60 years old sell for higher prices than middle-aged buildings.
This difference in effects could be attributed to varying quality levels of older buildings in different
clusters.
For area, there exists heterogeneity with respect to the effects as well. In most clusters, prices per
square meter decrease monotonously with increasing area, which can be seen as a bulk discount for
larger flats. However, in certain regions, especially those with higher overall price levels, prices increase
again after surpassing an area threshold of about 60m2.
For all clusters, prices per square meter rise over the domain of time as the data does not cover more
recent time periods. Similar to age and area effect plots, there is some heterogeneity of effects present.
The slope of the functions varies between clusters, with higher priced regions exhibiting steeper slopes
compared to regions with lower overall price levels.
In general, the relationships between metric covariates and prices show heterogeneity across different
locations of flats. Particularly, flats located in areas with higher overall price levels show differing
effects compared to those flats located in lower-priced regions.

To further assess the heterogeneity of effects alongside the improvement in the fit of our model, we
report the out-of-sample prediction accuracy in Table 1. To provide a more complete overview of the
distribution of (squared) prediction errors, we further report the median squared error (MedianSE)
alongside the mean squared error (MSE). The table illustrates the importance of allowing for het-
erogeneous effects across locations in the context of hedonic house price models: Clustering alone,
without automated variable selection, reduces the MSE by about 56% and the MedianSE by 61%.
When the relevance of the effects within each cluster is taken into account by applying automated
variable selection based on boosting, the MSE falls by a further 5% and the MedMSE by a further 6%.
Hence, clustering, and thus accounting for heterogeneous effects, is by far the most relevant step, but
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(a) µ-term.
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(b) σ-term.

Figure 5: Selected variables for µ and σ terms. Variables are ordered from left to right from the most
frequently selected variable to the least.
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Figure 6: Marginal effects at median values for continuous variables age, area, and quarter for each of
the 75 clusters.

the reduction in prediction error by introducing variable selection is also of relevant magnitude.

Global Model
With Clustering
(no variable selection)

With Clustering

MSE 0.2670
0.1183
(-56%)

0.1130
(-5%)

MedianSE 0.0947
0.0372
(-61%)

0.0351
(-6%)

Table 1: Out-of-sample prediction accuracy of different models. The first line reports the mean squared
error (MSE) of the employed models, the second line gives the corresponding median squared error
(MedianSE).

Figure 7 shows the marginal effect plots for the µ parameter at median values for the county vari-
able. The panels reveal the heterogeneity of the effect both in terms of location and price segment.
For orientation, the maps also mark cities hosting more than 500,000 inhabitants. As far as the overall
price level is concerned, two main findings emerge. Firstly, prices per square metre are elevated in
urban areas around large cities. This is particularly true of Hamburg in the north, the German capital
Berlin and Munich. The high-priced region around Munich bleeds down into the south, likely reflecting
homeowners’ preferences to live closer to the Alps in the very south of Germany. Second, former East
Germany is associated with lower prices per square metre than areas in former West Germany, with
the exception of areas around Berlin.
In terms of the effect of location across price segments, the overall pattern of price levels is similar
across all price segments. The patterns of high and low priced regions identified above hold for all
quantiles plotted. However, the variability of the county effect is different. For the 10% price quantile,
the map features both very bright and very dark areas. On the other hand, the panel for the 90%
quantile is dominated by darker shaded areas. The difference in price levels between high and low
price counties is therefore smaller than in the lower price segments.

Provided in the Appendix, Figure 9 illustrates the influence of automatic variable selection imple-
mented in boosting flavour of the batchwise backfitting algorithm. The left panel corresponds to a
model in which the county variable is consistently included in all models for all clusters, neglecting
the relevance of its influence within each cluster as suggested by the automatic variable selection. In
contrast, the right panel represents the model where boosting determines whether the county variable
is included in the models, allowing for a data-driven selection process. As previously established, the
boosting flavour model only selects the county variable to be included in the µ term in four clusters.
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In all other clusters, the county variable is chosen not to be included (or, in two cases, the cluster con-
sisted of only a single county). The differences between the two types of model are particularly evident
in the northern and north-eastern parts of the country. In Figure 9, prices in the corresponding urban
regions are more distinct from their surroundings. Conversely, in Figure 7 the former East Germany
is more clearly differentiated in terms of its price level from the former West Germany.
Regarding out-of-sample prediction accuracy, always including the county variable in the regional mod-
els leads to an increase in MSE of approximately 4% and an increase in MedianSE of 6%. Hence, the
model-based choice of including the county variable in the models accounts for most of the reduction in
prediction error for all variables. This improvement in prediction accuracy cannot be solely attributed
to low observation counts in the corresponding areas, as clusters also include observation-dense areas.
Additionally, with 1.2 million observations in total, most counties contain a sufficient amount of data.
These findings indicate that model-based recursive partitioning based on distributional regression mod-
els is capable of identifying homogeneous clusters, particularly concerning the influence of location on
prices. This is in line with our expectations, as one would expect that a clustering algorithm based on
location is likely to identify clusters that are homogeneous in terms of location. This result underlines
the usefulness of our approach.
Figure 8 sheds further light on the homogeneity of the influence of covariates across price segments.
The panels correspond to clusters 4, 15, 35, 54 and 74 or regions in or near Freiburg (Breisgau), Hei-
delberg, Bremen, Munich and Berlin (in that order). However, cluster 74 corresponds rather to an
area forming a triangle between Berlin, Dresden and Leipzig in former East Germany. Plotting seven
quantiles provides more insight into the entire distribution of prices. Similar to figure 6, the presence
of heterogeneity of effects across locations is visible, which manifests itself in diverse functional rela-
tionships between clusters. In some clusters, the effect of age on price is monotonically decreasing, as
in clusters 4 and 35. In others, the relationship between the two is U-shaped. Thus, in some clusters,
buyers strictly prefer newer buildings to older ones, while in others they prefer either new or historic
buildings (clusters 15 and 74 for higher quantiles).
Heterogeneity across price segments is less relevant in some clusters, such as cluster 4, than in others,
such as cluster 15. Regarding the effect of age on µ for the latter, the influence of age differs between
flat prices in the lower and higher segments. For the 2.5% quantile, the age effect is (almost) monoton-
ically decreasing. In contrast, for high-priced dwellings in the 97.5% quantile, the relationship between
age and price is U-shaped, indicating a higher total price for expensive historic buildings than for less
expensive historic dwellings.
Regarding time, a similar pattern is apparent. In clusters 4 and 35, i.e. regions around Freiburg (Breis-
gau) and Bremen, the price trend appears homogeneous across all price segments. In other clusters,
such as 54 and 74, referring to Munich and the Berlin - Dresden - Leipzip triangle, price trends are
steeper in higher quantiles than in lower. Although prices have increased in all price segments, high
priced apartments are hence subject to stronger price appraisals compared to low priced apartments.
For the sake of clarity, we only include graphs for 5 of the 75 clusters. For completeness, and also for
a more comprehensive overview of all clusters, we provide an animated graph online containing the
marginal effect curves for the seven quantiles for all 75 clusters.1

Overall, we find that accounting for heterogeneity across price segments is relevant. However,
our results also suggest that heterogeneity across locations plays a greater role. This is reflected in
the fact that fewer variables, less than half the total number, are selected in the σ parameter of the
model than in the µ parameter. We additionally fitted a model assuming homoscedasticity, i.e. fitting
sigma only to an intercept term, and compared it to our final model with variables included on the
basis of boosting. We then compared the two models using the continuous ranked probability score
(CRPS), which is a generalisation of the mean absolute error (MAE). The CRPS metric indicates the
discrepancy between the predicted cumulative distribution function (CDF) and the observed value.
It therefore provides a more comprehensive picture of the quality of the predicted distribution. The
model assuming homoscedasticity has a CRPS of circa 0.1791, while our final model accounting for
heteroscedasticity has a score of around 0.1780 (lower is better). This corresponds to a reduction of
about 0.6%. Thus, modelling the σ parameter, and thus accounting for the heterogeneity of effects
across price segments, increases the fit to the data, but is far less relevant in terms of model fit compared
to the clustering of observations.

1https://jgranna.github.io/quantile plots
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Figure 7: Marginal effects on the µ parameter at the county median (KGS) for each of the 75 clusters.
County variable (not) included on the basis of automatic variable selection. Panel titles refer to the
quantile of the price segment. Thus ’q0.1’ refers to the county effect on µ for the 10% quantile of prices
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Figure 8: Marginal effects on µ at median values for continuous variables age, area, and time for
5 selected clusters across varying price segments, i.e. quantiles. The rows correspond the indicated
cluster. Columns refer to the indicated covariate effect.
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4 Discussion

Accounting for heterogeneous effects of housing attributes on prices, both with respect to the location
of dwellings and the price segment, is of great but still growing interest in the literature. Clustering
techniques are often not model-based and unrelated to the underlying hedonic model. Although some
authors take into account the varying impact of dwelling characteristics, variable selection is usually
not carried out in each cluster, implicitly assuming that the same set of variables is relevant in each
region. Furthermore, distributional regression was not feasible for very large datasets due to compu-
tational complexity.

In this paper, we apply a model-based clustering approach in combination with a novel batchwise
backfitting algorithm on a large dataset to account for both varying influence of housing character-
istics based on location and the dwellings’ price segment. Further, we allow not only for varying
influence of covariates, but also allow for variables to be automatically included in regions, where they
are relevant and excluded in regions, where they have no influence on the price. Thus, our model is
not only less biased, but also parsimonious.

We identify spatially coherent clusters that are homogeneous especially with respect to the influence
of location on the price. The model-based clustering algorithm reduces the out-of-sample MSE, and
thereby the bias, by 56% compared with a model assuming homogeneous locational effects. We find
differing functional forms in the relationships between continuous covariates and the price, especially
regarding the influence of time, which indicates diverse time trends in the clusters. Accounting for
heteroskedasticity and thus allowing for differential effects across price segments is also relevant, but
not to the same extent as accounting for spatial heterogeneity. Model fit, as measured by the CRPS, is
improved by modelling the σ parameter, but by far not to the same magnitude. Still, we find diverse
effects of covariates depending on the price quantile in some regional clusters. Our results show a
substantial variation in the variables that are automatically selected into the cluster models. Some
variables, like area and age are always selected to be included, other variables are very rarely selected
to be included. With regard to improvement of prediction accuracy, automated variable selection im-
proves MSE by another 5%.

A possible extension of our work could be to assess whether the covariate effects are indeed sub-
ject to functional heterogeneity, as assumed in our analysis. An alternative approach could be to
assume functional homogeneity across clusters and heterogeneity across clusters only with respect to
the scaling of the effects, as suggested by Wechselberger, Lang, and Steiner (2016) and investigated
in Chapter 3. A useful extension of the framework used in this paper could be the inclusion of such
random scaling factors in the context of batchwise backfitting. However, this remains a matter for
future research.
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A Descriptive Tables

variable description mean / rel. frequency std. deviation min max

ppqm Price per square meter 2.070 0.080 1.360 2.420
log.ppqm log(Price per square meter) 7.930 0.600 3.910 11.260

age Age of flat in years 37.680 30.230 -4.000 119.000
area Area of flat in square meters 80.080 32.380 21.000 240.000
quarter Quarter of last offer 2019.200 2.010 2016.000 2022.500
KGS county ID
balcony Whether object has balcony

0 = no 0.435
1 = yes 0.565

built.in.kitchen Whether object has built-in kitchen
0 = no 0.993
1 = yes 0.007

cellar Whether object has a cellar
0 = no 0.461
1 = yes 0.539

condition condition of object
1 = other 0.634
2 = first-time occupancy 0.161
3 = renovated 0.173
4 = in need of renovation 0.031

cul.de.sac Whether object is located in cul de sac
0 = no 0.998
1 = yes 0.002

district.heating Whether object features district heating
0 = no 0.946
1 = yes 0.054

electric.heating Whether object has electric heating
0 = no 0.997
1 = yes 0.003

elevated.ground.floor Whether object is on elevated ground floor
0 = no 0.994
1 = yes 0.006

floor.boards Whether object has floorboards
0 = no 0.995
1 = yes 0.005

floor.heating Whether object has floor heating
0 = no 0.909
1 = yes 0.091

furnished Whether object is furnished
0 = no 0.967
1 = yes 0.033

garage Whether object has a garage
0 = no 0.882
1 = yes 0.118

garden Whether object features a garden
0 = no 0.924
1 = yes 0.076

garden.share Whether object inlcudes share of a garden
0 = no 0.990
1 = yes 0.010

garden.use Whether object inlcudes a shared garden
0 = no 0.997
1 = yes 0.003

geothermal.heating Whether object features geothermal heating
0 = no 0.998
1 = yes 0.002

Table 2: Summary statistics of variables considered for modeling. Arithmetic mean is provided for
metric covariates, relative frequency for discrete variables (Part 1).
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variable description mean / rel. frequency std. deviation min max

heating.type Type of heating in dwelling
1 = other 0.079
2 = unknown 0.661
3 = district heating 0.052
4 = gas 0.189
5 = oil 0.019

hereditary.lease Whether dwelling is hereditary lease type
0 = no 0.984
1 = yes 0.016

historic.preservation Whether dwelling is historically preserved
0 = no 0.978
1 = yes 0.022

laminated.flooring Whether object features laminated flooring
0 = no 0.954
1 = yes 0.046

lift Whether object features a lift
0 = no 0.710
1 = yes 0.290

maisonette Whether object has multiple floors
0 = no 0.944
1 = yes 0.056

no..of.rooms Number of rooms in the flat
1 0.092
2 0.310
3 0.389
4 0.160
> 5 0.049

north.facing Whether object is facing north
0 = no 0.999
1 = yes 0.001

refurbished.flat Whether object is refurbished
0 = no 0.809
1 = yes 0.191

rented Whether object is rented
0 = no 0.719
1 = yes 0.281

skyscraper Whether object is located in skyscraper
0 = no 0.999
1 = yes 0.001

solar.power Whether object features solar power
0 = no 0.997
1 = yes 0.003

south.facing Whether object is facing south
0 = no 0.997
1 = yes 0.003

storage.room Whether object has a storage room
0 = no 0.993
1 = yes 0.007

underground.parking Whether object has underground parking
0 = no 0.871
1 = yes 0.129

wellness Whether object has a wellness area
0 = no 0.996
1 = yes 0.004

winter.garden Whether object has a winter garden
0 = no 0.994
1 = yes 0.006

Table 3: Summary statistics of variables considered for modeling. Arithmetic mean is provided for
metric covariates, relative frequency for discrete variables (Part 2).
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Figure 9: Marginal effects (50% quantile) on the µ parameter at county median values (KGS) for each
of the 75 clusters. Panel titles refer to whether the county variable is always included (left panel), or
whether the inclusion of the county variable in each cluster is based on the boosting flavor impletented
in the batchwise backfitting algorithm.
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Abstract
Modeling real estate prices in the context of hedonic models often involves fitting a Ge-
neralized Additive Model, where only the mean of a (lognormal) distribution is regressed
on a set of variables without taking other parameters of the distribution into account.
Thus far, the application of regression models that model the full conditional distribu-
tion of the prices, has been infeasible for large data sets, even on powerful machines.
Moreover, accounting for heterogeneity of effects regarding time and location, is often
achieved by naive stratification of the data rather than on a model basis. A novel batch-
wise backfitting algorithm is applied in the context of a structured additive distributional
regression model, which enables us to efficiently model all distributional parameters of
the price distribution. Using a large German dataset of apartment asking prices with over
one million observations, we employ a model-based clustering algorithm to capture the
heterogeneity of covariate effects on the parameters with respect to location. We thus
identify clusters that are homogeneous with respect to the influence of location on price.
A boosting type algorithm of the batchwise backfitting algorithm is then used to automa-
tically determine the variables relevant for modelling the location and scale parameters
in each regional cluster. This allows for a different influence of variables on the distribu-
tion of prices depending on the location and price segment of the dwelling.
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