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Abstract

For numerous applications it is of interest to provide full probabilistic forecasts, which
are able to assign probabilities to each predicted outcome. Therefore, attention is shifting
constantly from conditional mean models to probabilistic distributional models captur-
ing location, scale, shape (and other aspects) of the response distribution. One of the
most established models for distributional regression is the generalized additive model for
location, scale and shape (GAMLSS). In high dimensional data set-ups classical fitting
procedures for the GAMLSS often become rather unstable and methods for variable selec-
tion are desirable. Therefore, we propose a regularization approach for high dimensional
data set-ups in the framework for GAMLSS. It is designed for linear covariate effects
and is based on L1-type penalties. The following three penalization options are provided:
the conventional least absolute shrinkage and selection operator (LASSO) for metric co-
variates, and both group and fused LASSO for categorical predictors. The methods are
investigated both for simulated data and for two real data examples, namely Munich rent
data and data on extreme operational losses from the Italian bank UniCredit.

Keywords: GAMLSS, distributional regression, model selection, LASSO, fused LASSO.

1. Introduction

A model class that has gained increasing attention in recent years is the class of the generalized
additive model for location, scale and shape (GAMLSS), introduced by Rigby and Stasinopou-
los (2005). In contrast to conventional regression approaches where the mean is regressed,
the GAMLSS framework allows to model simultaneously all distribution parameters (as, for
example, the location, scale and shape) in terms of covariates. Within the corresponding
predictors, parametric and/or additive nonparametric (smooth) functions of the explanatory
variables and/or random-effects terms can be included. In general, the (non)parametric mod-
els are fitted via maximum (penalized) likelihood estimation. In particular, Newton-Raphson
or Fisher scoring algorithms can be used to maximize the (penalized) likelihood.

The GAMLSS represents a very general regression-type model in which both the systematic



2 L1-type penalization for GAMLSS

and the random parts of the model are highly flexible: the distribution of the response variable
does not have to belong to the exponential family, can be continuous or discrete, as well as
highly skewed or kurtotic (Stasinopoulos and Rigby 2007). However, in high dimensional
data set-ups classical fitting procedures for the GAMLSS often become rather unstable and
methods for variable selection are desirable. In addition, the more distributional parameters
are related to covariates, the further the model’s complexity is increased.

The first ones who addressed the issue of variable selection, i.e. the selection of a reasonably
small subset of informative covariates to be included in a particular GAMLSS, were Mayr,
Fenske, Hofner, Kneib, and Schmid (2012). They extended boosting techniques, which orig-
inated in the machine learning field, to the GAMLSS framework. The approach is called
gamboostLSS and is based on classical gradient boosting, which they successfully adapted
to the GAMLSS characteristics. Both variable selection and model choice are naturally avail-
able within their regularized regression framework. For an implementation into the statistical
software R (R Core Team 2018), see Hofner, Mayr, and Schmid (2016).

An alternative strategy for variable selection, which is mainly designed for linear covariate
effects, uses L1-type penalties. A first attempt for such a penalization-based, regularized esti-
mation in the high dimensional GAMLSS framework is proposed in Hambuckers, Groll, and
Kneib (2018). There, only linear effects are considered, so in fact a generalized linear model
for location, scale and shape (GLMLSS) is regarded. The conventional least absolute shrink-
age and selection operator (LASSO; Tibshirani 1996) for metric covariates is then applied
on Generalized-Pareto-distributed extreme operational loss data from the Italian bank Uni-
Credit. For the implementation of the estimation procedure, Hambuckers et al. (2018) follow
Zou and Li (2008) and Oelker and Tutz (2017) and use local quadratic approximations of the
penalty terms. Relying on this approximation, the maximization problem can be linearized
and solved with usual Newton methods.

If, however, some of the independent variables are categorial, some modifications to usual
shrinking procedures are necessary. The present work describes a regularization approach,
which is also mainly designed for linear covariate effects and is also based on L1-type penal-
ties, but which extends the approach from Hambuckers et al. (2018) by including penalization
strategies that are specifically designed for nominal or ordinal categorical predictors. Using
adequate penalties, not only the cases of the conventional LASSO for metric covariates, but
also of both the group (Meier, Van de Geer, and Bühlmann 2008) and fused LASSO (Gertheiss
and Tutz 2010) for categorical predictors are covered. The implementation of the methods
is incorporated into the unified modeling architecture for distributional generalized additive
models (GAMs) established in Umlauf, Klein, and Zeileis (2017), which exploits the general
structure of GAMs and encompasses many different response distributions, estimation tech-
niques, model terms etc. The corresponding R-package bamlss (Umlauf, Klein, Zeileis, Köh-
ler, and Simon 2018) embeds many different approaches suggested in literature and software
and serves as a unified conceptional “Lego toolbox” for complex regression models. Further-
more, within its framework both the implementation of algorithms for complex regression
problems and the integration of already existing software are substantially facilitated.

The performances of these new methods are investigated in two extensive simulation studies
and are compared to different other approaches. In the style of the applications considered
later in this work, we consider both Gaussian and generalized Pareto distributed responses.
We focus on the fusion of factor levels of either nominal or ordinal factors. Different perfor-
mance aspects are investigated, in particular, mean squared errors of the fitted coefficients,
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but also the performance with regard to factor fusion and variable selection in the presence
of noise variables.

For illustration purposes, the proposed methods are also applied to two different real data sets.
The first data set contains Munich rent standard data from the year 2007, which are used as
a reference for the average rent of a flat depending on its characteristics and spatial features.
We model and select the predictor effects of nine covariates describing the apartments in terms
of their size, age and other characteristics related to the net rent per square meter. These
data have already been analyzed in Kneib, Konrath, and Fahrmeir (2011) and in Mayr et al.
(2012), where also a more detailed description of the data can be found. The second data set
is a database of 10,217 extreme operational losses from the Italian bank UniCredit, covering
a period of 10 years and 7 different event types. These data have recently been analyzed in
Hambuckers et al. (2018).

The article is set out as follows. In the next section, we specify the underlying fully parametric
regression model framework. We then introduce different L1-type penalties in Section 3, which
are designed for different kinds of regularization. The algorithmic details related to the fitting
procedures of the penalized models are presented in Section 4. Next, the performance of the
different methods is investigated in simulation studies in Section 5. Then, we illustrate their
applicability in the two aforementioned real data examples in Section 6. Finally, we summarize
the main findings and conclude in Secion 7.

2. Model specification

Along the lines of Rigby and Stasinopoulos (2005), who regard the GAMLSS as a semipara-
metric regression-type model with both linear and smooth covariate effects, in the following
we focus here on the fully parametric model with solely linear effects. Let y = (y1, . . . , yn)T

be the response vector with single observations yi, i = 1, . . . , n, being conditionally indepen-
dent given a set of covariates. The corresponding conditional density f(yi|θi) usually depends
on several distribution parameters θi = (θi1, . . . , θid)

T that commonly represent distribution
characteristics like location, scale, shape and/or kurtosis, but generally may be any of the
distribution’s parameters. The key feature of a GAMLSS is that each of these distribution
parameters θk can be modeled by its own predictor ηθk for k = 1, . . . , d, which, in our case,
depends linearly on a set of pk covariates together with an intercept β0k. Following Mayr et al.
(2012), we denote by gk(·) known monotonic link functions, relating the linear predictors to
their corresponding parameters θk. Then, a generalized linear model for location, scale and
shape is given by the following set of equations

gk(θk) = β0k +

pk∑
j=1

xTjkβjk = ηθk . (1)

As the covariates can be metric and/or categorical, we use the general notation xTjkβjk for a
single predictor term. If the covariate is categorical, this term collects all covariate dummies
and regression coefficients corresponding to the jk-th group of variables. If the covariate is
metric, it reduces to a product of scalar values, i.e. xjkβjk. These effects are collected in the
coefficient vectors βk = (β0k, β1k, . . . , βpk,k)

T , k = 1, . . . , d corresponding to the d submodels.
Estimation of regression parameters can be obtained via maximization of the model’s log-
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likelihood, given by

`(β) =
n∑
i=1

log f(yi|θi) , (2)

with vector β = (βT1 , . . . ,β
T
d )T collecting the effects of all linear predictors ηθk , k = 1, . . . , d.

Note that the log-likelihood (2) depends on the parameters βjk through the relations θik =
g−1(ηθik).

In principle, the maximization of (2) can be carried out using Newton-Raphson or Fisher scor-
ing algorithms. Suitable fitting schemes are implemented in the R-package gamlss (Stasinopou-
los and Rigby 2007) and based on the following principle: at each iteration, backfitting steps
are successively applied to all distribution parameters, using the submodel fits of previous
iterations as offset values for those parameters that are not involved in the current step.
However, in high dimensional situations these fitting procedures often become highly unsta-
ble and methods for variable selection are needed.

3. L1-type penalization

In the following, different L1-type penalties are introduced, which are designed for linear
covariate effects: the conventional LASSO for metric covariates, and both group and fused
LASSO for categorical covariates. The different penalization terms impose different kinds of
shrinkage depending on the covariates’ structure and the intentions of the modeler. In partic-
ular, the group and fused LASSO penalties are designed for nominal and ordinal categorical
predictors, addressing specific characteristics of those. Altogether, a term λJ(β) is subtracted
from the log-likelihood (2). Here, J(β) is a combination of (parts of) the four penalty terms
introduced in this section, whereas λ is a tuning parameter that controls the overall strength
of the penalties.

Classical LASSO

For (standardized) metric covariates xjk, following Tibshirani (1996), the absolute value of the
corresponding data (scalar) regression coefficient βjk is penalized by the conventional LASSO
penalty, i.e. the penalty terms have the following form

Jc(βjk) = |βjk| . (3)

This penalty structure shrinks the regression coefficient towards zero. If the effect is suffi-
ciently small, the regression coefficient can even be set exactly to zero, therefore excluding
the corresponding covariate from the linear predictor ηθk . The strength of the penalization is
controlled by the global penalty parameter λ : for large values of λ, only the most influential
covariates are retained and all other effects are shrunk to zero. On the contrary, for lower
values of λ, shrinkage is smaller and fewer coefficients are excluded from the different linear
predictors ηθk , k = 1, . . . , d. Hence, the penalty parameter λ plays the role of a tuning pa-
rameter: it controls the number of LASSO-penalized metric covariates that are related with
the distribution parameters θk of the response variable.

Group LASSO

For a (dummy-encoded) categorical covariate with corresponding group of dummies collected
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in covariate vector xjk and vector βjk of corresponding regression coefficients, the L2-norm
of βjk is penalized by the group LASSO penalty (compare, e.g., Meier et al. 2008), i.e. the
single penalty terms yield

Jg(βjk) =
√
dfjk · ||βjk||2 , (4)

where dfjk is the size of the jk-th group of dummy variables. The factors
√
dfjk are used to

rescale the penalty terms with respect to the dimensionality of the parameter vectors βjk,
see also Yuan and Lin (2006). They ensure that the penalty terms are of the order of the
number of parameters and, hence, are comparable to the conventional LASSO-penalty (3).
Consequently, if J(β) is a combination of penalties for both metric covariates from (3) and
penalties for (dummy-encoded) categorical covariates from (4), still a single overall penalty
parameter λ can be used.

The effect of jointly penalizing the whole group of dummies corresponding to a categorical
covariate via ||βjk||2 is similar to the one of the conventional LASSO penalty and we either

obtain β̂jk = 0 or β̂jk,l 6= 0 for all l = 1, . . . , dfjk. Consequently, a categorical predictor
is either included (with all its dummies) or excluded completely from its respective linear
predictor ηθk .

Fused LASSO

Alternatively, for categorical covariates, clustering of categories with implicit factor selection
is desirable. Depending on the nominal or ordinal scale level of the covariate, one of the
following two penalties can be used (compare Gertheiss and Tutz 2010). For nominally scaled
covariates, all possible pairwise differences of the regression effects are penalized by the fused
LASSO penalty, for which the individual penalty terms are given by

Jfn(βjk) =
∑
l>m

w
(jk)
lm |βjkl − βjkm|. (5)

On the contrary, for ordinally scaled covariates, only the differences of neighboring regression
effects are penalized. In this case, the penalty terms can be specified by

Jfo(βjk) =

cjk∑
l=1

w
(jk)
l |βjkl − βjk,l−1| , (6)

where cjk is the number of (free) dummy coefficients of the categorical predictor xjk, i.e.
the number of levels minus one. By choosing l = 0 as the reference category, βjk0 = 0 is

fixed. Both w
(jk)
lm and w

(jk)
l denote suitable weights that are suggested in Bondell and Reich

(2009). In principle, the use of these weights can be motivated through standardization of
the corresponding design matrix part, in analogy to standardization of metric predictors. For
nominal covariates we use

w
(jk)
lm = 2(cjk + 1)−1

√
n
(jk)
l + n

(jk)
m

n
,

where cjk + 1 is again the number of levels of the corresponding categorical predictor xjk and

n
(jk)
l denotes the number of observations on level l. Hence, the weights account for different
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numbers of levels of different predictors and for different numbers of observations on different
levels.

Furthermore, notice also that an adaptive version of the weights can be used. Then, they

contain additionally the factors |β̂(ML)
jkl − β̂(ML)

jkm |
−1, where β̂

(ML)

jk denotes the unconstrained

maximum likelihood (ML) estimate. The factor (cjk + 1)−1 ensures that the penalties from
(5) are comparable to the ordinal penalty terms from (6). For ordinal predictors, since the

penalty terms (6) are already of order cjk, the corresponding weights w
(jk)
l can be chosen as

w
(jk)
l =

√
n
(jk)
l + n

(jk)
l+1

n
.

Similarly to the nominal case, adaptive versions of the weights are obtained by adding the

factors |β̂(ML)
jkl − β̂(ML)

jk,l−1|
−1. Due to the adequately chosen weights w

(jk)
lm and w

(jk)
l , we can

combine the penalties from (5) and (6) and still use a single penalty parameter. However, if a
single penalty parameter is used, these penalties cannot be combined with those given by (3)
and (4), due to differences in orders and scaling procedures. Notice also that for the fusion
of effects, alternative weighting schemes are used in the literature, see, for example, Chiquet,
Gutierrez, and Rigaill (2017).

Finally, note that the classical and group LASSO penalties given by (3) and (4) could be
extended in a similar way by choosing suitable adaptive weights.

All proposed penalties have the attractive property to be able to set the coefficients of single
(groups of) covariates to zero and, hence, to perform variable selection. Within the estima-
tion procedures implemented in bamlss, e.g. the corresponding backfitting algorithm, local
quadratic approximations of all presented penalty terms are used (see Oelker and Tutz 2017).
Furthermore, note that bamlss also allows to assign to each linear predictor ηθk , k = 1, . . . , d,
its own penalty term, i.e. a term λkJ

(k)(βk), where J (k)(βk) denotes the penalty term corre-
sponding to linear predictor ηθk only. This framework allows to specify highly flexible models,
although it has the drawback that the grid search for the optimal tuning parameters λk has
to be carried out on d dimensions and, hence, becomes computationally more demanding.

Moreover, it is even possible in bamlss to assign to each single predictor component βjk (or
βjk if xjk is metric) its own penalty parameter λjk. In this case, instead of searching the tuning
parameters over a multi-dimensional grid, they are implicitly determined and optimized in a
stepwise manner in the backfitting procedure, as explained in the next section. If this strategy
is chosen, all different penalty terms from (3)-(6) can be combined, as each term is assigned
to an individual amount of penalization, and no issues regarding comparability arise.

4. Estimation

To conveniently introduce the penalized estimation of GAMLSS with the LASSO-type penal-
ties introduced in the previous section, we write the k-th linear predictor of equation (1), for
n observations in matrix notation:

ηθk = β0k + Xkβk = β0k +

pk∑
j=1

Xjkβjk,
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with regression coefficients βk = (β>1k, . . . ,β
>
pk,k

)> and design matrices Xk = [X1k, . . . ,Xpkk],
where the i-th row of Xjk is represented by xijk. Note that the intercepts are treated sep-
arately from the rest of the parameters, since they are not suspect to shrinkage. Moreover,
the presentation of the k-th linear predictor is split into its pk covariates to emphasize that
these can in principle have their own shrinkage parameters. More precisely, there are three
possible options which will be explained in more detail in the upcoming: First, the usage of
one global shrinkage parameter λ for all distribution parameters and model terms Xjkβjk.
Second, different shrinkage parameters λk, one for each distribution parameter, as used in
the next paragraph. Third, different shrinkage parameters λjk, one for each parameter of the
distribution and each model term Xjkβjk.

For the estimation of the coefficients βk we apply a partitioned updating scheme as presented
in Umlauf et al. (2017), which maximizes the penalized log-likelihood

`pen(β) =
n∑
i=1

log f(yi|θi)−
d∑

k=1

λkJ
(k)(βk)

= `(β)−
d∑

k=1

λkβ
>
k Jk(βk)βk.

(7)

For clarity, J (k)(βk) can be rewritten as
∑pk

j=1 J
(jk)(βjk), with J (jk)(·) being one of the

penalties given by equations (3)-(6). Because we follow Oelker and Tutz (2017) and use local
quadratic approximations in J (jk)(·), the LASSO penalty can be written as a quadratic form
with a suitably designed block-diagonal penalty matrix:

Jk(βk) = diag(J1k(β1k), . . . ,Jpkk(βpkk)).

In this setting, for each distribution parameter θk we begin by penalizing the contribution of
the jk-th covariate with the corresponding shrinkage parameter λk

1.

Then, for fixed values of λk, the algorithm cycles over each model component with a Newton-
Raphson-type updating step. For iteration t + 1, the updating step for the penalized coeffi-
cients is given by

β
(t+1)
k = (X>kWkXk + λkJk(βk))

−1X>kWk(zk − η̃θk), (8)

with working observations zk = η
(t)
θk

+ W−1
k u

(t)
k , derivatives uk = ∂`pen(β)/∂ηθk , weights

Wk = −diag(∂2`pen(β)/∂ηθk∂η
>
θk

) and partial predictor

η̃θk = η
(t+1)
θk

− β(t+1)
0k (see Umlauf et al. 2017 for a detailed description of the algorithm).

The intercepts β0k are updated similarly, but without the penalty terms λkJk in (8) and

η̃θk = η
(t+1)
θk

−Xkβ
(t+1)
k . To estimate the optimum values for each λk, a simple grid search

based on minimizing an information criterion (e.g., the BIC) is carried out, where the model
complexity (i.e. the amount of shrinkage) is measured by the effective degrees of freedom for
each model term. Effective degrees of freedom (edfs) can be approximated by

edfk(λk) := trace
[
X>kWkXk(X

>
kWkXk + λkJk(βk))

−1
]
,

1Note again that this is possible if the various LASSO-type penalties are appropriately scaled. Applying d
different penalties instead of a single one for all distribution parameters is reasonable, since different parameters
θk are associated with different scalings with respect to the response, and may dependent on (possibly) different
sets of covariates and/or fused categories.
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such that the total effective degrees of freedom can be approximated by d+
∑d

k=1 edfk(λk). In
practice, the algorithm starts by initializing the intercepts and setting λk to very large values,
such that βk ≈ 0, k = 1, . . . , d. Then, the coefficients βk, as well as β0k, are re-estimated by
slightly decreasing λk and using β̂k from the previous λk as starting values. This procedure
is usually relatively fast and numerically stable, even for complicated GAMLSS models.

However, this approach has two drawbacks. First, grid search estimation for λk when d > 2
can still be time and computer memory intensive. Second, for complex combinations of penalty
terms (3) - (6), a single λk for each distributional parameter is most likely not sufficient or
even improper, since the order and scaling procedures of the different penalty terms are not
comparable. In such cases we extent the penalty in (7) for the k-th distribution parameter
to

∑pk
j=1 λjkJ

(jk)(βjk) and estimate each λjk using a stepwise procedure in each updating
iteration (8), see Umlauf et al. (2017) (Algorithm A2). Besides, by further partitioning the
updating scheme (8) for each model component Xjkβjk, sparse matrix structures are exploited
within (8), which lead to significant runtime improvements for large data sets (see also Lang,
Umlauf, Wechselberger, Harttgen, and Kneib 2014 for more details on highly efficient updating
schemes).

Note that updating scheme (8) can also be used as a weak base learner to build a component-
wise gradient boosting algorithm (Mayr et al. 2012; Thomas, Mayr, Bischl, Schmid, Smith,
and Hofner 2018) for the fusion penalties presented in Section 3. This technique has the
advantage that each model term Xjkβjk can have a different amount of shrinkage and that
gradient boosting does not need to compute the weights Wk, since linear models are only
fitted on the negative gradient −∂`pen(β)/∂ηθk . Therefore, such an approach works even
faster when the choice of the optimal stopping iteration is based on, e.g., the BIC with the
total edfs computed from the active set (Zou, Hastie, and Tibshirani 2007), i.e. the number
of non-zero coefficients.

Eventually, a last practical issue can arise when computing the adaptive weights in J (jk)(·).
Indeed, in a high dimensional GAMLSS setting, the unregularized maximum likelihood (ML)
estimator might simply not exist. In this situation, we suggest to use gradient boosting with

ridge-type penalties Jjk(βjk) = ||βjk||22 to obtain β̂
(ML)

jk , since gradient boosting is one of the
most stable algorithms in complex modeling problems.

5. Simulation

For the investigation of the fusion LASSO penalties within the framework of GAMLSS we
follow the application data from Section 6 and consider two scenarios: The first simulation
setting is based on simulated Gaussian responses, the second on the generalized Pareto distri-
bution. For both settings we model different covariate effects on all distributional parameters,
i.e. for µ and σ in the Gaussian setting and for ξ (shape parameter) and σ (scale parameter)
in the generalized Pareto setting. In total 150 replications for each distribution are simulated.

Similar to Gertheiss and Tutz (2010), for each setting, we use 4 informative covariates and
4 non-informative covariates for each distributional parameter θk, i.e., in total 16 covariates
for parameters µ and σ in the Gaussian case, and the same for parameters ξ and σ in the
generalized Pareto simulation. For each parameter θk the informative variables are split into
2 nominal and 2 ordinal factor variables. The same setting is used for the noise variables.
Table 1 summarizes the true nonzero dummy coefficients used in the simulations. Here, all
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Distribution Parameter Type of factor Values

Gaussian

µ

Nominal (1) (0, 0.5, 0.5, 0.5, 0.5,−0.2,−0.2)>

Nominal (2) (0, 1, 1)>

Ordinal (1) (0, 0.5, 0.5, 1, 1, 2, 2)>

Ordinal (2) (0,−0.3,−0.3)>

σ

Nominal (1) (0,−0.5, 0.4, 0,−0.5, 0.4, 0)>

Nominal (2) (0.4, 0, 0.4)>

Ordinal (1) (0, 0, 0.4, 0.4, 0.4, 0.8, 0.8)>

Ordinal (2) (0,−0.5,−0.5)>

ξ

Nominal (1) (0, 0.3, 0.3, 0.3, 0.3,−0.5,−0.5)>

Nominal (2) (0,−0.4,−0.4)>

Ordinal (1) (0,−0.4,−0.4,−0.8,−0.8,−1.1,−1.1)>

Generalized Ordinal (2) (0,−0.5,−0.5)>

Pareto

σ

Nominal (1) (0,−0.6, 0.3, 0,−0.6, 0.3, 0)>

Nominal (2) (0.4, 0, 0.4)>

Ordinal (1) (0, 0,−0.4,−0.4,−0.4,−0.9,−0.9)>

Ordinal (2) (0,−0.3,−0.3)>

Table 1: True nonzero dummy coefficient vectors used in the simulations.

predictors have several levels with equal effects that actually could be fused. We want to
analyze if the methods that are able to fuse categories outperform conventional regularization
approaches. The performance of the proposed LASSO-type estimation method is compared
to the following competing methods:

1. MaxLik: Unpenalized maximum likelihood estimation.

2. BicBoost: Simple gradient boosting, where each factor level can be selected individually.
The selection of the optimal stopping iteration is based on the BIC, where the degrees
of freedom are approximated by the active set.

3. BicBoost-T: Gradient boosting with additional true fused factor levels as covariates.
The optimal stopping iteration is selected as above.

4. GlmBoost: Gradient boosting using the R package gamboostLSS (Hofner et al. 2016),
where each factor level can be selected individually. The choice of the stopping iteration
is based on the log-likelihood evaluated on an out-of-sample data set.

5. GlmBoost-T: Similar to above, but with additional true fused factor levels as covariates.

6. GamBoost-T: Gradient boosting, where all factors levels of a covariate are updated si-
multaneously. As above, the true fused factor levels are used as covariates.

7. Lasso-S: Backfitting algorithm with LASSO penalties (see Section 4) with one single
shrinkage parameter λ for all parameters of the distribution.

8. Lasso-M: Backfitting algorithm with LASSO penalties (see Section 4) with two shrinkage
parameters λk, one for each parameter of the distribution. Optimal λk-s are selected
using a two-dimensional grid search.
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9. Lasso-MS: Backfitting algorithm with LASSO penalties (see Section 4) with single
shrinkage parameters λjk, one for each model term. Optimal λjk-s are selected using a
stepwise selection algorithm (see Umlauf et al. 2017).

10. Lasso-B: This method combines the L1-type fusion penalties with component-wise gra-
dient boosting methods. This means that in a single iteration of the fitting procedure
only the components of a single predictor, i.e. the coefficients of the respective group
of dummies, are used as a weak base learner subject to a predetermined amount of
penalization.

Moreover, we use true fused factor levels as covariates in the gradient boosting algorithms,
which is denoted by *-T in the list above, to investigate if similar performance compared to
LASSO can be obtained. In principle, it is possible to compute all combinations of fused
categories of a factor and use these as additional covariates. Theoretically, an algorithm like
gradient boosting should then favor the true fused factor levels.

For the Gaussian simulation we use 500 observations for training the models. In the general-
ized Pareto simulation we use 1500, 3000, 6000 and 15000 observations for estimation. The
second setting uses different numbers of observations since the generalized Pareto is not an

Figure 1: Gaussian simulation study,
√

MSE for the applied algorithms.
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Figure 2: Gaussian simulation study, false positive rates of truly zero differences.

easy distribution to model. For example, Hambuckers et al. (2018) encountered problems if
the number of observations is small. We chose this setup in order to investigate how sensi-
ble the estimation of the generalized Pareto model is, if the sample size becomes small. We
evaluate performance of the different settings using the root mean squared error (

√
MSE)

of the true and estimated linear predictors ηk. In addition, to compare the performance of
the different fused LASSO penalties, we compute false positive rates of true zero differences
between coefficients βjk, i.e., for true fused categories we calculate the percentage rate of
nonzero differences over all replications. To investigate the variable selection performance,
we calculate false positive rates of the noise variable coefficients. Similarly, we calculate false
negative rates of true non-noise coefficients.

The results for the Gaussian simulation generally show the best performance for the fused
LASSO penalties. According to the

√
MSE displayed in Figure 1 in the top row, the boosted

fused LASSO Lasso-B shows the best results for both parameters µ and σ. However, note
that the differences between all LASSO models are relatively small. According to the

√
MSE

of non-noise and noise coefficients in the bottom row, again Lasso-B shows the best perfor-
mance (but again, all LASSO models perform more or less equivalent in this setting). False
positive rates of truly zero differences are shown in Figure 2. Clearly, unpenalized maximum
likelihood (MaxLik), but also gradient boosting with out-of-sample stopping iteration selec-
tion (GlmBoost) and with BIC selection (BicBoost) cannot anticipate the fused categories.
Similarly, concerning false positive rates of true noise coefficients, Figure 3 shows that Max-

Lik, GlmBoost and BicBoost are not performing as good as the LASSO. In Figure 4, false
negative rates of non-noise coefficients show relatively equal results for all methods with slight
indication of higher shrinkage of the LASSO when looking at the first nominal fused covariate
for µ.
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Figure 3: Gaussian simulation study, false positive rates of truly noise coefficients.

Figure 4: Gaussian simulation study, false negative rates of truly non-noise coefficients.
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Figure 5: Generalized Pareto simulation study,
√

MSE for the applied algorithms.

Figure 6: Generalized Pareto simulation study, effective degrees of freedom (edf). True
degrees of freedom are 15 as indicated by the horizontal dashed lines.

The results of the simulation with the generalized Pareto are in principle similar. Figure 5
shows that the LASSO has the smallest

√
MSE, except LASSO-B. However, this is most likely

a result of calculating the optimal stopping iteration using the active set as an approximation
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Figure 7: Generalized Pareto simulation study,
√

MSE of noise and non-noise coefficients for
the applied algorithms.

for the effective degrees of freedom for the BIC. More precisely, although parameters are
subject to large shrinkage in the early phase of the boosting algorithm, the effective degrees
of freedom are already quite large and, hence, the optimum stopping iteration is most likely
too low. This behavior is also indicated in Figure 6, which shows the final estimated effective
degrees of freedom compared to the true number of parameters used in the simulation setting.
The
√

MSE’s of non-noise and noise coefficients in Figure 7 are similar to the ones observed in
the Gaussian simulation. Moreover, results are similar for all numbers of observations. Note
that methods GlmBoost and GamBoost are not part of the generalized Pareto simulation,
since the software does not support the model yet. With regard to the noise coefficients,
the Lasso-B seems to be the best to detect them and shrink them out of the model. The
false positive rates in Figure 8 are again the lowest for all LASSO-type penalties, although it
seems that in the generalized Pareto case it is more difficult to fuse categories, especially for
nominal variable with many (fused) levels. The false positive rates of pure noise coefficients
in Figure 9 show that all shrinkage methods detect correctly the fused categories, whereas
again the Lasso-B exhibits the best performance. In Figure 10, the false negative rates of
non-noise coefficients indicate that in the generalized Pareto model all shrinkage methods
show a good performance despite being more conservative for parameter ξ. Especially the
Lasso-B method seems to be a little stricter in this sense. However, as mentioned before, this
might be the result of overestimating the degrees of freedom.
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Figure 8: Generalized Pareto simulation study, false positive rates of truly zero differences.

Figure 9: Generalized Pareto simulation study, false positive rates of truly noise coefficients.
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Figure 10: Generalized Pareto simulation study, false negative rates of truly non-noise
coefficients.
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6. Applications

In this section we apply the proposed penalization approaches to two different real data sets,
namely to Munich rental guide data and to data on extreme operational losses of the Italian
bank UniCredit. In particular, due to the categorical covariate structure of both data sets,
we focus on the approach that turned out to be the most suitable one for this setting in
the simulation studies from the previous section, namely the fused LASSO penalty approach
(Lasso-M).

6.1. Munich rental guide data

We now apply the proposed penalization approaches to the Munich rent data, which stem
from 3015 households interviewed for the Munich rent standard 2007. The response is the
monthly rent per square meter in Euro. From a large set of covariates, we incorporate a
selection of nine factors describing certain characteristics of the flats, such as e.g. the quality
of the bathroom equipment or the number of rooms, similar to Gertheiss and Tutz (2010). All
of those covariates are considered in the form of categorical factors, which are both ordered
and nominal, as well as binary, and are standardized as explained in Section 3. The two
continuous covariates size of the flat and year of the building’s construction were categorized.
A short overview of the data set is found in Table 2, while a more detailed description can be
found in Kneib et al. (2011) and Mayr et al. (2012).

We fit a Gaussian GAMLSS and use for both distribution parameters, i.e. µ and σ, a com-
bination of the two different fused LASSO penalties introduced above. In order to obtain
a flexible fit, the penalty terms of both corresponding linear predictors are assigned with
separate tuning parameters λµ and λσ, respectively.

The optimal tuning parameters are selected by BIC on a 2-dimensional grid. Figure 11 shows
the corresponding marginal BIC curves for both µ and σ, in each case holding the other tuning
parameter fix at the respective minimum of the BIC. Figure 12 and 13 show the paths of the
dummy coefficients of both the ordinal covariate year of construction and the nominal district,
which are penalized by the two different fused LASSO penalties from above. It is seen that
with increasing tuning parameters λµ and λσ, respectively, categories are successively fused,
i.e. the coefficients are set equal. In addition, it can be seen that for the ordinal covariate
year of construction in Figure 12 only neighboring coefficients are fused, while for the nominal

Variable Description

rentsqm rent per square meters (continuous; response variable)
district id number of district (categorical; 25 levels)
yoc building’s construction year (categorical; ∈ {[1920, 1930), . . . , [2000, 2010)})
rooms number of rooms of the flat (categorical; ∈ {1, . . . , 7})
rarea rent area (categorical; ∈ {fair, good, excellent})
fspace flat size in m2 (categorical; ∈ {[0, 30), [30, 40), . . . , [130, 140), [140, inf)})
water warm water supply (binary; ∈ {yes, no})
cheating central heating (binary; ∈ {yes, no})
tbath separate bathroom (binary; ∈ {yes, no})
kitchen quality of kitchen (binary; ∈ {normal, good})

Table 2: Response variable and selection of covariates from the Munich rental guide data.
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Figure 11: Marginal BIC curves for parameters µ and σ, holding the other tuning parameter
fixed at the respective minimum of the BIC.

Figure 12: Ordinal fused coefficient paths for the year of construction for parameters µ (left)
and σ (right); vertical dashed lines: optimal tuning parameters.

factor district in Figure 13 any groups of coefficients can be aggregated.
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Figure 13: Nominal fused coefficient paths for the district effect for parameters µ (left) and
σ (right); vertical dashed lines: optimal tuning parameters.

At the optimal values of the tuning parameters, both several (neighboring) years of construc-
tion and several districts are fused and a much less complex model is obtained compared to the
(unregularized) ML estimator. Similar fusion could also be observed on the seven remaining
categorical predictors (not shown here). Altogether, the fused LASSO approach detects the
decisive number of different categories per predictor and yields a sparse model that is much
easier to interpret in comparison to the unrestricted model. Potentially, it can even exclude
irrelevant factors completely from the model.

6.2. UniCredit loss data

Here, we study the same data as in Hambuckers et al. (2018). This data set consists of 10,217
extreme operational losses registered by the Italian bank UniCredit, between January 2005
and June 2014. Operational losses in the banking industry are defined as “losses resulting
from inadequate or failed internal processes, people and systems or from external events”
(Basel Committee on Banking Supervision (BCBS) 2004). Examples include losses related to
unauthorized trading, legal disputes with employees, sales malpractices or cyber attacks. For
regulatory and risk management purposes, banks have an interest in adequately modeling the
density of these losses, so that they can compute appropriate risk indicators (e.g. quantiles
or moments). These risk indicators are used later on to determine the requested operational
risk capital (Basel Committee on Banking Supervision (BCBS) 2004). To reflect properly
the probability of tail events, a generalized Pareto distribution is usually assumed, in the
framework of Extreme Value Theory (EVT, see, e.g., Embrechts, Klupperlberg, and Mikosch
1997, Chapelle, Crama, Hübner, and Peters 2008, Chavez-Demoulin, Embrechts, and Hofert
2016 and Hambuckers et al. 2018). Recently, researcher have started to investigate the effect of
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changing economic conditions on the distribution of these losses (see Cope, Piche, and Walter
2012 and Chernobai, Jorion, and Yu 2011). In particular, Hambuckers et al. (2018) used a
generalized Pareto regression model similar to the one considered in Section 5, with up to 292
explanatory variables. Regressors consisted of a nominal categorical variable with seven levels
(called event types, referring to the physical process of the losses) and 20 lagged economic
indicators related to the macroeconomic, financial and internal contexts of UniCredit (see
Table 3 and 4 for additional details). The model was estimated using a traditional LASSO
estimator and a narrow set of variables was identified as relevant predictors.

Type Variable Description

Firm-specific

event event type
leveragelag leverage ratio (LR)
tier1ratiolag Tier-I capital ratio (TCR)
prflag % revenue coming from fees (PRF)
depositgrowthlag deposit growth rate (DGR)
logreturnslag UniCredit stock returns (SR)

Macroeconomic

unempitlag italian unemployment rate (UR IT)
unempeulag EU unemployment rate (UR EU)
gdpitlag Italian GDP growth rate (GDP IT)
gdpeulag EU GDP growth rate (GDP EU)
rpi.eu EU housing price growth rate (HPI)
m1 monetary aggregate M1 growth rate (M1)
lfc.italy consumer loans rate < 1 year in Italy (LOR IT)
lfc.eu consumer loans rate < 1 year in EU (LOR EU)

Financial

splogreturns S&P 500 returns
trlogreturns TR EU Stock Index returns (TRSI)
miblogreturns FTSE MIB index returns (MIB)
vixlag VIX
vftselag VFTSE
itinterbank.rate 3-month Italian interbank rate
italtbr 10-year Italian government bond yield

Table 3: Summary of the explanatory variables in the UniCredit analysis.

Event type Description

ifraud internal frauds (IFRAUD)
efraud external frauds, related to payments and others (EFRAUD)
epws employment practices and workplace safety (EPWS)
cpbp clients, products and business practices (CPBP)
dpa damages to physical assets (DPA)
bdfs business disruptions and system failures (BDFS)
edpm execution, delivery and process management (EDPM)

Table 4: Levels of nominal factor event type (event).

However, this approach suffers from two drawbacks: on the one hand, Hambuckers et al.
(2018) only used L1-penalties, neglecting potential fusion effects among event types (see, e.g.,
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Figure 14: UniCredit model, marginal BIC curves for parameters ξ and σ holding the other
tuning parameter fixed at the respective minimum of the BIC.

Tables 10 and 11 of their article, where several regression coefficients are quite similar). On
the other hand, they treated the various economic factors as continuous. Practically speaking,
this assumption (however correct) implies that any change in one of the explanatory variables
is associated with a change in ξ (shape parameter) or/and σ (scale parameter). From the
point of view of a risk manager, such changes might lead to frequent updates of the requested
capital. This additional variability is particularly inconvenient since it creates additional
liquidity risks (see, e.g., the discussion in Distinguin, Roulet, and Tarazi 2013).

In light of these considerations, we reconsider the data analysis performed in Hambuckers
et al. (2018). To overcome the variability issue, each economic factor is categorized into
ordered categories, defined ex ante by a range of values. This framework implies that the
distribution parameters stay constant when the covariates’ values stay inside a given interval,
which in turn lowers the variability of the requested capital. As in Hambuckers et al. (2018),
event type is kept as a nominal predictor, however subject to regularization. Our dependent
variable is the excess loss amount in Euro.2 Then, we fit a generalized Pareto GAMLSS, and
use for both ξ and σ the fused LASSO penalties described previously to control for the number
of parameters. As for the first application, the optimal tuning parameters are chosen over
a two-dimensional grid by BIC. Figure 14 displays marginal BIC curves. We see that clear
values for λ are chosen. Figure 15 shows coefficients’ paths for both distribution parameters.
The dotted lines indicate the level of the selected penalization parameters, and of the different
regression coefficients.

2Excess here refers to the thresholding procedure stemming from EVT. See Hambuckers et al. (2018),
Section 2.2 for details). Notice also that losses have been scaled by an unknown factor for anonymity reasons,
preventing us from any reasoning on the loss level.
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Figure 15: UniCredit model, coefficient paths using ordinal fused LASSO.

Our results are the following: for ξ (Figure 15, left panel), the variable event type is fused in
a smaller number of categories: EPWS, BDSF and EDPM form a single category, EFRAUD
and IFRAUD stand alone, whereas CPBP and DPA have their associated coefficients set to
zero. Regarding economic covariates, only the Tier-I capital ratio (TCR) is selected. The
three upper categories (.07, .08], (.08, .1] and (.1, .12] have been fused, whereas the two lower
categories have their regression coefficients set to zero. For σ (Figure 15, right panel) we do
not observe any fusion of categories regarding the event types. Only the BDSF event type
has its coefficient set to zero. Regarding the economic factors, we observe an effect of the
following variables: Italian unemployment rate, Italian GDP growth rate (GDP IT), monetary
aggregate M1, S&P 500 log-returns, VIX and TCR. With the exception of the GDP IT and
the TCR, all other variables exhibit extremely small regression coefficients, suggesting that
these variables should be completely excluded from the final model. For GDP IT, the four
upper categories (ranging from −.75% to 1.25%) have been fused. For TCR, only the two
upper categories have non-zero coefficients but have not been fused.

We draw several economic interpretations from these results. First, the signs of the regression
coefficients indicate that an increase in the Italian GDP growth rate above −.75% is associated
with a relative increase in σ. It suggests that in relatively good economic times, the likelihood
of large losses increases. It can be explained by the fact that, in a booming economy, the sizes
of the transactions increase, letting mechanically the potential amount of money to be lost
increase as well. The same effect is observed for fines and compensation claims in lawsuits,
whereas better economic conditions may also create more incentives to commit frauds (Povel,
Singh, and Winton 2007), increasing the likelihood of large losses related to fraud events.
Similar findings were obtained by Hambuckers et al. (2018) and Cope et al. (2012). However,
here, our results suggest that a small recession or a positive growth rate does not lead to
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significant differences in terms of risk. Second, regarding the TCR, we find contradictory
effects on ξ and σ: an increase up to 7% and above leads to an increase in ξ, whereas an
increase of the TCR above 8% leads to a decrease in σ. One explanation would be the
following: it has been shown that banks suffering from a huge degree of uncertainty regarding
future losses tend to self-insure by holding more capital (Valencia 2016). Hence, an increase in
TCR seems to be indicative of a higher probability of large losses, which is consistent with the
positive regression coefficient observed for ξ and findings in Hambuckers et al. (2018). On the
other hand, a high TCR can be indicative of a bank with strong internal controls, as suggested
in Chernobai et al. (2011) and Cope et al. (2012). Improved management practices would
therefore explain a decrease in the scale of large losses, reflected in the negative regression
coefficients for σ. Nevertheless, the present analysis suggests that, in term of tail risk, the
former effect dominates: an increase in TCR above 7% is synonym of a heavier tail of the
density.

Overall, our procedure selects a sparse model and enforces the fusion of several categories (ad-
jacent ones for ordered predictors). We start from an unrestricted model with 232 regression
coefficients to obtain a final model with only 18 parameters. The selected set of predictors,
as well as the signs and magnitudes of the coefficients, provide a model theoretically coherent
and easy to interpret. Lastly, this model limits strongly the variability of associated risk
measures.

7. Conclusion

We presented a regularization approach for high dimensional data set-ups for GAMLSS. The
framework is based on LASSO-type penalties for metric covariates, and both group and fused
LASSO for categorical predictors. Estimation is performed using a backfitting algorithm with
different types of shrinkage parameter selection. Moreover, we showed that the fused LASSO
can even be implemented using a gradient boosting algorithm.

We investigated the performance of the novel fused LASSO-type penalties for GAMLSS com-
pared to unpenalized and commonly used boosting methods in an intensive simulation study.
The performance of the LASSO-type penalties was shown to be superior over the other meth-
ods, even if the true fused categories are supplied as covariates in the model. In particular, it
turned out that the fused boosted LASSO models have a very good performance. However,
the estimation of the effective degrees of freedom within the boosting algorithm is to some
extent critical. We used the active covariate set as proposed in Zou et al. (2007), which has
considerable computational advantages, but it turned out that we partly overestimated the
true number of parameters. For this reason, the performance was inferior for some settings,
when selecting the stopping iteration based on BIC. Therefore, a more elaborate estimation
of the effective degrees of freedom in gradient boosting will be a topic of future research.

The proposed methods were also applied to two different real data sets, namely to Munich
rental guide data from the year 2007 and to data on extreme operational losses of the Italian
bank UniCredit. In the first data set, a selection of nine factors describing certain character-
istics of apartments in Munich was related to the monthly net rent per square meter. The
fusion behavior of the fused LASSO was illustrated by the help of both nominal and categorial
factor covariates. In particular, it was shown that the method detects the decisive number of
different categories per predictor and yields a sparse model, which facilitates interpretation of
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the estimated regression effects. In the second data set, the severity distribution of operational
losses was related to 21 economic variables, mapped into 232 ordered categorical predictors.
With the help of the proposed approach, we excluded numerous non-informative predictors
from our final model. In addition, thanks to the fused LASSO penalty, we identified the levels
of the covariates that have a similar effect on the distribution of the losses. Consequently, we
were able to obtain a final model sparse and theoretically sound, producing stable financial
risk indicators.
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Abstract
For numerous applications it is of interest to provide full probabilistic forecasts, which are
able to assign probabilities to each predicted outcome. Therefore, attention is shifting
constantly from conditional mean models to probabilistic distributional models captur-
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most established models for distributional regression is the generalized additive model
for location, scale and shape (GAMLSS). In high dimensional data set-ups classical fit-
ting procedures for the GAMLSS often become rather unstable and methods for variable
selection are desirable. Therefore, we propose a regularization approach for high dimen-
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the conventional least absolute shrinkage and selection operator (LASSO) for metric co-
variates, and both group and fused LASSO for categorical predictors. The methods are
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