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Abstract

To obtain a probabilistic model for a dependent variable based on some set of ex-
planatory variables, a distributional approach is often adopted where the parameters of
the distribution are linked to regressors. In many classical models this only captures the
location of the distribution but over the last decade there has been increasing interest
in distributional regression approaches modeling all parameters including location, scale,
and shape. Notably, so-called non-homogenous Gaussian regression (NGR) models both
mean and variance of a Gaussian response and is particularly popular in weather fore-
casting. More generally, the GAMLSS framework allows to establish generalized additive
models for location, scale, and shape with smooth linear or nonlinear effects. However,
when variable selection is required and/or there are non-smooth dependencies or interac-
tions (especially unknown or of high-order), it is challenging to establish a good GAMLSS.
A natural alternative in these situations would be the application of regression trees or
random forests but, so far, no general distributional framework is available for these.
Therefore, a framework for distributional regression trees and forests is proposed that
blends regression trees and random forests with classical distributions from the GAMLSS
framework as well as their censored or truncated counterparts. To illustrate these novel
approaches in practice, they are employed to obtain probabilistic precipitation forecasts
at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of
numerical weather prediction quantities. It is shown that the novel distributional regres-
sion forests automatically select variables and interactions, performing on par or often
even better than GAMLSS specified either through prior meteorological knowledge or a
computationally more demanding boosting approach.

Keywords: parametric models, regression trees, random forests, recursive partitioning, prob-
abilistic forecasting, GAMLSS.

1. Introduction

In regression analysis a wide range of models has been developed to describe the relationship
between a response variable and a set of covariates. The classical model is the linear model
(LM) where the conditional mean of the response is modeled through a linear function of the
covariates (see the left panel of Figure 1 for a schematic illustration). Over the last decades
this has been extended in various directions including:
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LM, GLM GAM GAMLSS

Figure 1: Parametric modeling developments. (Generalized) linear models (left), generalized
additive models (middle), generalized additive models for location, scale, and shape (right).

• Generalized linear models (GLMs, Nelder and Wedderburn 1972) encompassing an ad-
ditional nonlinear link function for the conditional mean.

• Generalized additive models (GAMs, Hastie and Tibshirani 1986) allowing for smooth
nonlinear effects in the covariates (Figure 1, middle).

• Generalized additive models for location, scale, and shape (GAMLSS, Rigby and Stasinopou-
los 2005) adopting a probabilistic modeling approach. In GAMLSS, each parameter of a
statistical distribution can depend on an additive predictor of the covariates comprising
linear and/or smooth nonlinear terms (Figure 1, right).

Thus, the above-mentioned models provide a broad toolbox for capturing different aspects
of the response (mean only vs. full distribution) and different types of dependencies on the
covariates (linear vs. nonlinear additive terms).
While in many applications conditional mean regression models have been receiving the most
attention, there has been a paradigm shift over the last decade towards distributional re-
gression models. An important reason for this is that in many fields forecasts of the mean
are not the only (or not even the main) concern but instead there is an increasing interest
in probabilistic forecasts. Quantities of interest typically include exceedence probabilities for
certain thresholds of the response or quantiles of the response distribution. Specifically, con-
sider weather forecasting where there is less interest in the mean amount of precipitation on
the next day. Instead, the probability of rain vs. no rain is typically more relevant or, in some
situations, a prediction interval of expected precipitation (say from the expected 10% to 90%
quantile). Similar considerations apply for other meteorological quantities and hence atten-
tion in the weather forecasting literature has been shifting from classical linear deterministic
models (Glahn and Lowry 1972) towards probabilistic models such as the non-homogeneous
Gaussian regression (NGR) of Gneiting, Raftery, Westveld III, and Goldman (2005). The
NGR typically describes the mean of some meteorological response variable through the av-
erage of the corresponding quantity from an ensemble of physically-based numerical weather
predictions (NWPs). Similarly, the variance of the response is captured through the variance
of the ensemble of NWPs. Thus, the NGR considers both the mean as well as the uncertainty
of the ensemble predictions to obtain probabilistic forecasts calibrated to a particular site.
In summary, the models discussed so far provide a broad and powerful toolset for parametric
distributional fits depending on a specified set of additive linear or smooth nonlinear terms.
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Regression tree Random forest Distributional forest

Distributional tree

Figure 2: Tree and forest developments. Regression tree (top left), distributional tree (bottom
left), random forest (top middle), and distributional forest (top right).

A rather different approach to capturing the dependence on covariates are tree-based models.

• Regression trees (Breiman, Friedman, Olshen, and Stone 1984) recursively split the data
into more homogeneous subgroups and can thus capture abrupt shifts (Figure 2, top
left) and approximate nonlinear functions. Furthermore, trees automatically carry out
a forward selection of covariates and their interactions.

• Random forests (Breiman 2001) average the predictions of an ensemble of trees fitted
to resampled versions of the learning data. This stabilizes the recursive partitions from
individual trees and hence better approximates smooth functions (Figure 2, top middle)

While classical regression trees and random forests only model the mean of the response we
propose to follow the ideas from GAMLSS modeling – as outlined in Figure 1 – and combine
tree-based methods with parametric distributional models, yielding two novel techniques:

• Distributional regression trees (for short: distributional trees) split the data into more
homogeneous groups with respect to a parametric distribution, thus capturing changes
in any distribution parameter like location, scale, or shape (Figure 2, bottom left)

• Distributional regression forests (for short: distributional forests) utilize an ensemble
of distributional trees for obtaining stabilized and smoothed parametric predictions
(Figure 2, top right).

In the following, particular focus is given to distributional forests as a method for obtaining
probabilistic forecasts by leveraging the strengths of random forests: the ability to capture
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Figure 3: Total precipitation predictions by a distributional forest at station Axams for July
24 in 2009, 2010, 2011 and 2012 learned on data from 1985–2008. Observations are left-
censored at 0. The corresponding predicted point mass is shown at the censoring point (0).

both smooth and abruptly changing functions along with simultaneous selection of variables
and possibly complex interactions. Thus, these properties make the method particularly
appealing in case of many covariates with unknown effects and interactions where it would
be challenging to specify a distributional regression model like GAMLSS.
In weather forecasting, these properties are especially appealing in mountainous regions and
complex terrain where a wide range of local-scale effects are not yet resolved by the NWP
models. Thus, effects with abrupt changes and possibly nonlinear interactions might be
required to account for site-specific unresolved features. To illustrate this in practice, pre-
cipitation forecasts are obtained with distributional forests at 95 meteorological stations in
a mountainous region in the Alps, covering mainly Tyrol, Austria, and adjacent areas (see
the map in Figure 8). More specifically, a Gaussian distribution, left-censored at zero, is
employed to model 24-hour total precipitation so that the zero-censored point mass describes
the probability of observing no precipitation on a given day (see Figure 3). Forecasts for
July are established based on data from the same month over the years 1985–2012 including
80 covariates derived from a wide range of different NWP quantities. As Figure 3 shows,
the station-wise forests yield a full distributional forecast for each day – here for one specific
day (July 24) at one station (Axams) over four years (2009–2012) – based on the previous
24 years as learning data. The corresponding observations conform reasonably well with the
predictions. In Section 3 we investigate the performance of distributional forests in this fore-
casting task in more detail. Compared to three alternative zero-censored Gaussian models
distributional forests perform at least on par and sometimes clearly better while requiring
no expert knowledge for the model specification. The three alternatives are: a standard en-
semble model output statistics approach (EMOS, Gneiting et al. 2005) based on an NGR,
a GAMLSS with regressors prespecified based on meteorological expertise (following Stauf-
fer, Umlauf, Messner, Mayr, and Zeileis 2017b), and a boosted GAMLSS (Hofner, Mayr,
and Schmid 2016) using non-homogeneous boosting (Messner, Mayr, and Zeileis 2017) as an
alternative technique for variable selection among all 80 available regressors.
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2. Methodology
To embed the distributional approach from GAMLSS into regression trees and random forests,
we proceed in three steps. (1) To fix notation, we briefly review fitting distributions using
standard maximum likelihood in Section 2.1. (2) A recursive partitioning strategy based on
the corresponding scores (or gradients) is introduced in Section 2.2, leading to distributional
trees. (3) Ensembles of distributional trees fitted to randomized subsamples are employed to
establish distributional forests in Section 2.3.
The general distributional notation is exemplified in all three steps for the Gaussian distribu-
tion, left-censored at zero. The latter is employed in the empirical case study in Section 3 to
model power-transformed daily precipitation amounts.

2.1. Distributional fit

A distributional model D(Y,θ) is considered for the response variable Y ∈ Y using the
distributional family D with k-dimensional parameter vector θ ∈ Θ and corresponding log-
likelihood function `(θ;Y ). The GAMLSS framework (Rigby and Stasinopoulos 2005) pro-
vides a wide range of such distributional families with parameterizations corresponding to
location, scale, and shape. Furthermore, censoring and/or truncation of these distributions
can be incorporated in the usual straightforward way (see e.g., Long 1997, Chapter 7.2).
To capture both location and scale of the probabilistic precipitation forecasts while accounting
for a point mass at zero (i.e., dry days without rain), a Gaussian distribution left-censored
at zero (for short: zero-censored Gaussian) with location parameter µ and scale parameter
σ is employed. Therefore, the corresponding log-likelihood function with parameter vector
θ = (µ, σ) is

`(µ, σ;Y ) =


log

{
1
σ · φ

(
Y−µ
σ

)}
, if Y > 0

log
{

Φ
(
−µ
σ

)}
, if Y = 0

where φ and Φ are the probability density function and the distribution function of the stan-
dard normal distribution N (0, 1). Other distributions D and corresponding log-likelihoods
`(µ, σ;Y ) could be set up in the same way, e.g., for censored shifted gamma distributions
(Scheuerer and Hamill 2015) or zero-censored logistic distributions (Gebetsberger, Messner,
Mayr, and Zeileis 2017).
With the specification of the distribution family and its log-likelihood function the task of
fitting a distributional model turns into the task of estimating the distribution parameter θ.
This is commonly done by maximum likelihood (ML) based on the learning sample with ob-
servations {yi}i=1,...,n of the response variable Y . The maximum likelihood estimator (MLE)
θ̂ is given by

θ̂ = argmax
θ∈Θ

n∑
i=1

`(θ; yi).

Equivalently, this can be defined based on the corresponding first-order conditions

n∑
i=1

s(θ̂, yi) = 0,
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where s(θ; yi) is the associated score function

s(θ; yi) = ∂`

∂θ
(θ; yi).

The latter is subsequently employed as a general goodness-of-fit measure to assess how well
the distribution with parameters θ fits one individual observation yi.

2.2. Distributional tree

Typically, a single global model D(Y,θ) is not sufficient for reasonably representing the re-
sponse distribution and covariates Z = Z1, . . . , Zm ∈ Z are employed to capture differences in
the distribution parameters θ. In weather forecasting, these covariates typically include the
output from numerical weather prediction systems and/or lagged meteorological observations.
To incorporate the covariates into the distributional model, they are considered as regressors
in additive predictors gj(θj) = fj,1(Z) + fj,2(Z) + . . . in GAMLSS. Link functions gj(·) are
used for every parameter θj (j = 1, . . . , k) based on smooth terms fj,k such as nonlinear
effects, spatial effects, random coefficients, or interaction surfaces (Klein, Kneib, Lang, and
Sohn 2015). However, this requires specifying the additive terms and their functional forms
in advance which can be challenging in practice and potentially require domain knowledge,
especially if the number of covariates m is large.
Regression trees generally take a different approach for automatically including covariates in
a data-driven way and allowing for abrupt changes, nonlinear and non-additive effects, and
interactions. In the context of distributional models the goal is to partition the covariate
space Z recursively into disjoint segments so that a homogenous distributional model for the
response Y can be found with segment-specific parameters. More specifically, the B disjoint
segments Bb (b = 1, . . . , B) partition the covariate space

Z =
⋃̇

b=1,...,B
Bb,

and a local distributional model D(Y,θ(b)) (i.e., with segment-specific parameters θ(b)) is
fitted to the response Y in each segment.
To find the segments Bb that are (approximately) homogenous with respect to the distribu-
tional model with given parameters, the idea is to use a gradient-based recursive-partitioning
approach. In a given subsample of the learning data this fits the model by ML (see Equa-
tion 2.1) and then assesses the goodness of fit by assessing the corresponding scores s(θ̂; yi)
(see Equation 2.1).
To sum up, distributional trees are fitted recursively via:

1. Estimate θ̂ via maximum likelihood for the observations in the current subsample.

2. Test for associations or instabilities of the scores s(θ̂, yi) and Zl,i for each partitioning
variable Zl (l = 1, . . . ,m).

3. Split the sample along the partitioning variable Z∗l with the strongest association or
instability. Choose the breakpoint with the highest improvement in the log-likelihood
or the highest discrepancy.
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4. Repeat steps 1–3 recursively in the subsamples until these become too small or there is
no significant association/instability (or some other stopping criterion is reached).

Different inference techniques can be used for assessing the association between scores and
covariates in step 3. In the following we use the general class of permutation tests introduced
by Hothorn, Hornik, Van de Wiel, and Zeileis (2006a) which is also the basis of conditional
inference trees (CTree, Hothorn, Hornik, and Zeileis 2006b). Alternatively, one could use
asymptotic M-fluctuation tests for parameter instability (Zeileis and Hornik 2007) as in model-
based recursive partitioning (MOB, Zeileis, Hothorn, and Hornik 2008). More details are
provided in Appendix A.
For obtaining probabilistic predictions from the tree for a (possibly new) set of covariates
z = (z1, . . . , zm), the observation simply has to be “sent down” the tree and the corresponding
segment-specific MLE has to be obtained. This can also be understood as a weighted MLE
where the weights select those observations from the learning sample that fall into the same
segment:

wtree
i (z) =

B∑
b=1

1((zi ∈ Bb) ∧ (z ∈ Bb)),

where 1(·) is the indicator function. The predicted distribution for a given z is then fully
specified by the estimated parameter θ̂(z) where

θ̂(z) = argmax
θ∈Θ

n∑
i=1

wtree
i (z) · `(θ; yi).

2.3. Distributional forest

While the simple recursive structure of a tree model is easy to visualize and interpret, the
abrupt changes are often too rough, instable, and impose steps on the model even if the true
underlying effect is smooth. Hence, ensemble methods such as bagging or random forests
(Breiman 2001) are typically applied to smooth the effects, stabilize the model, and improve
predictive performance.
While Breiman and Cutler’s random forests (Breiman 2001) grow ensembles of trees that
pick up changes in the location of the response across the covariates, distributional forests
employ an ensemble of T distributional trees. These pick up changes in the “direction” of
any distribution parameter by considering the full score vector for choosing splitting variables
and split points. Each of the distributional trees is grown on a different data set obtained
through bootstrap sampling (or subsampling) and in each node only a random subset of the
covariates Z is considered. As usual in random forests, this reduces the correlation among
the trees and stabilizes the variance of the model.
To obtain probabilistic predictions from a distributional forest, it still needs to be specified
how to compute the parameter estimates θ̂(z) for a (potentially new) set of covariates z.
Following Hothorn and Zeileis (2017) we interpret random forests as adaptive local likelihood
estimators using the averaged “nearest neighbor weights” (Lin and Jeon 2006) from the T trees
in the forest

wforest
i (z) = 1

T

T∑
t=1

Bt∑
b=1

1((zi ∈ Btb) ∧ (z ∈ Btb))
|Btb|

,
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where |Btb| denotes the number of observations in the b-th segment of the t-th tree. Thus, these
wforest
i (z) ∈ [0, 1] whereas wtree

i (z) ∈ {0, 1}. Hence, weights cannot only be 0 or 1 but change
more smoothly, giving high weight to those observations i from the learning sample that co-
occur in the same segment Btb as the new observation z for many of the trees t = 1, . . . , T .
Consequently, the parameter estimates may, in principle, change for every observation and
can be obtained by

θ̂(z) = argmax
θ∈Θ

n∑
i=1

wforest
i (z) · `(θ; yi).

In summary, this yields a parametric distributional regression model (through the score-based
approach) that can capture both abrupt effects and high-order interactions (through the trees)
and smooth effects (through the forest).
Distributional forests share some concepts and algorithmic aspects with other generalizations
of Breiman and Cutler’s random forests. Nearest neighbor weights are employed for ag-
gregation in survival forests (Hothorn, Lausen, Benner, and Radespiel-Tröger 2004), quantile
regression forests (Meinshausen 2006), transformation forests (Hothorn and Zeileis 2017), and
generalized random forests for causal inferences (Athey, Tibshirani, and Wager 2017). These
procedures aggregate over trees fitted to specific score functions (e.g., log rank scores in sur-
vival trees, model residuals in transformation or generalized forests). Distributional forests,
in contrast to these nonparametric approaches, provide a compromise between model flexi-
bility and interpretability: The parameters of a problem-specific distribution (zero-censored
Gaussian for precipitation) have a clear meaning but may depend on external variables in a
quite general way.

3. Probabilistic precipitation forecasting in complex terrain
Many statistical weather forecasting models leverage the strengths of modern numerical
weather prediction (NWP) systems (see Bauer, Thorpe, and Brunet 2015). One frequently
used method based on distributional regression models is the ensemble model output statistics
(EMOS) approach first proposed by Gneiting et al. (2005) to produce high-quality forecasts
for specific quantities and sites. In case of precipitation forecasting EMOS typically uses the
ensemble mean of “total precipitation” (tp) forecasts as predictor for the location parameter
and the corresponding ensemble standard deviation for the scale part of the statistical model
to correct for possible errors of the ensemble in both, the expectation but also the uncertainty
of a specific forecast.
While this approach alone is already highly effective in the plains, it typically does not per-
form as well in complex terrain due to unresolved effects in the NWP system. For example,
in the Tyrolean Alps – considered in the following case study – the NWP grid cells of 50× 50
km2 are too coarse to capture single mountains, narrow valleys, etc. Therefore, it is often
possible to substantially improve the predictive performance of the EMOS by including ad-
ditional predictor variables, either from local meteorological observations or an NWP model.
Unfortunately, it is typically unknown which variables are relevant for improving the predic-
tions. Simply including all available variables may be computationally burdensome and can
lead to overfitting but, on the other hand, excluding too many variables may result in a loss
of valuable information. Therefore, selecting the relevant variables and interactions among
all possible covariates is crucial for improving the statistical forecasting model.
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In the following, it is illustrated how distributional forests can solve this problem without
requiring prior expert knowledge. For fitting the forest only the response distribution and the
list of potential predictor variables need to be specified (along with a few algorithmic details)
and then the relevant variables, interactions, and potentially nonlinear effects are determined
automatically in a data-driven way. Here, we employ a zero-censored Gaussian distribution
and 80 predictor variables computed from ensemble means and spreads of various NWP
outputs. The predictive performance of the forest is compared to three other zero-censored
Gaussian models: (a) a standard basic EMOS, (b) a GAMLSS with prespecified effects and
interactions based on meteorological knowledge/experience, and (c) a boosted GAMLSS with
automatic selection of smooth additive terms based on all 80 predictor variables.

3.1. Data

Learning and validation data consist of observed daily precipitation sums provided by the
National Hydrographical Service (BMLFUW 2016) and numerical weather forecasts from the
U.S. National Oceanic and Atmospheric Administration (NOAA). Both, observations and
forecasts are available for 1985–2012 and the analysis is exemplified using July, the month
with the most precipitation in Tyrol.
Observations are obtained for 95 stations all over Tyrol and surroundings, providing 24-hour
precipitation sums measured at 0600UTC and rigorously quality-checked by the National
Hydrographical Service. NWP outputs are obtained from the second generation reforecast
data set of the global ensemble forecast system (GEFS, Hamill et al. 2013). This data set
consists of an 11-member ensemble based on a fixed version of the numerical model and a
horizontal grid spacing of about 50 × 50 km2 initialized daily at 0000 UTC from December
1984 to present providing forecasts on a 6-hourly temporal resolution. Each of the 11 ensemble
members uses slightly different perturbed initial conditions to predict the situation-specific
uncertainty of the atmospheric state.
From the GEFS, 14 basic forecast variables are considered with up to 12 variations each such
as mean/maximum/minimum over different aggregation time periods. A detailed overview is
provided in Table 1, yielding 80 predictor variables in total.
To remove large parts of the skewness of precipitation data, a power transformation (Box
and Cox 1964) is often applied, e.g., using cubic (Stidd 1973) or square root (Hutchinson
1998) transformations. However, the power parameter may vary for different climatic zones
or temporal aggregation periods and hence we follow Stauffer, Mayr, Messner, Umlauf, and
Zeileis (2017a) in their choice of 1.6−1 as a suitable power parameter for the region of Tyrol.
The same power transformation is applied to both the observed precipitation sums and the
NWP outputs “total precipitation” (tp) and “convective available potential energy” (cape).

3.2. Models and evaluation

The following zero-censored Gaussian regression models are employed in the empirical case
study, see Table 2 for further details:

• Distributional forest: All 80 predictor variables are considered for learning a forest of
100 trees. Bootstrap sampling is employed for each tree using a third of the predictors
in each split of the tree (“mtry”). Parameters are estimated by adaptive local likelihood
based on the forest weights as described in Section 2.
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Basic covariates # Variations
tp: total precipitation, 12 ensemble mean of sums over 24h,

power transformed (by 1.6−1) ensemble std. deviation of sums over 24h,
cape: convective available ensemble minimum of sums over 24h,

potential energy, ensemble maximum of sums over 24h
power transformed (by 1.6−1) all for 6–30

ensemble mean of sums over 6h
for 6–12, 12–18, 18–24, 24–30

ensemble std. deviation of sums over 6h
for 6–12, 12–18, 18–24, 24–30

dswrf : downwards short wave 6 ensemble mean of mean values,
radiation flux (“sunshine”) ensemble mean of minimum values∗,

msl: mean sea level pressure ensemble mean of maximal values,
pwat: precipitable water ensemble std. deviation of mean values,
tmax: 2m maximum temperature ensemble std. deviation of minimum values∗,

ensemble std. deviation of maximal values,
tcolc: total column-integrated all over 6–30

condensate
t500 : temperature on 500 hPa

t700 : temperature on 700 hPa

t850 : temperature on 850 hPa

tdiff500850 : temperature 3 ensemble mean of difference in mean,
difference 500 to 850 hPa ensemble minimum of difference in mean,

tdiff500700 : temperature ensemble maximum of difference in mean
difference 500 to 700 hPa all over 6–30

tdiff700850 : temperature
difference 700 to 850 hPa

msl_diff : mean sea level pressure 1 msl_mean_max − msl_mean_min
difference over 6–30

Table 1: Basic covariates together with the number (#) and the type of variations. Time
periods indicate aggregation time periods in hours after NWP model initialization (e.g., 6–
30 corresponds to +6h to +30 h ahead forecasts, 0600UTC to 0600UTC of the next day).
∗Minimum values of dswrf over 24 h are always zero and thus neglected.

• EMOS: Standard ensemble model output statistics models use the ensemble mean of
total precipitation as regressor in the location submodel and the corresponding ensemble
standard deviation in the scale submodel. The parameters are estimated by maximum
likelihood, using an identity link for the location part and a log link for the scale part
(following the advice of Gebetsberger et al. 2017).

• Prespecified GAMLSS: Smooth additive splines are selected for the most relevant predic-
tors based on meteorological expert knowledge following Stauffer et al. (2017b). More
specifically, based on the 80 available variables, eight terms are included in the loca-
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Model Type Location (µ) Scale (log(σ))
Distributional forest recursive all all

partitioning
EMOS linear tp_mean tp_sprd
Prespecified GAMLSS spline tp_mean, tp_sprd,

in each tp_max, dswrf_sprd_mean,
tp_mean1218 ∗ tp_sprd1218 ∗
cape_mean1218, cape_mean1218,

dswrf_mean_mean, tcolc_sprd_mean,
tcolc_mean_mean, tdiff500850_mean
pwat_mean_mean,
tdiff500850_mean,
msl_diff

Boosted GAMLSS spline all all
in each

Table 2: Overview of models with type of covariate dependency and included covariates for
each distribution parameter. A ∗ B indicates an interaction between covariate A and B.

tion submodel and five in the scale submodel. Both involve an interaction of tp and
cape in the afternoon (between 1200UTC and 1800UTC) to capture the potential for
thunderstorms that frequently occur in summer afternoons in the Alps. The model is es-
timated by maximum penalized likelihood using a backfitting algorithm (Stasinopoulos
and Rigby 2007).

• Boosted GAMLSS: Smooth additive splines are selected automatically from all 80 avail-
able variables, using non-cyclic boosting for parameter estimation (Hofner et al. 2016;
Messner et al. 2017). This updates the predictor terms for the location or scale sub-
models iteratively by maximizing the log-likelihood only for the variable yielding the
biggest improvement. The iteration stops early – before fully maximizing the in-sample
likelihood – based on a (computationally intensive) out-of-bag bootstrap estimate of the
log-likelihood. The grid considered for the number of boosting iterations (“mstop”) is:
50, 75, . . . , 975, 1000.

The predictive performance in terms of full probabilistic forecasts is assessed using the con-
tinuous ranked probability score (CRPS, Hersbach 2000). For each of the models this assesses
the discrepancy of the predicted distribution function F from the observation y by

CRPS(y, F ) =
∫ ∞
−∞

(F (z)− 1(y ≤ z))2dz

where 1(·) is the indicator function. In the subsequent applications, the mean CRPS is
always evaluated out of sample, either using cross-validation or a hold-out data set (2009–
2012) that was not used for learning (1985–2008). CRPS is a proper scoring rule (Gneiting
and Raftery 2007) often used within the meteorological community. Lower values indicate
better performance.
To assess differences in the improvement of the forests and GAMLSS models over the basic
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Figure 4: Out-of-sample residual QQ plots (2009–2012) for station Axams based on models
learned on data from 1985–2008.

EMOS, a CRPS-based skill score with EMOS as the reference method is computed:

CRPSSmethod = 1− CRPSmethod
CRPSEMOS

.

3.3. Application for one station

In a first step, we show a detailed comparison of the competing models for one observation
site, Axams in Tyrol (in the center of the study area, see Figure 8). As for all other stations,
daily precipitation observations and numerical weather predictions are available for the month
of July from 1985 through 2012. In Figure 3 in the introduction the probabilistic forecasts
from the distributional forest, trained on 1985–2008, for July 24 in 2009–2012 have already
been shown as a motivational example. The figure shows that the model properly depicts the
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Figure 5: CRPS skill score from the 10 times 7-fold cross validation at station Axams (1985–
2012). The horizontal orange line pertains to the reference model EMOS.

point masses at zero (i.e., the probability of a dry day) and the forecasted probability density
function for the total amount of precipitation. The four sample forecasts differ considerably in
location µ, scale σ, and the amount of censoring while conforming quite well with the actual
observations from these days. While this is a nice illustrative example we are interested in
the overall predictive performance and calibration of the distributional fits.
To assess calibration Figure 4 shows residual QQ plots for out-of-sample predictions (2009–
2012) from the different models trained on 1985–2008. Due to the point masses at zero
100 draws from the randomized quantile residuals (Dunn and Smyth 1996) are plotted in
semi-transparent gray. Overall, the randomized quantile residuals conform quite well with
the theoretical standard normal quantile (i.e., form a straight line close to the diagonal),
indicating that all four models are sufficiently well calibrated. This is also supported by the
corresponding probability integral transform (PIT, Gneiting, Balabdaoui, and Raftery 2007)
histograms in Appendix B.
To assess the predictive performance, a full cross-validation is carried out rather than relying
on just the one fixed test set for the years 2009–2012. To do so, a 10 times 7-fold cross-
validation is carried out where each splits the available 28 years into 7 subsets of 4 randomly
selected years. The models are learned on 6 folds (= 24 years) and evaluated on the 7-th
fold (= 4 years) using the average CRPS across all observations. The resulting 10 CRPS skill
scores are displayed by boxplots in Figure 5 using EMOS as the reference model (horizontal
line at a CRPSS of 0). Both GAMLSS models and the distributional forest perform distinctly
better than the EMOS model. While the two GAMLSS lead to an improvement of around
4 percent, the distributional forest has a slightly higher improvement of around 5.5 percent
in median.
Finally, it is of interest how this improvement in predictive performance by the distributional
forest is accomplished, i.e., which of the 80 covariates are selected in the trees of the forest.
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Figure 6: CRPS-based variable importance for the top 10 covariates in the distributional
forest. Based on data for station Axams, learning period 1985–2008 and assessed in 2009–
2012.

As the 100 trees of the forest do not allow to simply assess the variables’ role graphically, a
common solution for random forests in general is to consider variable importance measures.
Here, this is defined as the amount of change in CRPS when the association between one
covariate and the response variable is artificially broken through permutation (and thus also
breaking the association to the remaining covariates).
Figure 6 shows the 10 covariates with the highest permutation importance (i.e., change in
CRPS) for station Axams. As expected the NWP outputs for total precipitation (tp) are
particularly important along with total column-integrated condensate (tcolc). Also, both
variables occur in various transformations such as means (either of the full day or certain parts
of the afternoon), spreads, or minima/maxima. Thus, while the covariates themselves are not
surprising, selecting a GAMLSS with a particular combination of all the transformations
would be much more challenging.

3.4. Application for all stations

After considering only one observational site up to now, a second step evaluates and compares
the competing methods on all 95 available stations. As in the previous section, all models
are learned on the first 24 years and evaluated by the average CRPS on the last 4 years.
More specifically, the CRPS skill score against the EMOS model is computed for the out-of-
sample predictions at each station and visualized by parallel coordinates plots with boxplots
superimposed in Figure 7. Overall, distributional forests have a slightly higher improvement
in CRPSS compared to the two GAMLSS which is best seen by looking at the boxplots and
the green line representing the results for station Axams. The underlying parallel coordinates
additionally bring out that the prespecified GAMLSS sometimes performs rather differently
(sometimes better, sometimes worse) compared to the two data-driven models. Values below
zero show that, for some stations, EMOS performs better than the more complex statistical
methods.
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To assess whether these differences in predictive performance are due to differences in the
topography, Figure 8 shows a brief spatial summary of all stations. Each station is illustrated
by a symbol that conveys which model performed best in terms of CRPS on the last 4 years
of the data. Additionally, the color of the symbol indicates the CRPS difference between
distributional forest and the best-performing other model. Green signals that the distribu-
tional forest performs better than the other models whereas red signals that another model
performs better. Overall the distributional forest performs on par (gray) or better (green) for
the majority of stations. Only for a few stations in the north-east EMOS performs best, and
in East Tyrol the prespecified GAMLSS performs particularly well.

4. Discussion
Distributional regression modeling is combined with tree-based modeling to obtain a novel
and flexible method for probabilistic forecasting. The resulting distributional trees and forests
can capture abrupt and nonlinear effects and interactions in a data-driven way. By basing the
split point and split variable selection on a full likelihood and corresponding score function,
the trees and forests can not only pick up changes in the location but also the scale or shape
of any distributional family.
Distributional forests are an attractive alternative when prespecifying or boosting all possible
effects and interactions in a GAMLSS model is challenging. Distributional forests are rather
straightforward to specify requiring only little prior subject matter knowledge and also work
well in the presence of many potential covariates. The application to precipitation forecasting
in complex terrain illustrates that distributional forests often perform on par or even better
than their GAMLSS counterparts. Hence, they form a useful addition to the already available
toolbox of probabilistic forecasts for disciplines such as meteorology.

Computational details
The proposed methods are in the R package disttree (version 0.1.0) based on the partykit
package (version 1.2.1), both available on R-Forge at (https://R-Forge.R-project.org/
projects/partykit/). The function distfit fits distributional models by maximum like-
lihood, which is used as the basis for the tree-building function disttree, upon which the
distforest is built. All functions can either be used with GAMLSS family objects from the
R package gamlss.dist (Stasinopoulos and Rigby 2007, version 5.0.3) or with custom lists
containing all required information about the distribution family.
In addition to disttree, Section 3 employs R package crch (Messner, Mayr, and Zeileis 2016,
version 1.0.0) for the EMOS models, gamlss (Stasinopoulos and Rigby 2007, version 5.0.5)
for the prespecified GAMLSS, and gamboostLSS (Hofner et al. 2016, version 2.0.0) for the
boosted GAMLSS.
The fitted distributional forest for July 24 and observation station Axams (including Figure 3)
is reproducible using demo("RainAxams", package = "disttree"). This also includes fit-
ting the other zero-censored Gaussian models considered in this paper and generating the cor-
responding QQ plots (Figure 4) and PIT histograms (Figure 9). Full replication of all results
can be obtained with demo("RainTyrol", package = "disttree") requiring the companion
R package RainTyrol (version 0.1.0), also available within the R-Forge project.

https://R-Forge.R-project.org/projects/partykit/
https://R-Forge.R-project.org/projects/partykit/
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A. Tree algorithm
In the following, the tree algorithm applied in the empirical case study discussed in this paper
is explained. For notational simplicity, the testing and splitting procedure is described for
the root node, i.e., the entire learning sample with observations {yi}i=1,...,n, n ∈ N. In each
child node the corresponding subsample depends on the foregoing split(s).
After fitting a distributional modelD(Y,θ) to the learning sample with observations {yi}i=1,...,n
as explained in Section 2.1 the resulting estimated parameter θ̂ = (θ̂1, . . . , θ̂k), k ∈ N can be
plugged in the score function s(θ, Y ). In that way a goodness-of-fit measurement is obtained
for each parameter θj and each observation yi. To use this information, statistical tests are
employed to detect dependencies between the score values

s(θ̂, y) =


s(θ̂, y1)1 s(θ̂, y1)2 . . . s(θ̂, y1)k

...
... . . . ...

s(θ̂, yn)1 s(θ̂, yn)2 . . . s(θ̂, yn)k


and each variable Zl ∈ {Z1, . . . , Zm}.

H l
0 : s(θ̂, Y ) ⊥ Zl

These hypotheses are assessed with permutation tests based on the multivariate linear statistic

Tl =
n∑
i=1

vl(zli) · s(θ̂, yi).

The type of the transformation function vl depends on the type of the split variable Zl. If Zl
is numeric then vl is simply the identity function vl(zli) = zli. If Zl is a categorical variable
with H categories then vl(zli) = eH(zli) = (I(zji = 1), . . . , I(zli = H)) such that vl is a unit
vector where the element corresponding to the value of zli is 1. Observations with missing
values are excluded from the sums.
With the conditional expectation µl and the covariance Σl as derived by Strasser and Weber
(1999) the test statistic can be standardized. The observed multivariate linear statistic t is
mapped onto the real line by a univariate test statistic c. In the application of this paper a
quadratic form is chosen, such that

cquad(t, µ,Σ) = (t− µ)Σ+(t− µ)>

where Σ+ is the Moore-Penrose inverse of Σ. Alternatively, the maximum of the absolute
values of the standardized linear statistic can be considered.
The smaller the p-value corresponding to the standardized test statistic c(tl, µl,Σl) is the
stronger the discrepancy from the assumption of independence between the scores and the
split variable Zl. After Bonferroni-adjusting the p-values it has to be assessed whether any of
the resulting p-values is beneath the selected significance level. If so, the partitioning variable
Zl∗ with the lowest p-value is chosen as splitting variable.
The breakpoint that leads to the highest discrepancy between score functions in the two
resulting subgroups is selected as split point. This is measured by the linear statistic

T rl∗ =
∑
i∈B1r

s(θ̂, yi)
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where B1r is the first of the two new subgroups that are defined by splitting in split point r
of variable Zl∗ . The split point is then chosen as follows:

r∗ = argmin
r

c(trl∗ , µrj∗ ,Σr
l∗).

One repeats the testing and splitting procedure in each of the resulting subgroups until
some stopping criterion is reached. This criterion can for example be a minimal number of
observations in a node or a minimal p-value for the statistical tests. In that way pre-pruning
is applied in order to find right-sized trees and hence avoid overfitting.
This permutation test based tree algorithm is presented in Hothorn et al. (2006b) as the
CTree algorithm. A different framework to build a tree is provided by the MOB algorithm
which is based on M-fluctuation tests (Zeileis et al. 2008).

B. PIT histograms
As an alternative to QQ plots based on randomized quantile residuals, probability integral
transform (PIT, Gneiting et al. 2007) histograms are a commonly used tool to assess how
well-calibrated distributional fits are. Figure 9 shows out-of-sample PIT histograms for the
same probabilistic forecasts as Figure 4, confirming that despite some deviations the overall
calibration of all models is acceptable.
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Figure 9: Out-of-sample PIT histograms (2009–2012) for station Axams and models learned
on data from 1985–2008.
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Abstract
To obtain a probabilistic model for a dependent variable based on some set of explana-
tory variables, a distributional approach is often adopted where the parameters of the
distribution are linked to regressors. In many classical models this only captures the lo-
cation of the distribution but over the last decade there has been increasing interest in
distributional regression approaches modeling all parameters including location, scale,
and shape. Notably, so-called non-homogenous Gaussian regression (NGR) models both
mean and variance of a Gaussian response and is particularly popular in weather fore-
casting. More generally, the GAMLSS framework allows to establish generalized additive
models for location, scale, and shape with smooth linear or nonlinear effects. However,
when variable selection is required and/or there are non-smooth dependencies or in-
teractions (especially unknown or of high-order), it is challenging to establish a good
GAMLSS. A natural alternative in these situations would be the application of regres-
sion trees or random forests but, so far, no general distributional framework is available
for these. Therefore, a framework for distributional regression trees and forests is pro-
posed that blends regression trees and random forests with classical distributions from
the GAMLSS framework as well as their censored or truncated counterparts. To illustrate
these novel approaches in practice, they are employed to obtain probabilistic precipi-
tation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a
large number of numerical weather prediction quantities. It is shown that the novel dis-
tributional regression forests automatically select variables and interactions, performing
on par or often even better than GAMLSS specified either through prior meteorological
knowledge or a computationally more demanding boosting approach.
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