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Abstract

For detecting differential item functioning (DIF) between two or more groups of test tak-

ers in the Rasch model, their item parameters need to be placed on the same scale. Typically

this is done by means of choosing a set of so-called anchor items based on statistical tests or

heuristics. Here we suggest an alternative strategy: By means of an inequality criterion from

economics, the Gini Index, the item parameters are shifted to an optimal position where

the item parameter estimates of the groups best overlap. Several toy examples, extensive

simulation studies and two empirical application examples are presented to illustrate the

properties of the Gini Index as an anchor point selection criterion and compare its proper-

ties to those of the criterion used in the alignment approach of Asparouhov and Muthén. In

particular, we show that – in addition to the globally optimal position for the anchor point

– the criterion plot contains valuable additional information and may help discover unac-

counted DIF-inducing multidimensionality. We further provide mathematical results that

enable an efficient sparse grid optimization and make it feasible to extend the approach, e.g.

to multiple group scenarios.

Keywords: Differential item functioning (DIF), item bias, anchor items, item clusters.

1. Introduction

One of the major advantages of probabilistic test theory is that its assumptions are empirically

testable. With regard to test fairness, a crucial step in test validation is to identify items that

exhibit differential item functioning (DIF) for different groups of test takers. DIF items can lead

to unfair test decisions and threaten the validity of the test (cf., e.g., Cohen, Kim & Wollack

1996; Magis & De Boeck 2011) as well as its acceptance from the side of the test takers and

This is a preprint of an article accepted for publication in Applied Psychological Measurement.
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2 Anchor Point Selection

policy makers. Once DIF items are identified, they can be improved or excluded from the final

test form (cf., e.g., Westers & Kelderman 1992). But, in order to identify them, first the item

parameters of the groups need to be placed on the same scale in a way that allows to compare

the individual item parameters between the groups. This is usually done by choosing a set of

so-called anchor items.

A large body of literature has been discussing and investigating different strategies for selecting

these anchor items for DIF testing, particularly for the Rasch model (see, e.g., Teresi & Jones

2016, for a recent and broad overview on anchoring and DIF testing techniques). Questions that

are being addressed in this literature – but have not all been answered satisfactorily yet – include

the choice of the number of items (also termed anchor length) as well as different strategies to

select those items. We will only go into detail in the following about a few exemplary anchoring

methods, namely those that we will later use as comparison methods in our simulation studies.

These methods have been selected to represent different approaches for anchor item selection,

that are either widely used or have shown high performance in previous studies.

1.1. Exemplary anchor item selection methods

The first example we want to treat in a little more detail here is the anchor method suggested

by Woods (2009), that is classified as the “constant all other” method by the taxonomy of Kopf,

Zeileis & Strobl (2015b). It is an anchor of fixed length, that is selected based on the “all

other” strategy: In the initial step, each item is tested for DIF using all other items together

as the preliminary anchor. For this and the following method, we will fix the anchor length to

four items in our simulation studies.1 The four items corresponding to the lowest ranks of the

absolute DIF statistics from the initial step are then chosen as the final set of anchor items.

This method represents a commonly used and simple approach. However, by using all remaining

items as the anchor in the initial step, this method (just like the similarly common “equal mean”

approach, e.g., Magis & De Boeck 2011) assumes that DIF is balanced and cancels out over

the items. If, however, DIF is not balanced, this strategy has been shown to exhibit a severely

increased false alarm rate (Kopf, Zeileis & Strobl 2015a; Kopf et al. 2015b).

Our second example is the“constant four mean p-value threshold”(later abbreviated as“constant

1The literature on the anchor length shows that a too short anchor decreases the power of the following DIF

tests, while a too long anchor increases the risk of a contaminated anchor (i.e., an anchor that includes DIF

items), which can lead to artificial DIF (see also Andrich & Hagquist 2012). An anchor length of three to five,

most often four, items has been suggested as a compromise (cf. Shih & Wang 2009; Wang, Shih & Sun 2012;

Egberink, Meijer & Tendeiro 2015). Woods (2009) provides a more thorough discussion of anchor length choice,

but this is not the focus of our study.
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Strobl, Kopf, Kohler, von Oertzen, Zeileis 3

four MPT”) anchor method suggested by Kopf et al. (2015a). Its selection of four anchor items

is based on the number of p-values that exceed a threshold p-value determined from preliminary

DIF tests for every item with every other item (one at a time) as a single anchor item (for a

more detailed description see Kopf et al. 2015a). This method, together with the one described

next, has been shown to be one of the two top performing methods in the extensive comparison

study of Kopf et al. (2015a) and thus serves as a strong competitor here.

Another example is the “iterative forward mean test statistic threshold” (later abbreviated as

“iterative forward”) anchor method suggested by Kopf et al. (2015b). This method iteratively

selects an anchor of variable length in a step-by-step procedure. The order in which new

items are included in the anchor is determined by the mean test statistic threshold criterion.

The rationale behind this crierion is that those DIF tests where the anchor is truly DIF-free

should display the least absolute mean test statistics. Note, however, that the definition of the

threshold depends on the assumption that the majority of the items are DIF-free. More details

are provided in Kopf et al. (2015a).

1.2. Scale indeterminacy and anchoring for DIF detection

Going back one step in our reasoning, the fact that an anchor has to be chosen in the first

place is due to the scale indeterminacy of the Rasch model (see, e.g., Fischer & Molenaar 1995).

Anchoring solves this indeterminacy in a way that allows the item parameters of the groups to

be compared in order to detect DIF. This is usually achieved by placing the same restriction

on the item parameters in both groups (as formalized, e.g., by Glas & Verhelst 1995; Eggen &

Verhelst 2006) in order to define a common scale. The reason why we need anchoring is that

it is necessary to separate DIF from true differences in the mean abilities between the groups

(often termed impact) by means of somehow conditioning on an estimate of the ability (Lord

1980; Van der Flier, Mellenbergh, Adèr & Wijn 1984; DeMars 2010). From a practical point of

view, we cannot know in advance which items are the ones that have DIF and which are the

ones that do not. Ideally, those items that end up being selected into the anchor should be DIF

free, because otherwise the false alarm rate of the DIF tests increases, as shown, e.g., by Wang

et al. (2012), but in practice there is no way to check in an empirical setting whether the anchor

selection worked properly.

In the DIF literature, we can find several assumptions and notions about DIF and DIF detection

that are not always made very explicit. For example, anchoring methods may only work properly

if DIF is balanced (as discussed for the “all other” and “equal mean” strategies above), or assume

implicitly or explicitly that the majority of items is DIF-free (as discussed explicitly by Kopf
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4 Anchor Point Selection

et al. (2015a), but implicitly underlying several other anchor methods as well). Note that in a

real data analysis (as opposed to a simulation study, where the DIF structure is known) neither

assumption can be approved or empirically tested a priori, so that users should critically assess

whether these assumptions are plausible in their case and how grave the consequences of a

deviation from the assumption would be (such as a severely inflated false alarm rate for the

equal mean and constant “all other” methods in case the DIF is not balanced). We will further

discuss below that the assumption that the majority of items is DIF-free may seem particularly

plausible for many tests, because we know how much time and effort the content experts have

spent on putting the items together. However, from a methodological point of view it may

restrict our theoretical thinking about the general concepts of anchoring and DIF, and is also

critically discussed by Bechger & Maris (2015) and Pohl, Stets & Carstensen (2017).

When DIF is considered from the point of view of multidimensionality (e.g., Ackerman 1992;

Roussos & Stout 1996), it becomes clear that the assumption that the majority of items is DIF

free corresponds to the assumption that the majority of items measure the primary dimension

of interest, and nothing else. In this framework, it has been shown that DIF can result from

secondary dimensions, for which the distributions of two groups of test takers differ (for details

see Ackerman 1992; Roussos & Stout 1996), and which some of the items measure in addition

to the primary dimension. If only few individual items measure secondary dimensions, this is

perfectly in line with the assumption that the majority of items measures the primary dimension

and should be considered DIF free. If we think of scenarios, however, where clusters of items

measure the same secondary dimensions (including scenarios where the primary dimension no

longer provides the majority of items, as will be illustrated below), it would be helpful to be

able to detect this kind of pattern.

1.3. Outlook on the contents of this manuscript

In this manuscript we will follow an approach that is different from the“traditional” anchor item

selection methods described above. Rather than assessing only certain combinations of anchor

items, the idea of this approach is to align the two scales by optimizing an objective function,

that captures the discrepancy between the scales along a continuum of potential anchor points.

Specifically, we propose to maximize the inequality of item-wise absolute distances – captured

by the so-called Gini Index, an inequality criterion from economics – in order to find an anchor

point where very few items (if any) exhibit DIF, while most other items do not. This approach

has turned out to be closely related to – but was developed independently of – the alignment

method by Asparouhov & Muthén (2014) and Muthén & Asparouhov (2014), who employ the
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so-called component loss function as the criterion for selecting an optimal anchor point.

Although the motivation of both approaches was to select anchor points without using anchor

items, it turns out somewhat surprisingly that optimal anchor points may in fact correspond

to single anchor items. This is shown mathematically for both criteria, the Gini Index and the

component loss function, for the case of a Rasch model based on conditional maximum likelihood

(CML) estimation in two groups. Note that neither Asparouhov and Muthén’s work, nor the

previous version of our own manuscript (Strobl, Kopf, Hartmann & Zeileis 2018) had pointed

out this property, which greatly facilitates searching for the optimal anchor point solution.

Despite this simple optimal solution, in the following we will first explain the general idea of

shifting the scales along a continuum of potential anchor points, which establishes more broadly

the idea of an optimal point where the item parameters best interlock. Moreover, in addi-

tion to the globally optimal solution, the pattern of potential local optima can be particularly

informative, as will be shown in several illustrations.

Now we will first introduce a little notation and review the fundamentals of anchoring. Then

the new approach for finding anchor points will be introduced. Its usefullness will be illustrated

by means of illustrative toy examples, an extensive simulation study as well as two application

examples, where we will investigate DIF between female and male test takers. Due to space

constraints many illustrations and results have been moved to online appendices, to which we wil

refer the reader in due course. In particular, Appendix F provides the mathematical derivation

of the possible locations of optima for both criteria. In the discussion, we will also point out

the possibility to extend our approach to settings with more parameters and multiple groups.

2. Anchoring revisited

Due to its scale indeterminacy, i.e., the fact that the latent scale has no natural origin, a

restriction is necessary for estimating the item parameters in the Rasch model. Commonly used

restrictions are setting (arbitrarily) the first item parameter or the sum of all item parameters

to zero (Glas & Verhelst 1995; Eggen & Verhelst 2006). When the aim is to compare the

item parameters between two groups, the item parameters are first estimated separately. In

the following, these initial item parameter estimates will be termed β̃
(g)
j for group g and item

j. Since any linear restriction can easily be obtained from any other, it does not matter which

particular restriction is applied in this first step. However, the restriction used for DIF detection

is a critical choice, as illustrated in Appendix A.

Copyright© 2020 The Authors



6 Anchor Point Selection

2.1. The choice of the restriction

Considering the choice of a suitable restriction for comparing the item parameters of two groups,

a variety of strategies has been suggested to choose a set of suitable anchor items. The sum

of the item parameters of this set of anchor items is usually set to zero in both groups as the

new restriction. In the following, we will introduce and explain some notation for describing

the process of anchoring mathematically.

We start off with the initial item parameter estimates for each group, β̃
(g)
j . In the following, we

will employ the CML approach for estimating the item parameters, but the general principle

outlined here applies to any kind of item parameter estimates2.

In our notation for describing the process of anchoring, let A denote the set of anchor items and

|A| its cardinality, i.e., the number of anchor items in this set. The restriction that the sum of

the anchor item parameters should be zero in group g can then be expressed as
∑

j∈A β̂
(g)
j

!
= 0.

The final item parameter estimates β̂
(g)
j can be derived from the initial estimates β̃

(g)
j by means

of shifting all item parameters by

β̂
(g)
j = β̃

(g)
j −

∑
j∈A β̃

(g)
j

|A|
.

This shift ensures that the sum of the anchor item parameters is zero in each group. Of course

all other item parameters are also shifted by the same amount, so that the overall pattern of

the item parameters in each group is not altered, but moved as a whole to a position where it

can best be compared to the pattern of item parameters in the other group.

More abstractly speaking, the process of anchoring corresponds to shifting all item parameters

by a constant c(g)

β̂
(g)
j = β̃

(g)
j − c

(g),

where in all traditional anchoring approaches c(g) = c(g)(A) =
∑

j∈A β̂
(g)
j

|A| depends on the choice

of the anchor set A and can take all values that result from the different combinations of anchor

items that are being in- or excluded in A.

Conceptually, it is possible to uncouple the shift of the item parameters from a certain choice

of anchor items. This can be accomplished by means of searching over an interval [cmin, cmax]

of values for c(g), including values that do not result from any specific combination of anchor

items.

2Note, however, that other estimation approaches, such as marginal maximum likelihood estimation, may

make it necessary to account for possible impact through the specification of the person parameter distribution,

which may also affect their sensitivity for detecting certain DIF patterns (cf., e.g., Debelak & Strobl 2019).
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Without loss of generality, rather than shifting the item parameters of both groups, we leave

the item parameters of the first group at their initial estimates

β̂
(g1)
j = β̃

(g1)
j with c(g1) = 0,

where any arbitrary restriction can be used for the initial estimates β̃
(g1)
j . The item parameters

of the second group are then “moved past” the item parameters of the first group by means of

shifting them by a constant c:

β̂
(g2)
j = β̃

(g2)
j − c(g2) with c(g2) = c.

For the boundaries of the interval [cmin, cmax] we can then use values such that the item param-

eter ranges of both groups are safely overlapping:

[cmin, cmax] =
[
min(β̃(g1))−max(β̃(g2)),max(β̃(g1))−min(β̃(g2))

]
.

This means that the item parameters of the second group are moved fully past the item pa-

rameters of the first group, starting where the lowest item of the first group interlocks with the

highest item of the second and moving on until the highest item of the first group interlocks

with the lowest item of the second group. Below we will see in detail how the shift constant c

can be selected based on the data by searching over this interval (or over a more sparse grid, as

derived in Appendix F).

For the final DIF test, we will then look at a test statistic based on the difference between

the final item parameter estimates of the two groups on the shifted scale: β̂
(g1)
j − β̂

(g2)
j =

β̃
(g1)
j − β̃(g2)j − c. Note that this comparison depends on the choice of c, which we will select in

a suitable way, but not on the choice of the initial restrictions, because the selection of c will

make up for any shift in the β̃g.

A common choice of such a test statistic for the final DIF test is that of the item-wise Wald test

tj =
β̂
(g1)
j − β̂(g2)j

ŝej
=
β̃
(g1)
j − β̃(g2)j − c

ŝej
,

with ŝej =

√
Ṽar(β̃(g1))j,j + Ṽar(β̃(g2))j,j . Note that we apply the item-wise Wald test to the

conditional maximum likelihood estimates in the following (like in Glas & Verhelst 1995; Kopf

et al. 2015a,b).

When we reconsider the idea of moving the item parameters of the second group past those of

the first group, for us as human beings it is straightforward that some positions are smarter than

others, but the crucial question is: Can we find an objective criterion to make this decision for

Copyright© 2020 The Authors



8 Anchor Point Selection

us automatically – both to avoid subjectiveness in our decision and to make it computationally

feasible?

At first sight it may seem like c could be optimized directly with respect to a test statistic like

that of the Wald test displayed above, or with respect to some kind of norm ||d(c)|| of the vector

d(c) = (d1(c), . . . , dm(c))> of the item-wise absolute distances on the shifted scale

dj(c) = |β̂(g1)j − β̂(g2)j | = |β̃(g1)j − β̃(g2)j − c|.

Measures based on these distances could capture what could be called the overall amount of

DIF, for example by using the sum of squared (Euclidean) or absolute (Cityblock) distances

(corresponding to the L2 or L1 norm) as the criterion. However, a norm-based criterion could

become large both if there are many small differences or a few large differences in the vector

d(c). For DIF detection and interpretation, however, these would have very different meanings.

We will show in the next section that DIF detection can better be achieved by applying a

measure of inequality instead of a measure of the overall amount of DIF to d(c) by using, for

example, the popular Gini Index as our criterion.

2.2. The Gini Index

As an objective criterion for automatically selecting anchor points, we suggest to use the Gini

Index (Gini 1955). The Gini Index is a popular inequality measure, that is usually employed for

assessing the distribution of wealth or income between the members of a society. It takes high

values if, for example, a small minority of persons has a lot of wealth while the vast majority has

very little. It is therefore used to compare different countries with respect to their distribution

of wealth or income (e.g., Central Intelligence Agency 2017).

We will now show how the Gini Index can also be used as a means for selecting anchor points.

This is most easily imagined when the majority of items displays no DIF. Then at the optimal

anchor point, where the scales for the two groups are aligned as well as possible, most items

will interlock (i.e., they will lie on top of or very close to each other for the two groups), while a

minority of items will differ for the two groups and show DIF. So while initially the Gini Index

was used to indicate whether a minority of persons has a lot of wealth and the majority has very

little, we will use it here to find solutions where a minority of items has a lot of DIF (i.e., large

absolute differences in their item parameter estimates between the groups) while the majority

has very little or no DIF (i.e., small or no absolute differences in their item parameter estimates

between the groups).

The Gini Index can be computed as

Copyright© 2020 The Authors
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GI(c) =
2 ·
∑m

j=1 rj(c) · dj(c)
m ·

∑m
j=1 dj(c)

− m+ 1

m
,

where rj(c) is the rank of the absolute item-wise distance dj(c) for item j, with j = 1, . . . ,m.

The optimal anchor point based on the Gini Index then corresponds to

cmaxGI = arg max
c∈[cmin,cmax]

GI(c).

The Gini Index can take values between 0 and close to 1. The value zero corresponds to perfect

equality, i.e., all items having the same absolute item-wise distances, in which case they can be

shifted such that the two groups are perfectly aligned and no item displays DIF.3 Values close

to one, on the other hand, correspond to perfect inequality, where one item has all the DIF

(i.e., a high absolute item-wise distance) while all other items have no DIF at all. In this case,

the Gini Index reaches its maximum possible value of 1 − 1
m . For example, if one out of ten

items had DIF and the remaining nine items would have no DIF at all, its maximum would be

1− 1
m = 1− 1

10 = 0.9.

Note that the value of the Gini Index in this example depends only on the number of items,

not on the absolute amount of DIF. This property of the Gini Index, that it is independent of

the absolute amount of wealth (i.e., it does not measure the absolute effect size of DIF, but

the strength of the inequality of the distribution of DIF among the items) is further illustrated

below.

We will show how selecting c according to the Gini Index leads to shifts between the two groups

that makes their item parameters well comparable. This approach can serve as the basis for

any kind of graphical display as well as for formal DIF tests. We will also see that the Gini

Index is able to detect multiple clusters of items in the case of unaccounted DIF-inducing

multidimensionality.

2.3. The component loss function criterion used by Asparouhov and Muthén

Asparouhov & Muthén (2014) and Muthén & Asparouhov (2014), coming from a factor analysis

background, describe that their alignment method was first motivated by the task to estimate

group-specific factor means and variances for many groups at a time, which the authors explain

is not feasible by means of modification indices (Asparouhov & Muthén 2014). As a by-product,

the result can also be used for measurement invariance analysis, i.e., for detecting DIF.

3Note that by definition, the Gini Index would be undefined in a case where all distances are exactly zero,

because mathematically this would lead to a division by zero. In our implementation, we have redefined its value

to zero in this case, because it also represents perfect equality.
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10 Anchor Point Selection

Asparouhov & Muthén (2014) introduce their approach in a factor analysis notation and frame-

work, but in Muthén & Asparouhov (2014) show how it translates to the case of a 2-parameter

logistic IRT model. Here we will refer to the so-called simplicity function and component loss

function (CLF) used by Asparouhov & Muthén (2014) and Muthén & Asparouhov (2014), that

we will explain in detail below. We will adopt the CLF as an alternative criterion for selecting

optimal anchor points in our framework based on CML estimation for the Rasch model. We

will illustrate below that, compared to the Gini Index, it has similar properties in some but

distinct properties in other DIF settings. Moreover, we show mathematically in Appendix F

that both the Gini and the CLF Criterion can only find optima in single items in this particular

framework, which makes the selection computationally much more feasible.

Note that the application of this criterion in our framework, based on CML estimation for the

Rasch model, means that certain properties of Asparouhov and Muthén’s approach, that was

originally described for a 2-parameter model and for optimizing means and variances, may not

carry over (in particular any effects of DIF affecting group variances). Yet, concentrating on

this simple case allows us to concentrate on some fundamental properties of the criteria and

compare the results to the extensive existing literature on DIF testing in the Rasch model.

We will now translate the simplicity function and CLF used by Asparouhov and Muthén into

our notation. At the core of both our and Asparouhov and Muthén’s reasoning is the idea to

find a criterion that can be optimized such that “there are a few large noninvariant measure-

ment parameters and many aproximately invariant measuremente parameters rather than many

medium-sized noninvariant measurement parameters” (Asparouhov & Muthén 2014, p. 497).

This aim corresponds exactly to our initial idea when using the Gini Index: to find solutions

where a minority of items has a lot of DIF while the majority has very little or no DIF. As-

parouhov & Muthén (2014) motivate their approach by earlier suggestions for criteria for finding

simple structure solutions in factor rotation. We will show in the following that inequality crite-

ria behave very similarly and argue that it may be fruitful to further explore the mathematical

and philosophical similarities and specifics of the criteria used here, as well as potential further

criteria from both research areas.

Because Asparouhov & Muthén (2014) consider a 2-parameter model, their simplicity function

F (Equation 9, Asparouhov & Muthén 2014, p. 497) consists of a sum over both types of

parameters (as well as over multiple groups). In the simpler case of the Rasch model with only

one parameter (and the case of two groups), in our notation with dj(c) again representing the

absolute distances in the difficulty parameters of item j between the two groups at point c in

Copyright© 2020 The Authors
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the search grid, the simplicity function becomes

F (c) =
m∑
j=1

fε (dj(c)) ,

with fε (dj(c)) denoting the CLF.

Asparouhov and Muthén use the particular form

fε (dj(c)) =

√√
dj(c)2 + ε

for the CLF, where the small positive constant ε is only added to ensure continuous differentia-

bility for making the optimization easier. Since we use a grid-based rather than a gradient-based

search for the optimal value of c, it is not necessary to add ε. We will therefore use the simplified

CLF

f (dj(c)) =

√√
dj(c)2 =

√
dj(c)

throughout this manuscript for mathematical coherence and simplicity. We have checked that

this makes no notable difference for any of the empirical results. The use of this particular

form of the CLF is motivated by Asparouhov & Muthén (2014) and Muthén & Asparouhov

(2014) through its being a “good choice” among component loss functions, that are being used

in exploratory factor analysis to find rotations to simple structure solutions. The optimal anchor

point based on the CLF then corresponds to

cmaxCLF = arg max
c∈[cmin,cmax]

−
m∑
j=1

f (dj(c)) .

Note that throughout the main part of this manuscript we maximize and display−
∑m

j=1 f (dj(c))

(rather than minimizing
∑m

j=1 f (dj(c)) like Asparouhov and Muthén) and refer to this as the

CLF Criterion in the following. We do this so that, both for the Gini Index and the CLF

Criterion, larger values correspond to more inequal distributions of DIF, and maxima can be

interpreted as optimal solutions. The shape of both criteria is illustrated in Appendix B.

Another difference to the original approach by Asparouhov and Muthén is that they concentrate

on the use of the CLF in an automated process for the detection of a single global optimum,

viewing multiple local optima as more of a nuisance, while we argue that those situations where

distinct local optima occurr in addition to the global optimum are worth exploration by content

experts. This is why, in addition to aggregated results, we will later display plots of the criterion

values over the entire search interval for both the Gini Index and the CLF Criterion.

We would also like to point out that related notions of additional restrictions to be placed on

the item parameter estimates to enhance comparability (e.g. Glas & Verhelst 1995; von Davier

& von Davier 2007) and more or less algorithmic approaches for deciding which item parameters
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12 Anchor Point Selection

should be allowed to differ between groups (e.g. Yamamoto, Khorramdel & von Davier 2013;

Glas & Jehangir 2014; Oliveri & von Davier 2014) have been suggested and used for a long

time by other authors. Pokropek, Lüdtke & Robitzsch (2020) also point out the connection to

the literature on linking and equating. However, the approach of Asparouhov and Muthén is

most closely related to the one presented here. Therefore in the following we will concentrate

on investigating the properties of the Gini Index and the CLF Criterion for selecting anchor

points in greater detail.

3. Illustration of the properties of Gini Index and CLF Criterion

The remainder of this paper, together with the Appendices C through E, provides several

illustrations of the properties of the new anchor point selection approach based on the Gini

Index under a variety of settings. First, we will show by means of a few toy examples how

both the Gini Index and the CLF Criterion detect the optimal shift value for aligning the item

parameters in both groups. Second, we will present results from an extensive simulation study,

where these methods are compared to each other as well as to existing anchoring approaches

from the literature. By means of additional illustrations we will show that the Gini Index shows

a behavior that reflects our earlier considerations and that its criterion plot reflects additional

information about the underlying pattern of the items particularly well. In Appendix E we will

illustrate the practical usage of the approach by means of two empirical examples.

We will first consider a very simple DIF pattern in order to highlight the properties of the two

criteria we can use for anchor point selection. In this first example we have simulated ten items,

of which one item (item 4) has been simulated with DIF. We will first look at an illustration

for the true values of the item parameters, i.e., without sampling variability, to highlight the

general properties of the criteria.

Figure 1 (top left) shows the criterion plot of the Gini Index and the CLF Criterion over a grid

of values for possible shifts c.4 We see that both the Gini Index and the CLF Criterion have

their global optimum at the same shift value of 0. The item parameter locations that correspond

to this global optimum are displayed in Figure 1 (right column, top for CLF Criterion, bottom

for Gini Index). We find that both criteria agree on a solution where all items but the fourth

4The values on the y-axis have been normalized for both criteria in order to be able to compare their shape

in one plot. Note also that in this and the following illustrations of the criterion plots, we use an extensive grid

over the search interval for better visibility. In the simulation studies, on the other hand, we use the sparse grid

described in Appendix F for computational efficiency, as it has been shown mathematically to contain all possible

locations for optima.
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Figure 1: Criterion plot (top left), shifted item parameters according to global optima (right

column) and shifted item parameters according to local maximum (bottom left) for toy example

with one item displaying DIF of size 0.75, based on true item parameters.

item interlock, i.e., only item 4 shows DIF.

In the criterion plot in Figure 1 (top left), both criteria also show a smaller, local peak at the

shift value −0.75, that is more notable for the Gini Index. The location of this second peak

corresponds to a solution where the fourth item would interlock and all other items would show

DIF, as illustrated in Figure 1 (bottom left). In this easy setting, both criteria – and we assume

most readers – agree that the first solution, where item 4 is labeled to have DIF while all other

items have no DIF, is preferable. However, we will later see scenarios where the decision is not

so clear cut.

Additional illustrations are provided in Appendix C.

4. Simulation studies

We now present the results of two extensive simulation studies, where we compare the perfor-

mance of the Gini Index and CLF Criterion to each other and to that of the three anchoring
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methods from the literature that have been described above. For space constraints, here in the

main text we present only a brief summary of the simulation setup and the key results. All

further details are provided in Appendix D.

4.1. Simulation study I

Simulation design

The simulation design for this first study was chosen to be very similar to that of Kopf et al.

(2015a) to ensure comparability with this extensive comparison study. We simulated data sets

for two groups of subjects, the reference and the focal group, under the Rasch model. In most of

the scenarios, a certain percentage of the items was simulated to show DIF between the groups.

The direction of DIF was either balanced or unbalanced. There are also scenarios that were

simulated completely under the null hypothesis with no DIF in any item. In each setting, 10000

replications were simulated.

Results

In the following we will report the false alarm rate, that is computed as the percentage of items

that were simulated as DIF free, but erroneously show a significant test result, and the hit

rate, that is computed as the percentage of items that were in fact simulated to have DIF and

correctly show a significant test result.

First we checked the false alarm rates in the null case scenario where no DIF items were gen-

erated. The false alarm rates should correspond to the nominal type I error rate of 5%. Our

results (omitted to save space) show that all methods roughly hold or fall below this nominal

type I error rate in the null case scenario.

Now we will look at the results for scenarios with unbalanced DIF favoring one group. Figure

10 (first row) shows the false alarm rates, zoomed false alarm rates and hit rates for all methods

in a scenario with a testlength of 40 items and 20% of these items being simulated with DIF.

The results show that for this scenario all methods except for the “all other” method hold the

nominal type I error rate. For the “all other” method, the false alarm rate notably increases

with the sample size. This effect has already been discussed as a known problem of the “all

other” method in unbalanced DIF settings in the introduction. All methods show hit rates that

increase with the sample size as expected. The “iterative forward” method shows the highest

hitrate, followed by the “constant four MPT” method, the Gini Index, the “all other” method

and the CLF Criterion.
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Figure 2: False alarm rates (y-axis from 0 to 1; left column), zoomed false alarm rates (y-axis

from 0 to highest value; middle column) and hit rates (y-axis from 0 to 1; right column) for

scenario with 20 percent (first row) and 40 percent (second row) DIF items favoring the focal

group.

When the percentage of DIF items rises to 40% in the next scenario displayed in Figure 10

(second row), we note that the false alarm rates of some methods increase. Most notably, for

the “all other” method, the false alarm rate increases even more strongly with an increasing

sample size and goes up as high as 25%. For the other anchoring methods, as well as to a lesser

degree for the Gini Index, we see a pattern where the false alarm rates show a slight inversely

u-shaped pattern, that was similarly observed and explained by Kopf et al. (2015b). For the

“iterative forward” method this also leads to a false alarm rate notably above the nominal 5%

level for small and medium sample sizes, so that we should also interpret the hit rate of this

method with caution. The hit rates of all methods increase with increasing sample size as

expected. Again we find that the “iterative forward” method shows the highest hitrate (but

also an increased false alarm rate), followed by the “constant four MPT” method and the Gini

Index, and with some distance by the CLF Criterion and the “all other” method.

In addition to the first two DIF scenarios, where a minority of 20% or 40% of the items were

simulated with DIF, we now consider a scenario where the majority of items, 60%, are simulated

with DIF in favor of the focal group. Since these items are simulated with DIF of the same

amount, they work together as a cluster that is in itself invariant.

When we would stick to the definition of the simulation design for this setting, the false alarm

rates for most methods would strongly increase, while the hit rates would decrease similarly

dramatically, because the methods would consider the majority cluster as the DIF free one.
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However, as discussed above and further illustrated in Appendix D, from a philosophical point

of view both solutions – considering the smaller or the larger item cluster as DIF free – are

equally valid. We show in Appendix D that the Gini Index is particularly suited for identifying

both solutions. Here we see a strong parallel to the works of Bechger & Maris (2015) and Pohl

et al. (2017), who also critically discuss the general assumption that the majority of items is

DIF free and instead aim at the detection of invariant item clusters.

In the simulation study, where we need to decide on a scoring rule to be able to compute the

aggregated false alarm rates and hit rates, this reasoning cannot be entirely transported, but we

can try to mimic it by using a scoring rule that counts either solution as correct. We refer to this

scoring rule as“label-switching”, because it resembles the fact that in cluster analysis we want to

judge whether observations correctly end up in the same cluster in two runs, but the labeling of

the clusters is arbitrary. When this label-switching scoring rule is used for computing the false

alarm rates and hit rates for all methods (Figure 13), we see that the results return to what we

saw for lower percentages of DIF items, namely that the methods show slightly increased (for

the “iterative forward” method) or acceptable false alarm rates and increasing hit rates (except

for the “all other” method, that has trouble with the unbalanced setting in general). The Gini

Index now shows the highest hit rates, in particular notably higher than the CLF Criterion, as

is further explained in Appendix D.
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Figure 3: False alarm rates (y-axis from 0 to 1; left), zoomed false alarm rates (y-axis from 0

to highest value; middle) and hit rates (y-axis from 0 to 1; right) for scenario with 60 percent

DIF items favoring the focal group and label switching allowed.

Appendix D also shows additional interesting results for the case of balanced DIF. In this setting

both Gini Index and CLF Criterion were outperformed by the traditional anchor selection

methods, some of which are particularly well suited for balanced DIF. However, our findings for

this setting also futher support our notion that the globally optimal solution does not tell the

whole story, and that solutions corresponding to local optima in the criterion plot should also

be explored to better understand the DIF structure in the data.
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4.2. Simulation study II

Simulation design

In order to further illustrate the connection between DIF and multidimensionality, we have

conducted a second simulation study, that employs a multidimensional IRT model for data

generation. The design of this study resembles the design for unbalanced DIF in Simulation

study I as presented above. While there unidirectional DIF was generated by adding a fixed

amount of DIF to certain item parameters, now the DIF is induced by letting certain items

measure a secondary dimension in addition to the primary dimension (like described, e.g.,

in Roussos & Stout 1996). For details see again Appendix D. In each setting, again 10000

replications were simulated.

Results

As expected, we find the results (displayed in Appendix D) to be very similar to those in

Figures 10 and 13 for Simulation study I, with only slightly higher false alarm and hit rates in

some places. In particular, we see that the methods are again able to identify the pattern in

the items even when the majority of items measures the secondary dimension when the label-

switching scoring rule is applied. The Gini Index, together with the “iterative forward” and

“constant four MPT” methods, again performs particularly well in this setting.

5. Empirical application examples

Appendix E provides two empirical application examples: One with a clear global optimum and

one with an additional local optimum indicative of a DIF-inducing secondary dimension.

6. Summary and discussion

In this paper we have suggested a new approach for placing the item parameter estimates of

a Rasch model for two groups of test takers on the same scale. We have suggested to use

the Gini Index, an inequality criterion from economics, as the optimization criterion, and have

compared its properties to those of the CLF Criterion, that is used in the alignment method by

Asparouhov and Muthén.

We have shown by means of extensive simulations, illustrative toy examples and two application

examples that the anchor point selection approach is able to identify locations on the item

parameter continuum where the item parameter estimates for the two groups best overlap, and
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that there can be more than one sensible solution. Therefore we recommend that, rather than

reporting only the globally optimal solution, the entire criterion plot should be reported and

inspected, because it provides valuable additional information about the item structure. This

information should be taken into account for the decision how to proceed with specific test

items.

Asparouhov & Muthén (2014) have stated that “[...] [I]f data are generated where a minority of

the factor indicators have invariant measurement parameters and the majority of the indicators

have the same amount of noninvariance, the alignment method will choose the noninvariant

indicators as the invariant ones, singling out the other indicators as noninvariant.” This corre-

sponds exactly to the label-switching situations we have discussed above. However, we believe

that, rather than considering this as a weakness of either aproach, we should consider it as an

advantage and utilize the information on multiple solutions contained in the criterion plots.

The recent paper of Pokropek et al. (2020) investigates the effect of using different powers in the

CLF – where Asparouhov and Muthén use a power of 1
2 for the square root – and observe that

for powers smaller than one, that show superior results in their study, local optima can occur.

In our illustrations and simulation studies we have found local optima for both the Gini Index

and the CLF Criterion, where those for the Gini Index were more distinct. While in many cases

both criteria agreed on the global optimum, we also observed situations where this was not the

case.

Depending on the simulation setting, the anchor point selection based on the Gini Index, that

was suggested in this manuscript, performed equally well or even slightly better than existing

anchor selection methods. However, both the Gini Index and the CLF Criterion were outper-

formed in the balanced DIF setting, for which some of the competitor methods are particularly

well suited. Here it might also come into play that our mathematical results show that both the

Gini Index and the CLF Criterion select single item anchors in the framework considered here.

Single item anchors are more heavily affected by sampling error and the literature on anchor

length implies that too short anchors diminish the power of the resulting DIF tests.

On the other hand, the fact that mathematically the set of possbible solutions is limited to

single-item solutions makes it computationally easily feasible to extend this approach, e.g., to

pairwise comparisons of multiple groups of test takers (such as several different language groups).

In future research, we will also explore extensions to more general IRT models with different

types of item parameters. Both extensions are possible for the Gini Index in the same way that

is employed for the CLF criterion in Asparouhov & Muthén (2014) and Muthén & Asparouhov

(2014).
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It should also be noted that we have seen in the illustrations of our results that, despite math-

ematically corresponding to single item anchors, all solutions represented as global or local

optima in the criterion plot are well interpretable graphically and can help identify clusters of

items representing, e.g., DIF-inducing secondary dimensions.

An interesting line of future research would be to compare the results of the anchor point selec-

tion approach to approaches that explicitly aim at identifying item clusters, such as Bartolucci

(2007), Pohl et al. (2017), Pohl & Schulze (2020) and Schulze & Pohl (2020). As already men-

tioned above, the approach of Pohl and colleagues, that is based on the work of Bechger & Maris

(2015) and the notion of differences in relative item difficulties, is closely related in philosophy

to the approach presented here. We would expect that their item clusters should largely agree

with our solutions corresponding to global or local optima, and believe that the Gini Index as an

intuitive criterion, together with the possibility to graphically display the criterion plot, will be

particularly helpful for test developers in understanding the patterns in their data and guiding

their decisionmaking.

Computational details

Our results were obtained using the R system for statistical computing (R Development Core

Team 2019), version 3.6.2. Anchor point selection will be made available in the R package

psychotools. For the Gini Index we used the implementation from the R package ineq (Zeileis

2014), for model fitting and DIF tests we employed existing functionality from the R package

psychotools (Zeileis, Strobl, Wickelmaier, Komboz & Kopf 2020). Simulation Study II used

the R package mirt (Chalmers 2012) for data generation.
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Online Appendices

A. Illustration of the effect of restrictions

The initial item parameter estimates are obtained using an arbitrary restriction, typically setting

the first item parameter or the sum of all item parameters to zero. However, as is illustrated in

Figure 4, if these initial item parameter estimates were naively used for a comparison between

the two groups, the choice of the restriction would indeed affect our conclusion. This example

was set up such that the first three item parameters are the same for both groups while the

fourth item parameter differs between the groups. This is obvious in the first column a) of

Figure 4, where in the top row a direct comparison of the item parameters and in the bottom

row the setup of a graphical test (Rasch 1960; Wright & Stone 1999) is displayed. In this first

column a), the first item parameter is arbitrarily set to 0 in both groups. In the top row of

plots, an item displays DIF if the item parameters of the two groups (symbolized by circles and

crosses) do not interlock. In the graphical test in the bottom row of plots, an item displays

DIF if it is not located on the diagonal. (To account for estimation error, significance tests

and confidence ellipses have been suggested for the graphical test, but here for simplicity we

only focus on the location of the item parameters and act as if their true values were known.)

Considering the selection of anchor items, we see that item 1 was a good choice here because it

shows no DIF itself and can be safely used to compare the other items.

In the second column b) of Figure 4, however, a different restriction was used: Here the sum

of all item parameters was set to zero in both groups. In anchor terms, this would mean that

all items were included in the anchor. Due to the DIF in item 4, this anchor is contaminated.

When the scales are shifted according to this anchor, the between-group distance in item 4

decreases, but at the cost of all other items’ distances increasing artificially.

Even more extremely, when the parameter for item 4 is set to 0 in both groups in the third

column c) of Figure 4, it looks like item 4 had no DIF, but all other items now exhibit the

amount of DIF originally inherent in item 4. Most readers would agree that this is not a good

choice and all traditional anchor selection approaches would try to avoid this scenario. However,

had this been our initial arbitrary restriction for estimating the item parameters, and had we

not investigated its effect, we could have come to a very different conclusion than before.

At this point it is important to note that our interpretation of which conclusion is right or wrong

strongly depends on the abovementioned assumption that it is a minority of items that exhibit

DIF, not the majority. Without any additional assumption, given the scale indeterminacy, it
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Figure 4: Illustration of comparisons of item parameters (top row) and graphical tests (bottom

row) for different restrictions: a) β
(g)
1 = 0, b)

∑
j β

(g)
j = 0, c) β

(g)
4 = 0. Item numbers are

displayed on the x-axis in the top row and next to the plotting symbols in the bottom row.

would not be possible to decide which scenario is the correct one.

As a side note, the didactically very well written textbook of Wright & Stone (1999) also

implicitly follows this assumption. On p. 62 it shows an example of a graphical test where some

items exhibit DIF. There, the authors move the original identity line, that seems to have been

based on the arbitrary restriction used for the item parameter estimation, towards the location

of the majority of items. The “second identity line” of Wright & Stone (1999) is exactly what

a sensible anchoring approach would produce in this situation (even if the authors do not yet

use this terminology and it sounds like the line was manually placed through the “major item

stream”).

B. Comparison of the shape of the criteria

Before the properties of both criteria for DIF detection are illustrated and compared to those

of traditional anchoring approaches, let us display the shape of both criteria as a function of

the between-group absolute distances dj(c) for two items in Figure 5. We can see that the two

criteria have similar but not identical shapes: The Gini Index reaches its maximum (visible as

“rooftops” in Figure 5, left) in all points where one item parameter has an absolute between-
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group distance of zero while the other item parameter has a value different from zero, which

corresponds to the most inequal situation of one item being DIF free and the other item having

“all the DIF” in a setup with only two items. On the diagonals, where the absolute between-

group distances of the two items are equal, the Gini Index has the lowest values. Here the

DIF would be equally distributed between all items, which would not be a reasonable choice for

anchoring. This illustrates that the Gini Index behaves in a way that corresponds well to our

intuition of DIF.

The CLF also shows relatively high values (visible as ridges of the “tent” in Figure 5, right)

in points where one item parameter has an absolute between-group distance of zero while the

other item parameter has a value different from zero, which corresponds to the most inequal

situation of one item being DIF free and the other item having “all the DIF”. Note, however,

that the CLF Criterion produces higher values for solutions with lower absolute distances in

the other item and does not decrease as strongly as the Gini Index on the diagonals where the

absolute between-group distances of the two items are equal.
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Figure 5: Shape of Gini Index and CLF Criterion for two items.

C. Additional illustrations of the properties of the criteria

In addition to the illustration with the true item parameters in the main text, we now simulate

item response data from these item parameters and display the results again for the estimated

parameters. This gives a more realistic impression of the effect of sampling variability. Figure 6

(top left) again shows the criterion plot of the Gini Index (pink) and the CLF Criterion (brown)

over a grid of values for the shift c. Note that the plots are more shaky now in the region around

the maxmim due to sampling variability, but otherwise show the same pattern as before. Also
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Figure 6: Criterion plot (top left), shifted item parameters according to global optima (right

column) and shifted item parameters according to local maximum (bottom left) for toy example

with one item displaying DIF of size 0.75, based on estimated item parameters.

the locations of the item parameter estimates corresponding to the global optimum in Figure 6

(right column) are affected by sampling variability now and cannot all be perfectly aligned, but

again they show a solution where all items but the fourth item roughly interlock. In addition,

there is again a second peak, also slightly shifted in position due to sampling variability of the

item parameter estimates, where the fourth item would interlock (Figure 6 bottom left).

With a similar toy example we would also like to illustrate the abovementioned property, that in

principle the Gini Index is independend of the absolute amount of wealth – or in our case DIF:

When we increase the amount of DIF in item 4 (1.5 vs. 0.75), we can see in Figure 7 that the

first peak stays in the same position, but the second peak shifts to the position where the fourth

item would interlock, c = −1.5, which is logical. What is not visible in this figure, however, is

the raw values of the criteria at their optima, because they are normalized for comparability.

We therefore display the raw values of the criteria for different DIF patterns in Table 1 and

compare the first two rows of Table 1, where still only item 4 has DIF, and the amount of this

DIF is doubled in the second row. We see that for the Gini Index it is only relevant that one

out of ten items contains the entire amount of DIF. Its value does not vary with the amount of
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Figure 7: Criterion plot (top left), shifted item parameters according to global optima (right

column) and shifted item parameters according to local maximum (bottom left) for toy example

with one item displaying DIF of size 1.5, based on true item parameters.

DIF that this item contains. This is different for the CLF Criterion, that does vary based on

the amount of DIF. If, however, several items share the same overall amount of DIF, like in the

third and fourth row of Table 1 (where the DIF effects add up to 1.5, but are distributed over

two or three items respectively), both criteria show lower values when the same overall amount

of DIF is distributed between more items.

DIF pattern Gini Index CLF Criterion

(0, 0, 0, 0.75, 0, 0, 0, 0, 0, 0) 0.90 −0.87

(0, 0, 0, 1.5, 0, 0, 0, 0, 0, 0) 0.90 −1.22

(0, 0, 0, 0.75, 0.75, 0, 0, 0, 0, 0) 0.80 −1.73

(0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0, 0) 0.70 −2.12

Table 1: Gini Index and CLF Criterion for different DIF patterns.

For completeness we also show what the criterion plots (Figure 8, left) and item parameter

locations (Figure 8, right) look like when no DIF is present. In this setting, all items have a
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Figure 8: Criterion plot (left) and shifted item parameters according to global optimum (right)

for toy example with no item displaying DIF, based on true item parameters.
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Figure 9: Criterion plot (left) and shifted item parameters according to global optima (right)

for toy example with no item displaying DIF, based on estimated item parameters.

difference of zero between the groups. In this case, the Gini Index gives a flat criterion plot5

and the CLF Criterion gives a single peak at the position where all differences between the item

parameters are zero. Note, however, that this exact result is only possible when the true item

parameters are used.

When we consider a more realistic situation and simulate item responses from the item param-

eters with no DIF, the criterion plot for the Gini Index looks quite different at first glance, as

displayed in Figure 9 (left). Now we find that the criterion plot for the Gini Index also shows

a clear peak because – due to the sampling variability – the item parameter estimates are no

longer exactly identical between the two groups at any position. These empricial differences

5Remember that originally the Gini Index would be undefined at the position in the center of the criterion

plot, where all differences are exactly zero. We have re-defined it to be zero at this position, because it also

represents a perfectly equal distribution. The plot for the item parameter locations (Figure 8, right) corresponds

to this position in the center of the criterion plot. Since the resulting item parameter locations are exactly the

same for Gini Index and CLF Criterion, they are only displayed once here to save space.

Copyright© 2020 The Authors



Anchor point selection – Online appendices 7

are treated by both criteria like items that show a small amount of DIF, so that again the

optimal solution for both criteria is one where most items interlock as well as possible between

the groups, but some items show small differences in their item parameter estimates – in this

case due to the sampling variablity.

D. Simulation studies

These simulation studies compares the performance of the Gini Index and CLF Criterion to

each other and to that of three anchoring methods from the literature.

D.1. Simulation study I

The simulation design for this study was chosen to be very similar to that of Kopf et al. (2015a)

to ensure comparability with this extensive comparison study.

Simulation design

We simulated data sets for two groups of subjects, the reference and the focal group, under the

Rasch model. In most of the scenarios, a certain percentage of the items was simulated to show

DIF between the groups, but there are also scenarios that were simulated completely under the

null hypothesis with no DIF in any item. In each setting, 10000 replications were simulated.

Person and item parameters The person parameters were generated from a normal distri-

bution with variance 1 and a mean of 0 for the reference group and of -1 for the focal group.

A set of 40 item parameters, that had been previously used by Wang et al. (2012) and Kopf

et al. (2015a), were the basis for our study design: β =(−2.522, −1.902, −1.351, −1.092, −0.234,

−0.317, 0.037, 0.268, −0.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, −1.152, −0.526, 1.104,

0.961, 1.314, −2.198, −1.621, −0.761, −1.179, −0.610, −0.291, 0.067, 0.706, −2.713, 0.213,

0.116, 0.273, 0.840, 0.745, 1.485, −1.208, 0.189, 0.345, 0.962, 1.592). These item parameters

were used for all settings with a test length of 40 items.

In order to be able to manipulate the test length, for settings with test lengths of 20 or 60 items,

the respective number of parameters was randomly drawn from the original set of 40 values (in

the case of 20 in random order without replacement, in the case of 40 in random order, and in

the case of 60 in random order with replacement).

DIF-items Depending on the percentage of DIF items, the first test length × DIF percentage

of the items were simulated to display DIF by means of setting the difference in the item
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parameters between reference and focal group to +0.6 or −0.6 depending on the intended

direction of DIF.6

IRT model The item responses in each group were generated by means of the Rasch model.

Manipulated variables Similar to previous simulation studies such as Woods (2009); Wang

et al. (2012) and Kopf et al. (2015a), the manipulated variables were the sample size, the test

length, the direction of DIF, the percentage of DIF items and the anchoring methods.

Sample size The sample size for the simulated data sets was varied between 250 and 1500

in steps of 250. This overall sample size was divided equally between the two groups. (We also

investigated settings with unequal samples sizes. For unequal group sizes the power was slightly

diminished for all methods, but the comparisons between the methods were not affected by this

factor. Therefore, in the interest of saving space, we present only results for equal group sizes,

which also makes the following plots easier to read.)

Direction of DIF and percentage of DIF items The direction of DIF is either balanced

(where each DIF-item favors either the reference or the focal group, but no systematic advantage

for one group remains because the effects cancel out), or unbalanced with an advantage for the

focal group. (We have also investigated settings with an advantage for the reference group, but

the results are virtually the same and thus not displayed in the interest of saving space.)

The percentage of DIF items relative to the overall test length was set to either 0%, 20%, 40%

or 60%.

Anchoring methods The following methods were compared in this study:

- the “constant four all other” method suggested by Woods (2009),

- the “constant four MPT” method suggested by Kopf et al. (2015a),

- the “iterative forward” method suggested by Kopf et al. (2015b),

- anchor point selection based on the CLF Criterion employed by Asparouhov & Muthén

(2014) and Muthén & Asparouhov (2014), and

- anchor point selection based on the Gini Index suggested in this paper.

Outcome variables Like in Kopf et al. (2015b) and Kopf et al. (2015a) the item-wise Wald

test based on the conditional maximum likelihood item parameter estimates (cp. Glas & Verhelst

1995; Kopf et al. 2015b) was used for the final DIF tests in our simulation studies. Note, however,

6This is equivalent to a random assignment, because the item parameters are drawn in a random order, but

simplifies the interpretation of the following figures.
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as will become clear below, that our results are of a general nature that straightforwardly

generalizes to other DIF tests.

Due to the fact that one restriction is necessary for the item parameter estimation, for a test

length of m items only m−1 parameters can be estimated and tested freely. Therefore, one item

cannot be formally tested for DIF in the final test. For the traditional anchor item selection

methods, the item that was first selected into the anchor (and is thus considered the least likely

to have DIF by the respective method) is not tested for DIF. For the anchor point selection

approach, the item that shows the smallest item parameter difference between the groups in the

global optimum of each criterion (again the one considered the least likely to have DIF by each

criterion) is not tested for DIF.7

In the following plots we will report the average false alarm rate (that corresponds to the type I

error) and the average hit rate (that corresponds to the power of the DIF tests) for the final DIF

tests. The false alarm rate is computed as the percentage of items that were simulated as DIF

free, but erroneously show a significant test result. The hit rate is computed as the percentage

of items that were in fact simulated to have DIF and correctly show a significant test result.

Results

In the following, we will present the results for a test length of 40 items in all detail. The results

for test lengths of 20 and 60 items showed very similar patterns and are thus omitted to save

space. (For those results where the test length did have a small but notable effect, namely for

the “constant four MPT” method and the “all other”, this is mentioned below.)

Null case: No DIF First we have checked the false alarm rates in the null case scenario

where no DIF items were generated. The false alarm rates should correspond to the nominal

type I error rate of 5%. Our results (not displayed to save space) show that all methods hold this

nominal type I error rate in the null case scenario, only the “iterative forward” methods shows

a false alarm rate slightly above 5% in the scenario with a shorter test length of 20 items. The

remaining methods show conservative false alarm rates (around 3%), with the CLF Criterion

displaying the lowest (below 1%) and the Gini Index displaying the second lowest (around 2%)

false alarm rate.

7Note again that we show mathematically in Appendix F that in all local and global optima the item with

the smallest item parameter difference actually perfectly interlocks and thus constitutes an anchor item. If DIF

tests were to be carried out for other shift positions, e.g., for illustration purposes, our implementation would

also treat the item with the least item parameter difference as the one that should not be tested.
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Unbalanced DIF Now we will look at the results for scenarios with unbalanced DIF favoring

one group. Figure 10 (top row) shows the false alarm rates, zoomed false alarm rates and hit

rates for all methods in a scenario with a testlength of 40 items and 20% of these items being

simulated with DIF. The results show that for this scenario all methods except for the“all other”

method hold the nominal type I error rate. For the “all other” method, the false alarm rate

notably increases with the sample size. This effect is slightly more pronounced for shorter test

lengths (results not shown for brevity) and has already been discussed as a known problem of

the “all other” method in unbalanced DIF settings in the introduction. All methods show hit

rates that increase with the sample size as expected. The “iterative forward” method shows the

highest hitrate, followed by the “constant four MPT” method, the Gini Index, the “all other”

method and the CLF Criterion.

When the percentage of DIF items rises to 40% in the next scenario displayed in Figure 10

(middle row), we note that the false alarm rates of some methods increase. Most notably, for

the “all other” method, the false alarm rate increases even more strongly with an increasing

sample size and goes up as high as 25%. For the other anchoring methods, as well as to a lesser

degree for the Gini Index, we see a pattern where the false alarm rates show a slight inversely

u-shaped pattern, that is more pronounced for longer test lengths (results not shown for brevity)

and was similarly observed and explained by Kopf et al. (2015b). For the “iterative forward”

method this also leads to a false alarm rate notably above the nominal 5% level for small and

medium sample sizes, so that we should also interpret the hit rate of this method with caution.

The hit rates of all methods increase with increasing sample size as expected. Again we find

that the “iterative forward” method shows the highest hitrate (but also an increased false alarm

rate), followed by the “constant four MPT” method and the Gini Index, and with some distance

by the CLF Criterion and the “all other” method (that shows a lower increase in the hit rate

for larger sample sizes, where it also showed a higher increase in the false alarm rate).

In addition to the first two DIF scenarios, where a minority of 20% or 40% of the items were

simulated with DIF, we now consider a scenario where the majority of items, 60%, are simulated

with DIF in favor of the focal group. The results in Figure 10 (bottom row) show that for

this scenario, the false alarm rates strongly increase, while the hit rates decrease similarly

dramatically. (The only method that is less affected by this is the “all other” method, but we

have seen above that this method also has its problems, they only work as an alleged advantage

in this particular setting.)

To understand what is going on in this setting, Figure 11 (top left) illustrates the criterion plot

for the item parameter values used in the simulations with 60% DIF. We find that the criterion
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Figure 10: False alarm rates (y-axis from 0 to 1; left column), zoomed false alarm rates (y-axis

from 0 to highest value; middle column) and hit rates (y-axis from 0 to 1; right column) for

scenario with 20 percent (top row) 40 percent (middle row) and 60 percent (bottom row) DIF

items favoring the focal group.

plot has two peaks, corresponding to the displays of the shifted item parameters in Figure 11

(right column and bottom left).8 At the global optimum (right column), the majority of items

interlock. However, this majority of items has – by the definition of the simulation desing –

been simulated with DIF of the same amount. This makes the items work together as the bigger

cluster and results in the high false alarm rates in Figure 10 (bottom row). The second peak, on

the other hand, where the smaller cluster of items interlocks, would be the correct one according

to the simulation design. However, as we have discussed above, from a philosophical point of

view both solutions can be equally valid. As we have discussed in the introduction, this is a

situation where, since mathematically both solutions are equivalent, we have to decide based

on considerations about the content of the items, and what the scale is supposed to measure,

which solution is to be favored.

Here we also see a strong parallel to the works of Bechger & Maris (2015) and Pohl et al. (2017),

who also critically discuss the general assumption that the majority of items is DIF free and

8Please note that in the simulations presented here, the item clusters always consist of neighboring items,

because this makes them easier to detect visually. As will become clear from the empirical application examples,

however, the methods work equally well when clusters are formed by non-neighboring items.
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Figure 11: Criterion plot (top left), shifted item parameters according to global optima (right

column) and shifted item parameters according to local maximum (bottom left) for simulation

setting with 60 percent DIF items favoring the focal group, based on true item parameters.

aim at the detection of invariant item clusters. In our approach, multiple invariant item clusters

correspond to multiple local optima in the criterion plot.

Let us first look again at the results where we stick to the definition of the simulation design

and label the minority of items as DIF free and the majority of items as having DIF. The results

for this view are displayed in Figure 10 (bottom row). We see that all anchoring methods show

an increased false alarm rate now, because they tend to label the majority of items to be DIF

free, which is counted as wrong under this view. Notably, the “all other” method, that showed

an increased false alarm rates in the earlier settings, now has the lowest false alarm rate for

larger sample sizes. The reason for this is that this method assumes that DIF was balanced, so

that it selects a solution closer to the simulation design. Similarly, the CLF Criterion shows a

lower false alarm rate than the other methods for reasons we will shortly illustrate.

Considering the hit rates (Figure 10, bottom row, right panel) we see that now the methods do

not improve with increasing sample size (except for the “all other” method, that improves as an

artifact of its erroneous assumption of balanced DIF). From the pattern we notice that the hit

rates in this setting (with 60% DIF items) follow the same pattern as the false alarm rates in
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the earlier setting (with 40% DIF items), because the methods consider the majority of items

as DIF free and accordingly mislabel the other items.

Let us further explore why the false alarm rates of the CLF Criterion were apparently also

less affected by this extreme scenario: When we look at the criterion plots for the Gini Index

and the CLF Criterion (based on the simulated items parameters from Figure 11, top), we

find that for the CLF Criterion the two peaks corresponding to the two solutions have more

similar criterion values than for the Gini Index. Therefore, in the simulations from this setting

with random variation, the CLF Criterion may be more likely to pick the left peak in some

simulation runs (an exemplary illustration of one simulation run, where for the CLF Criterion

the empirical global optimum corresponds to the left peak, is provided in Figure 12). Since

picking the left peak corresponds to labeling the minority of the items as DIF free – which is

against our intuition but in line with the scoring rule currently considered – the CLF Criterion

is less affected in its false alarm rate and hit rate in Figure 10.
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Figure 12: Criterion plot (top) and shifted item parameters according to global optima (bot-

tom) for simulation setting with 60 percent DIF items favoring the focal group, based on esti-

mated item parameters.

We argue throughout this manuscript that this additional information provided by the criterion
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plot is extremely valuable and should be taken into account – together with the item content

and the question what the scale is supposed to measure – when deciding which items should be

labeled as DIF items and how to proceed with this information. In the simulation study, where

we need to decide on a scoring rule to be able to compute the aggregated false alarm rates and

hit rates, this reasoning cannot be entirely transported, but we can try to mimic it by using a

scoring rule that counts either solution as correct. This scoring rule counts both the solution

where the cluster of items labeled as DIF items in the simulation design is identified as DIF

items, and the solution where exactly the other cluster of items is identified as DIF items as

correct, but still counts any item assignment not corresponding to either of the two solutions

as wrong. We refer to this scoring rule as “label-switching”, because it resembles the fact that

in cluster analysis we want to judge whether observations correctly end up in the same cluster

in two runs, but the labeling of the clusters is arbitrary.

When this label-switching scoring rule is used for computing the false alarm rates and hit rates

for all methods (Figure 13), we see that the results return to what we saw for lower percentages of

DIF items, namely that the methods show slightly increased (for the“iterative forward”method)

or acceptable false alarm rates and increasing hit rates (except for the “all other” method, that

has trouble with the unbalanced setting in general). The Gini Index now shows the highest hit

rates, in particular notalby higher than the CLF Criterion. We assume that this is due to the

fact that the criterion plot of the Gini Index more clearly distinguishes between the two peaks,

which under the label-switching scoring rule both result in low false alarm rates and high hit

rates, whereas the CLF Criterion shows similarly high criterion values for the entire peak area

in Figure 12 (top), so that it may be more likely in a simulation with random variability to

select a shift value in between, that corresponds to neither one of the two correct solutions.
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Figure 13: False alarm rates (y-axis from 0 to 1; left), zoomed false alarm rates (y-axis from 0

to highest value; middle) and hit rates (y-axis from 0 to 1; right) for scenario with 60 percent

DIF items favoring the focal group and label switching allowed.

Balanced DIF Next we will look at the results for scenarios with balanced DIF, where half

of the DIF items favor the reference and half of the DIF items favor the focal group.
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Figure 14: False alarm rates (y-axis from 0 to 1; left column), zoomed false alarm rates (y-axis

from 0 to highest value; middle column) and hit rates (y-axis from 0 to 1; right column) for

scenario with 20 percent (top row) 40 percent (middle row) and 60 percent (bottom row) DIF

items in balanced setting.

Figure 14 (top row) shows the false alarm rates, zoomed false alarm rates and hit rates for all

methods in a scenario with a testlength of 40 items and 20% of these items being simulated with

balanced DIF. The results show that for this scenario all methods roughly hold the nominal type

I error rate and show hit rates that increase with the sample size as expected. The “iterative

forward”method again shows the highest hitrate (but note that it also shows a slightly increased

false alarm rate), followed by the the “all other” method, the “constant four MPT” method, and,

with some distance, the Gini Index and the CLF Criterion. A very similar picture can be found

in Figure 14 (middle row) for 40% DIF items.

When the DIF percentage is increased to 60% in Figure 14 (bottom row), however, we notice

that the Gini Index shows a strongly inflated false alarm rate and a diminished hit rate, while

the other methods, including the CLF Criterion, are not as much affected. These results may

at first look surprising, but can also be well explained when we again look at the simulated item

parameters and the criterion plot in Figure 15.

What is important to understand this simulation scenario is that in the case of 60% DIF items in

the balanced setting, the items actually form three clusters: 30% of the items are simulated with
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Figure 15: Criterion plot (top) and shifted item parameters according to global optima (bot-

tom) for simulation setting with 60 percent DIF items in a balanced setting, based on true item

parameters.

DIF favoring the reference group, 30% with DIF of the same size favoring the focal group, and

40% of the items are simulated without DIF. One solution for shifting the item parameters would

recover this pattern, with the largest cluster of 40% of the items interlocking. This solution

corresponds to the central peak in the criterion plot in Figure 15 (top). We see that the CLF

Criterion has the highest peak at this solution. The item parameter locations corresponding to

this solution are displayed in Figure 15 (bottom right), where we see that the the items in the

largest cluster (on the right hand side of the plot) interlock. Due to the high central peak of the

CLF criterion plot, this solution will be found in most simulation runs. Therefore, this solution

leads to non-increased false alarm rates under the original scoring rule for the CLF Criterion.

The Gini criterion, on the other hand, also shows two clearly distinguishable peaks for the other

two solutions, where either one of the clusters containing 30% of the items interlock, and a

slightly lower central peak. Over the simulation runs with random variability, it will jump back

and forth between all three solutions, in many cases selecting not the central peak but one of

the other two solutions, one of which is displayed in Figure 15 (bottom left). However, in the

original scoring rule underlying Figure 14 (bottom row), either of these solutions is counted as
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wrong. This causes the strongly increased false alarm rate of the Gini Index in this setting. It

even increases with sample size because on average the peaks become more distinguishable as

sample size increases and item parameter estimates are less variable.

If, however, we again adapt our view and count either of the three possible solutions as correct

by means of using the label-switching scoring rule for all methods, we see in Figure 16 that the

false alarm rate of the Gini Index returns to a very low value (while the “iterative forward” and

“constant four MPT” methods show slightly increased false alarm rates), and the hit rate of the

Gini Index is now close or equal to that of the CLF Criterion.
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Figure 16: False alarm rates (y-axis from 0 to 1; left), zoomed false alarm rates (y-axis from 0

to highest value; middle) and hit rates (y-axis from 0 to 1; right) for scenario with 20 percent

DIF items in balanced setting with label switching allowed.

To shed further light on the different behaviors of the CLF Criterion and Gini Index for this

setting, we will increase the DIF percentage even further. This will highlight how both crireria

treat different combinations of item cluster sizes and item parameter differences.

When we produce an even more extreme setting with 70% of the items being simulated with

balanced DIF, this results again in three item clusters, now with 35% of the items favoring

the reference group, 30% neutral items, and 35% of the items favoring the focal group. In

this scenario (Figure 17, left; only the criterion plot is presented to save space) the item cluster

corresponding to the central solution is the smallest cluster, which makes the other two solutions

even more plausible alternative solutions. The Gini Index, that already showed higher peaks

for these two solution before, now shows this pattern even more pronounced. Interestingly,

however, the CLF Criterion still produces the highest peak for the central solution, which labels

the smallest item cluster as DIF free at the cost of labelling the two other item clusters as

having DIF. This was an advantage in the simulation study with the original scoring rule, but

does not well reflect our intuition.

Even if the three groups were of exactly equal sizes (results not shown for brevity) we would find

a similar pattern for the criterion plot as in Figure 17 (left), with the CLF Criterion preferring

the central peak and the Gini Index preferring the other two solutions.
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Figure 17 (right) further illustrates this finding: On the x-axis it displays the percentage of

items in the two non-central clusters taken together. On the y-axis it displays the relative height

difference between the central peak and the non-central peaks for each criterion (as a percentage

of the height difference for the minimum possible amount of balanced DIF for each criterion,

to allow comparability). Values above zero (i.e., above the black horizontal line) indicate that

the criterion prefers the central solution for a given percentage of items, while values below

zero (i.e., below the black horizontal line) indicate that the criterion prefers the non-central

solutions. While the Gini Index prefers the non-central solutions already at a percentage close

to 60% (corresponding to cluster sizes of 30%, 40% and 30%), the CLF criterion still prefers

the central solution when the percentage is close to 80% (corresponding to cluster sizes of 40%,

20% and 40%).
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Figure 17: Criterion plot for simulation setting with 70 percent DIF items in a balanced

setting, based on true item parameters (left) and illustration of preference for central solution

as a function of the item cluster sizes (right).

Intuitively, one could argue that a neutral criterion without any additional assumptions should

treat all three solutions as equal when the cluster sizes and DIF amounts are the same. This

rationale is represented in Figure 17 (right) by the vertical black line at 66% (corresponding

to equal cluster sizes of 33% each). This illustration shows that neither of the two criteria

investigated here corresponds exactly to this rationale, but that the behavior of the Gini Index

is somewhat closer to it. Over a certain range of percentages, the Gini Index aready prefers

the non-central solutions, where the DIF of the non-interlocking items goes in the same di-

rection, while the CLF Criterion keeps preferring the central solution, where the DIF in the

non-interlocking items cancels out. With respect to the optimal solutions it generates, this

behavior of the CLF Crierion resembles the assumption of balanced DIF in traditional anchor-

ing methods. For practical decisions derived from either crierion, these findings again support
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our notion that the globally optimal solution does not tell the whole story, and that solutions

corresponding to local optima in the criterion plot should also be explored.

D.2. Simulation study II

In order to further illustrate the connection between DIF and multidimensionality, we have

conducted a second simulation study, that employs a multidimensional IRT model for data

generation.

Simulation design

The design of this study resembles the first part of Simulation Study I for unbalanced DIF.

While there unidirectional DIF was generated by adding a fixed amount of DIF to certain item

parameters, now the DIF is induced by letting certain items measure a secondary dimension in

addition to the primary dimension (like described, e.g., in Roussos & Stout 1996).

Person and item parameters The person parameters were generated from a bivariate nor-

mal distribution with means of 0.5 and 0.5 in the reference group and - 0.5 and -0.5 in the focal

group, a variance of 1 for each dimension in each group and a covariance of 0.5 between the two

dimensions in each group.

A set of 40 intercept parameters was randomly drawn from a normal distribution with a mean

of 0 and a standard deviation of 0.5. All items measured the first dimension with a fixed

discrimination of 1.

DIF-items Depending on the percentage of DIF items, the first test length × DIF percentage

of the items also measured the second dimension with a fixed discrimination of 1. Given that the

person parameter distributions (in this simple case only the means) on the secondary dimension

differed between the groups, this induces (uniform) DIF in these items (for further details see

Roussos & Stout 1996; Ackerman 1992).

IRT model The item responses in each group were generated by means of a compensatory

dichotomous multidimensional IRT model with the abovementioned specifications (for details

on the generating model see Reckase 2009; Chalmers 2012), which corresponds to the multidi-

mensional counterpart of a Rasch model.

Manipulated variables Similar to Simulation Study I and previous studies, the manipulated

variables were the sample size and the percentage of DIF items, with the same levels as in

Simulation Study I. In each setting, again 10000 replications were simulated.
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Results

As expected, we find the results in Figures 18 and 19 to be very similar to those in Figures 10

and 13 for Simulation Study I, with slightly higher false alarm and hit rates in some places but

the same general results, that have already been described in detail above.
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Figure 18: False alarm rates (y-axis from 0 to 1; left column), zoomed false alarm rates (y-axis

from 0 to highest value; middle column) and hit rates (y-axis from 0 to 1; right column) for

scenario with 20 percent (top row) 40 percent (middle row) and 60 percent (bottom row) DIF

items induced by a secondary dimension.
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Figure 19: False alarm rates (y-axis from 0 to 1; left), zoomed false alarm rates (y-axis from 0

to highest value; middle) and hit rates (y-axis from 0 to 1; right) for scenario with 60 percent

DIF induced by a secondary dimension and label switching allowed.

In particular, we find that when 60% of the items measure the secondary dimension, the original

scoring rule again results in very low hit rates (Figure 18, bottom). With the label-switching
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scoring rule (Figure 19), however, we can see that the methods are again able to identify the

pattern in the items with increasing sample size, and that the Gini Index, together with the

“iterative forward” and “constant four MPT” methods, again performs particularly well in this

setting.

Plotting a criterion plot (not shown to save space) for this setting would also show two peaks

here, similar to the one displayed in Figure 12, because again by design the items form two

clusters.

E. Empirical application examples

For further illustration the anchor point selection method will be applied to two empirical data

sets from an online quiz for testing one’s general knowledge and from a personality item pool.

E.1. Application example I: General knowledge quiz

An online quiz for testing one’s general knowledge was conducted by the German weekly news

magazine DER SPIEGEL in 2009. Overall, about 700,000 respondents participated in this gen-

eral knowledge quiz and also answered a set of sociodemographic questions. The quiz consisted

of a total of 45 items from five different domains: politics, history, economy, culture, and natural

sciences. For each domain, four different sets of nine items were available, that were randomly

assigned to the participants. A thorough discussion and analysis of the original data set is

provided in Trepte & Verbeet (2010).

Here we consider an exemplary sample of university students enrolled in the federal state of

Bavaria, who had been assigned questionnaire number 20. This sample contains 1075 cases

(417 male and 658 female) and is freely available in the psychotree R package (Zeileis, Strobl,

Wickelmaier, Komboz & Kopf 2018), where also the wording of all 45 items contained in this

quiz is documented.

The result of the anchor point selection for the general knowledge quiz data is depicted in

Figure 20. From the criterion plot (Figure 20, left), we can see that there is a clear global

maximum for both the Gini Index and the CLF Criterion, and only a slight second bump.9

When we display the shifted item parameters at the global optimum (Figure 20, right), we see

that some item parameters interlock visibly between the groups, while others show smaller or

larger distances. To judge which of these distances correspond to significant DIF, the symbols

9The slight second bump is caused by a small group of items that in the globally optimal solution show a

lower difficulty for female participants to a similar degree, and thus also form a small cluster.
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Figure 20: Criterion plot (left) and shifted item parameters according to global optimum

(right), with items displaying statistically significant DIF indicated in red and items not dis-

playing statistically significant DIF indicated in green, based on estimated item parameters

for the general knowledge quiz data. The item parameters symbolized by circles belong to

the female group, those symbolized by crosses to the male group. Items indicated by yellow

highlighting are referred to in the text.

for the item parameters in the male group are colored according to the results of the Wald test,

with items marked in red displaying significant DIF and items marked in green not displaying

significant DIF.

We did not account for multiple testing here, so that the results should not be overinterpreted.

However, when we look at those items that exhibit the largest amount of DIF (indicated in

Figure 20, right, by yellow highlighting) we find that item 19 (“Who is this? - Picture of Dieter

Zetsche, CEO of Mercedes-Benz.”) shows a higher difficulty for female participants, whereas

items 40 (“What is also termed Trisomy 21? - Down syndrome.”) and 43 (“Which kind of

bird is this? - Blackbird.”) show a lower difficulty for female participants. It is plausible that

these items exhibit DIF with respect to the variable gender, for example because they are of

differently high interest for male and female participants.

E.2. Application example II: International personality item pool

In this second example we would like to highlight again the notion of DIF induced by an

unaccounted secondary dimension, on which the groups differ. For this example, we use data

from 2800 subjects (1881 female and 919 male), taken as a subsample from the International

Personality Item Pool (ipip.ori.org) data. This data set is freely available in the psych R package

(Revelle 2018), where also the wording of all items is documented.

For didactic reasons we include only the first three factors, Agreeableness, Conscientiousness
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and Extraversion. Each factor is measured by five items, some of which are inversely phrased.10

The item responses were originally encoded using a six point scale ranging from very inaccurate

to very accurate. For this exemplary analysis with the binary Rasch model, the responses have

been recoded to a binary format, with the three lower categories being recoded as 0 and the

three upper categories being recoded as 1.
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Figure 21: Criterion plot (top), shifted item parameters according to global (bottom left) and

local optimum (bottom right), with items displaying statistically significant DIF indicated in

red and items not displaying statistically significant DIF indicated in green, based on estimated

item parameters for the first three factors of the international personality item pool. The item

parameters symbolized by circles belong to the female group, those symbolized by crosses to

the male group. Items indicated by yellow highlighting are referred to in the text.

From the criterion plot in Figure 21 (top), we can see that there is again one dominant global

maximum for both the Gini Index and the CLF Criterion, but – in contrast to the first appli-

cation example – now we also see a clearly pronounced second peak to the right of the global

optimum, again more notably in the criterion plot for the Gini Index. The shifted item pa-

10For the remaining factor Neuroticism there are no inversely phrased items. For Opennness the two inversely

phrased items do not function in the same way that we will see for the first three factors, possibly because their

content does not induce gender specific social desirability.
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rameters at both these locations are shown in Figure 21 (bottom, left for global, right for local

optimum). As in the previous section, items marked in green do not show significant DIF, while

items marked in red do show significant DIF according to the Wald test.

Given that the first 15 self report items are supposed to cover three different factors, that we

inappropriately placed on one joint scale, we might have expected to encounter three clusters of

items based on these dimensions. That could have been the case if the two groups, males and

females, would show systematically different distributions on these dimensions (cf. Roussos &

Stout 1996).

What we do find, however, is a less obvious pattern: Those items that show notable DIF in

the same direction (harder to agree to for female respondents) in the globally optimal solution

(Figure 21, bottom left) and interlock or are very close in the locally optimal solution (Figure 21,

bottom right), are the inversely phrased items: items 1 (“A1: Am indifferent to the feelings of

others”), 9 (“C4: Do things in a half-way manner.”), 10 (“C5: Waste my time.”), 11 (“E1: Don’t

talk a lot.”) and 12 (“E2: Find it difficult to approach others.”). These items are indicated in

Figure 21 (bottom) by yellow highlighting.11

In this example, the inversely phrased items form a cluster corresponding to the second peak in

the criterion plot, that is clearly distinguishable for the Gini Index. An interpretation of this

cluster from the multidimensionality perspective of DIF is that these inversely phrased items

form a method factor (c., e.g., Weijters, Baumgartner & Schillewaert 2013) on which female

and male respondents differ, possibly due to gender specific social desirability.

F. Mathematical derivation of possible locations of optima

Let aj = β̃
(g1)
j − β̃(g2)j be the distance between the initial item parameter estimates in the two

groups for item j, with j = 1, . . . ,m. The item-wise absolute distance on the shifted scale dj(c)

used in the main text then corresponds to dj(c) = |aj + c|. For brevity, we will denote dj(c) as

dj .

Without loss of generality, we assume that the aj are sorted in non-decreasing order and am = 0.

We will in the following use sj for the sign of aj + c and rj for the rank of dj in non-decreasing

order. Note that sj is the first derivative of dj wrt. c.

11Note that item 2 (“A2: Inquire about others’ well-being.”) also shows notable DIF in the globally optimal

solution (Figure 21, bottom left), but this items is not part of the same cluster as the inversely phrased items

because for item 2 the DIF goes in the other direction (easier to agree to for female respondents).
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F.1. Locations of optima for the Gini Index

In our simplified notation, the Gini Index can be written as as

GI(c) =
2 ·
∑m

j=1 rj · dj
m ·

∑m
j=1 dj

− m+ 1

m
.

This formula can be separated in a trivial part and an interesting part by writing GI(c) =

2
mf(c)− m+1

m with f(c) defined as

f(c) =

∑m
j=1 rjdj∑m
j=1 dj

The numerator of the first derivative of f wrt. c is given by

num(f ′(c)) =

 m∑
j=1

rjsj

( m∑
k=1

dk

)
−

 m∑
j=1

sj

( m∑
k=1

rkdk

)
(1)

Resorting the summands by sjdk, this can be written as

num(f ′(c)) =

m∑
j,k=1

(rj − rk)sjdk =

m∑
j,k=1

(rj − rk)sjsk(ak + c).

Observe that this value is non-continuous at every position where either any sign sj switches,

or where the ranks of two neighboring values change, i.e., if dj = dk. Note that since all values

start negative, the second condition can be written as aj + c = −c− ak (regardless of the order

of j and k). So all positions c where f ′ is not continuous are all points

c = −aj (2)

or

c = −aj + ak
2

for any aj and ak; these are m(m+1)
2 positions.

Between any two such positions, sj and rj are constant, f is linear in the denominator, and the

denominator is always positive.

An important and non-trivial observation is that the numerator is constant with respect to c,

since

num(f ′(c)) =
m∑

j,k=1

(rj − rk)sjsk(ak + c)

=

 m∑
j,k=1

ak(rj − rk)sjsk

+ c

 m∑
j,k=1

(rj − rk)sjsk


=

 m∑
j,k=1

ak(rj − rk)sjsk


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So all extrema of f are at the points where f ′ is not continuous. Note that the ranges c < 0 and

c > −a1 asymptotically approach zero and contain no extrema other than the minima at ±∞.

Further note that at any point where the rank switches, two neighboring ranks rk and rl are

exchanged; assume k < l wlog. At this position, sk is still negative while sl is positive. The

second term of Equation 1 is continuous here as dk = dl, in the first term the sum of all d’s is

positive. As the rank rl is increased by one while sl is positive, and vice versa for k, f ′(c) steps

to a higher value, potentially indicating a minimum, but no maximum.

So, the Gini index can only take a maximum at the points where c = −aj (Equation 2) and

thus dj is zero for any j. Since these are only m positions, we can easily find the maximal Gini

index by testing all c = aj values and choosing the largest among them, in O(m) steps.

F.2. Locations of optima for the CLF Criterion

In our simplified notation and for the two-group case with only one item parameter, i.e., for the

Rasch model, the CLF Criterion12 reduces to

CLF(c) =

m∑
j=1

√
dj .

To compare with the Gini index, we consider the extrema of this index, too. The first and

second derivatives are given by

CLF′(c) =
1

2

m∑
j=1

sj
1√
dj

CLF′′(c) = −1

4

m∑
j=1

d
− 3

2
j

We observe that the derivatives are not defined at any point where dj = 0. The second derivative

is negative everywhere in between these points. So in these areas, we have no minima, and

exactly one maximum. At the points where dj = 0, the first derivative reaches a pole with a

sign switch from negativ to positive, reflected by a local minimum (with a cusp) at the index

itself. Consequently, all minima are at c = aj , and the global minimum can be found most

efficient by picking the smallest CLF(c) among those.

This means that for both criteria, we need to search only through the positions a1, . . . , am to

find all optima.

12For mathematical simplicity, we have not changed the sign of the CLF in this appendix. Therefore, the

interesting optima for the CLF Criterion in the appendix are minima, while those for the Gini Index are maxima.
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For detecting differential item functioning (DIF) between two groups of test takers, their
item parameters need to be aligned in some way. Typically this is done by means of
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two groups best overlap. We illustrate how the anchor point is selected by means of
maximizing an inequality criterion. It performs equally well or better than established
approaches when treated as an anchoring technique, but also provides additional infor-
mation about the DIF structure through its search path. Another distinct property of this
new method is that no individual items are flagged as anchors. This is a major difference
to traditional anchoring approaches, where flagging items as anchors implies - but does
not guarantee - that they are DIF free, and may lull the user into a false sense of security.
Our method can be viewed as a generalization of the search space of traditional anchor
selection techniques and can shed new light on the practical usage as well as on the the-
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