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Abstract

Airport operations are sensitive to visibility conditions. Low-visibility events may
lead to capacity reduction, delays and economic losses. Different levels of low-visibility
procedures (lvp) are enacted to ensure aviation safety. A nowcast of the probabilities for
each of the lvp categories helps decision makers to optimally schedule their operations. An
ordered logistic regression (OLR) model is used to forecast these probabilities directly. It
is applied to cold season forecasts at Vienna International Airport for lead times of 30-min
out to two hours. Model inputs are standard meteorological measurements. The skill of
the forecasts is accessed by the ranked probability score. OLR outperforms persistence,
which is a strong contender at the shortest lead times. The ranked probability score of
the OLR is even better than the one of nowcasts from human forecasters. The OLR-based
nowcasting system is computationally fast and can be updated instantaneously when new
data become available.

Keywords: aviation meteorology, low visibility, probabilistic nowcasting, statistical forecasts,
ordered logistic regression.

1. Introduction

Low-visibility conditions at airports impact air traffic regarding aviation safety and economic
efficiency of airports and airlines. The low-visibility procedures (lvp) come into force when hor-
izontal and/or vertical visibility fall below airport-specific thresholds. Additional measures,
e.g., increasing spacing between approaching and taxiing aircraft, ensure safe operations but
also reduce the capacity of the airport. Consequently planes might be delayed, diverted to
alternative airports or prevented from taking off. Hence, reliable low-visibility forecasts are
needed for tactical planning of the aircraft movements within the next few hours.

The two major weather phenomena producing low-visibility conditions are fog and low ceiling.
Fog development and dissipation generally depend on temperature, the humidity and the
available condensation nuclei of an air mass. Radiative cooling, change of the total water
amount due to precipitation or mixing of air masses are only a few processes changing these
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important parameters (Gultepe et al. 2007). However, despite various field experiments (e.g.,
Gultepe et al. 2009; Haeffelin et al. 2009; Bergot 2016) the overall effect of some physical
processes is still unknown. The complexity of the processes driving low visibility makes
predictions challenging.

Physical modeling with numerical weather prediction models and statistical modeling are two
general low-visibility forecasting approaches (Gultepe et al. 2007). The statistical approaches
are data-driven and computationally faster. Model parameters are estimated on an archive
data set and than applied to new data to forecast. The choice of the statistical model de-
pends on the desired form of the forecast variable (continuous or categorical) and the type of
the forecast output (deterministic or probabilistic). Regression models were among the first
statistical forecasting approaches applied to continuous variables with linear regression (Boc-
chieri and Glahn 1972) and were extended to binary and multinomial categorical variables
(e.g. Hilliker and Fritsch 1999; Herman and Schumacher 2016). Some machine learning meth-
ods have also been used for low-visibility forecasts; for example tree-based methods (Dutta
and Chaudhuri 2015; Bartoková et al. 2015; Dietz et al. 2017) and artificial neural networks
(Bremnes and Michaelides 2007; Marzban et al. 2007; Fabbian et al. 2007).

Since risk management and decision making depends heavily on the probabilistic information
(Murphy and Winkler 1984) probabilistic forecasts are essential to make safe and economic
decisions especially for an application like air traffic regulation. One option for airport visi-
bility forecasts is to predict the horizontal and vertical visibility separately and determine lvp
afterwards. However, since horizontal and vertical visibility are not statistically independent
there is no obvious way to obtain the combined probability. Instead, the variable of interest
to aviation end-users, the lvp categories, should be forecast directly.

In this paper we present a new way to generate probabilistic lvp state forecasts for the next two
hours with a statistical regression method. The method of choice is ordered logistic regression
(OLR) to capture the categorical and ordered nature of the end-user forecast variable, which is
based on fine-grained visibility and ceiling thresholds. Due to the interest in short lead times
the nowcasting system is exclusively based on point measurements (see Vislocky and Fritsch
1997). The performance of the nowcasting system is compared to climatology, persistence,
and human forecasts. The methodology to develop the nowcasting system is shown in Sect. 2.
Sect. 3 examines the area of investigation and the data used. Sect. 4 presents the results of
the nowcasting system which are discussed in the final section.

2. Methods

2.1. Ordered Logistic Regression

The method used to develop a probabilistic lvp nowcasting system is OLR. This method
allows prediction of the probabilities for all categories of an ordered response, like lvp, within
one consistent model. Additionally, OLR has the benefit of providing a fast update cycle with
low computational costs.

The OLR model describes an ordered categorical variable by assuming an underlying con-
tinuous variable mapped with thresholds to the categories. The threshold coefficients and
predictor coefficients are determined during model estimation. An arbitrary number of pre-
dictors is possible, similar to multiple linear regression. The occurrence probability of the
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individual categories can be determined by evaluating the chosen error distribution function
at the lower and upper thresholds of a category. In mathematical notation the OLR model is
described as follows:

Each observation of the response falls into a ordered category j = (1, 2, . . . , J). The ordering is
from no impact to highest impact on airport operations in this case. These ordinal response
yi is modeled by assuming a continuous auxiliary variable y∗i capturing visibility. For this
variable a linear model

y∗i = x>i β + εi (1)

holds, where i = (1, 2, . . . , n) is the index over the observations. But y∗i is not observed
directly, therefore the observation i is modeled to category j by the thresholds

αj−1 > y∗i ≥ αj (2)

Eq. 1 shows the deterministic component as x>i β and the random term εi which is assumed
to be i.i.d. with zero mean. The vector xi = (xi,1, ..., xi,m) includes all the m predictors and
β = (β1, ..., βm) includes their coefficients. The thresholds α = (α0, ..., αJ) are determined
together with the predictor coefficients β when estimating the OLR model. The lowest and
highest threshold values are fixed at the values α0 = −∞ and αJ = ∞. To access the
probabilities of the categories an error distribution needs to be selected. Typical distributions
are the standard normal and the logistic distribution. The logistic distribution accounts better
for observations in the tails of the distribution (Winkelmann and Boes 2006). We select the
logistic distribution with its cumulative distribution function

Hlogit(·) :=
exp(·)

1 + exp(·) . (3)

with H(−∞) = 0 and H(∞) = 1. The probabilities for the categories are derived with the
cumulative probability model

j∑

s=1

πis = Hlogit(αj − x>i β) =
exp(αj − x>i β)

1 + exp(αj − x>i β)
, (4)

where
∑j

s=1 πis is the cumulative probability that an observation yi falls into category j
or lower. The probability for the individual category πij = P (yi = j|xi) = H(αj − x>i β) −
H(αj−1−x>i β) is the difference between the cumulative probabilities at the associated thresh-
olds (Fig. 1).

A notable advantage of this method is the computational speed of the model estimation. It
is almost as fast as a linear regression and can be performed instantaneously using standard
software. We use the function clm() from the R package ordinal (Christensen 2015), which
implements the OLR model with maximum likelihood optimization.

2.2. Predictor Selection

The first task in estimating the models is to decide which of the input variables to select and
which to omit. We use stepwise selection and verify the forecasts with the ranked probability
score (RPS see Sect. 2.3). The initial step of the algorithm estimates the climatology as a
first guess. In the next step the variable that most improves the RPS of the model is added.
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Figure 1: Probability density function of an OLR model. The shaded area higlights the
probability for the category j.

Subsequently this model is used as the new best guess and all remaining variables are tested
again. This procedure is repeated until either the model skill does not improve anymore, or
no additional variable is left. The variable configuration of the final best-guess model is used
to produce the low-visibility forecasts.

2.3. Verification

To test the model and to cover the uncertainty within the model estimation we perform
ten-fold cross validation. Therefore we split the data set into ten parts, use nine parts for
training, and do out-of-sample predictions on the remaining test data set. The test data set
is exchanged with one part of the previous training data set and again the model estimation
and out-of-sample predictions are performed. This is repeated until we have out-of-sample
forecasts for all ten parts of the previously split data set, based on ten different models with
slightly different training data sets.

To determine the skill of the probabilistic categorical ordered forecasts a proper scoring rule is
required. The ranked probability score (RPS) is such a metric Wilks (2011). It compares the
cumulative distribution function of the forecasts and the observations. The RPS of a forecast
i is given by

RPSi =
1

J − 1

J∑

s=1




s∑

j=1

(yij − oij)



2

(5)

with yij the predicted probabilities and oij the observations for each category j = 1, 2, . . . , J .
While the predicted probabilities can have continuous values between 0 and 1, the observation
is either 0 or 1. The RPS can be interpreted as the normalized shift in categories between the
forecast and the observation. In addition, the RPS is normalized by the number of categories
J − 1 to obtain scaled values within the interval [0, 1]. A perfect forecast has an RPS of zero,
the worst forecast has an RPS of 1.

The quality of the prediction is determined by calculating the RPS of all individual observation-
prediction pairs within the out-of-sample prediction data set, and averaging them. Bootstrap-
ping is used to estimate the uncertainty due to the limited sample size. Hence, we take 500
random samples of the RPS values from the out-of-sample prediction data set. Each of this
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Table 1: Predictors used within the statistical nowcasting approach.

Name Description Unit

lvp low-visibility procedure state ordered [0, 1, 2, 3]
rvr runway visual range meter
cei ceiling height feet
vis horizontal visibility meter
rh relative humidity %
dpd dew point depression degree Celsius
rr12 precipitation in the last 12 hours factor [yes, no]
dt.tow temperature difference 2m – tower degree Celsius
dt.surf temperature difference 2m – surface degree Celsius
ff wind speed m s−1

dd.se wind direction from sector southeast factor [yes, no]
dd.n wind direction from sector north factor [yes, no]
sza solar zenith angle degree

samples is taken with replacement and has the size of the full data set. Now we calculate the
mean RPS of each random sample. These 500 RPS values are the basis of the results shown
in Sect. 4 including the model uncertainty.

2.4. Reference Forecasts

The OLR models are compared to three reference forecasts. The first one is the climatology,
which uses the climatological occurrence probability of each category (Fig. 2b) as forecast.
The second reference is the persistence forecast, which assumes that the lvp state at the
forecast initialization remains. This state is predicted with a probability of 100% and all
other states with 0%. It needs to be mentioned that persistence is already a benchmark at
short lead times (Vislocky and Fritsch 1997). As a third reference we compare the OLR to the
operational human forecasts at Vienna International Airport (VIE). Human forecasters use
all available information from observations and numerical weather predictions and produce
operational forecasts at most airports.

3. Data

VIE is selected to develop the statistical low-visibility nowcasting tool. The airport with
its two runways is located in the Vienna Basin 20 km southeast of downtown Vienna. The
basin is bounded by the Alps to the west and by the Carpathian Mountains to the east. The
Airport is surrounded by many humidity sources. Moisture advection from the southeast
(Lake Neusiedl and wetlands) and the north (Danube River) favor low-visibility conditions.

3.1. Definition of the Low-Visibility Procedure States

Low-visibility events occur when horizontal and/or vertical visibility drop below a set of
thresholds. The runway visual range (rvr) is used as horizontal visibility measure. It is
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Figure 2: (a) Ceiling and runway visual range (rvr) thresholds for the lvp states. (b) Clima-
tological occurrence of the three lvp and non-lvp (lvp 0) states at VIE for the whole year (all),
and for the cold (September to March) and the warm season, respectively, over the period
July 2008 until March 2017.

Table 2: Definition of lvp at VIE and associated capacities relative to a maximum of 40
aircraft per hour.

lvp state rvr Ceiling Capacity

0 100 %
1 <1200 m or <300 ft 75 %
2 <600 m or <200 ft 60 %
3 <350 m 40 %

defined as the range over which the pilot of an aircraft on the center line of a runway can
see the runway surface markings or the lights delineating the runway or identifying its center
line (World Meteorological Organization 2006). The rvr is closely correlated to the horizontal
visibility but is truncated with an upper limit of 2000 meters for higher visibilities. Vertical
visibility is determined by the ceiling height. It is defined as the height of the lowest cloud layer
covering more than half of the sky. The ceiling height is measured by ceilometers but finally
determined by human observers while the rvr is measured automatically by transmissiometers.

At VIE, lvp states from 1 to 3 depend nonlinearly on rvr and ceiling (see Tab. 2). The
categories are ordered but not equidistant. The state lvp 0 indicates good visibility and
ceiling and no restrictions for aviation with a maximum capacity of 40 aircraft per hour. At
lvp 3 the airport operates at 40% of its maximum capacity (Tab. 2).

3.2. Climatology of the Low-Visibility Procedure States

A climatology of the lvp states was compiled to be used as one of the reference models.
Fig. 2b shows the small proportion (about 4.5%) of lvp states 1 or higher for the whole year.
Basically no low-visibility events occur during warm season. This seasonal pattern is typical
for continental climates with topographical properties similar to the Vienna Basin (Egli et al.
2017). The challenge is to capture these relatively rare lvp events with a statistical approach.

The significant annual cycle is also visible in Fig. 3 showing the occurrence probability of any
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Figure 3: Contour plot of the annual and diurnal cycle of the climatological probability for
poor visibility (lvp states ≥ 1) during the period July 2008 until March 2017.
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Figure 4: Wind rose plots of VIE for September to March (a) all cases and (b) lvp states ≥
lvp 1. The percentage of the different wind directions (color shadings) is divided into three
wind speed clusters (see legend).

lvp 1-3. The annual maximum is during December. Furthermore, the diurnal maximum is
during the morning hours, which coincides with one of the airports rush hours. Therefore
these lvp state events have a high impact on airport operations. The diurnal minimum
occurs during afternoon. The correlation of the lvp states with wind and thus advection
from humidity sources is shown in Fig. 4. The two primary wind directions are from the
southeast and the northwest (Fig. 4a). Low visibility states are associated predominantly
with winds from the southeast, with a small peak in the northern sector, both of which are
known moisture source regions (Fig. 4b). There is also a shift from higher to lower wind
speeds (color shading) between the full data set (Fig. 4a) and the lvp data set (Fig. 4b),
as lower wind speed generally favor the development of radiation fog. As a result of this
climatology we focus only on the cold season beginning in September until the end of March.

3.3. Measurements and Model Configurations

Modeling and forecasting the lvp state with statistical methods requires information related
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to low-visibility formation and dissipating processes. Since we are interested in lead times
up to few hours only, we exclusively use standard meteorological measurements available at
all larger airports as basis of this nowcasting system. The data come from the observation
system of VIE in a 30-min resolution and are available from September 2008 to Mach 2017.

All potential predictors for the use in this statistical nowcasting system are shown in Tab. 1.
The variable setup includes visibility measures, humidity measures, vertical temperature dif-
ferences, wind information and climatological information. Most of the predictors are contin-
uous variables except the lvp state, the precipitation variable, and the wind direction sector
variables. These three variables are categorical variables with two or more levels (see Tab. 1).
Precipitation is used to get information about humidity input to the atmosphere over the
preceding 12 hours. The wind direction is split into two factor variables to capture the main
fog wind directions based on the lvp climatology (Fig. 4b). Three visibility measures are used.
The vertical visibility is captured by the ceiling and the horizontal visibility by the rvr and the
meteorological visibility. The ceiling variable is set to 25000 feet for the cases where no ceiling
was detected due to the absence of clouds. The rvr and the meteorological visibility provide
similar information but rvr is truncated at 2000 meters whereas the meteorological visibility
is truncated at 20000 meters. Two further variables are the relative humidity and the dew
point depression which are non linearly related humidity measures. Information about the
vertical stratification of the lowest air layers is provided by two vertical temperature differ-
ences. One is the difference between the 2 meter and surface temperature. The other is the
difference between 2 meter and the tower temperature roughly 100 meter above ground. The
only climatological variable used is the solar zenith angle, which represents the diurnal cycle
of the lvp events. Dependent on the desired lead time we use the associated lag of the above
shown predictors. For instance, if the lead time of +30-min is of interest the 30-min lags of
the measurements are used as predictors, respectively for other lead times.

With measurements from 9 cold seasons in 30-min resolution we obtain a data set with
roughly 85000 observations. Thus, we have a data set which is sufficient to estimate and
verify the statistical models despite the rare occurrence of the low-visibility events (about
5000 observations). The forecasts are produced over the whole day with four lead times from
+30 to +120-min. Four models, one for each lead time provide the forecasts. The model
skill is based on out-of-sample verification by using ten-fold cross validation and estimates
the model variance with bootstrapping (Sect. 2.3).

4. Results

4.1. Predictor Selection and Effects

The results of the stepwise model selection (Sect. 2.2) are shown in Fig. 5. The box plots are
computed by the bootstrapped RPS mean values from the (a) +30-min and (b) the +120-min
forecasts. Each box plot shows one forecast model. The model size increases from left to right
by adding the annotated variable. The initial best guess is the intercept (=climatological)
model (not shown in the graphic) which has the same skill for all lead times with an RPS
∼ 0.032. The stepwise algorithm indicates the best input variable combination and also
shows the importance of the individual variables. The variable lvp is selected first within
all models and is the most important variable. This confirms the findings from (Vislocky
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Figure 5: RPS model skill due to parameter selection with the forward stepwise selection
method for the two lead times (a) +30-min and (b) +120-min. The model size increases from
left to right adding the predictor (see Tab. 1) which improves the model most. The black line
shows the median of the RPS. The last model indicates the best model where the stepwise
algorithm stops.

and Fritsch 1997) that persistence is already a good benchmark for lvp forecasts. Horizontal
visibility and humidity measures are selected next. The ceiling has a minor importance and
is only selected in the +90 and +120-min model. The wind direction (dd.se) is selected in
all models but improves the models only marginally. Of note is the increasing importance
of solar zenith angle (sza) with lead time. The vertical temperature stratification(dt.tow)
and wind speed (ff ) were never selected as predictors. The variable selection implies that
the information about upcoming low visibility is lead-time dependent and splits to a larger
number of predictors for longer lead times.

The model coefficients β from the best models using the step wise algorithm are shown in
Tab. 3. The sign of the coefficients indicate the sign of the effects, i.e. positive coefficients
indicate higher probabilities of high lvp states when the predictor values increase. The first
three parameters are the threshold coefficients α (see Eq. 2) between the four different lvp
states. They can be interpreted as intercepts for the three thresholds. A further special
feature of these models is the predictor lvp, which is an ordered variable with four levels.
Within the model, lvp is replaced by three categorical variables which indicate if the latest lvp
is higher lvp 0, higher lvp 1 and higher lvp 2. The predictors for the different lead times vary
just slightly and remain the same for the lead times +90-min and longer. As already shown
in Fig. 5 the model for the shortest lead time performs best with fewer predictors compared
to longer lead times.

Fig. 6 shows the variation in lvp forecasts due to a individual predictor when all other predic-
tors are kept constant at representative values. Representative values (red marks in Fig. 6)
are values typical before low-visibility events (see Tab. 4). Fig. 6a shows that high lvp cate-
gories become more likely when rvr, visibility (vis) and dew point depression (dpd) decrease
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Table 3: Coefficients β of the OLR models for the four different lead times. Contrary from
Tab. 1 units from rvr and vis in km, unit from cei in kft.

+30-min +60-min +90-min +120-min

α1 10.177 11.006 11.800 12.436
α2 12.379 12.479 12.972 13.440
α3 16.778 15.972 16.022 16.200

lvp1|0 2.773 1.870 1.507 1.252

lvp2|1 1.930 1.134 0.846 0.698

lvp3|2 2.684 1.749 1.290 0.907

rvr -0.668 -0.523 -0.426 -0.372
cei – – 0.010 0.012
vis −0.316 −0.338 −0.313 −0.281
rh 0.134 0.131 0.131 0.132

dpd −0.721 −0.731 −0.714 −0.649
rr12 −0.451 −0.511 −0.543 −0.573

dt.surf – 0.063 0.071 0.059
dd.se 0.195 0.065 0.060 0.046
dd.n 0.099 – – –
sza 0.003 0.005 0.007 0.009

or when relative humidity (rh) or solar zenith angle (sza) increase. Decreasing values of sza
indicate stronger radiative cooling and therefore favor low visibility. The predictor lvp has
the strongest effect, which again confirms the importance of the persistence for short lead
times. The effects for lvp, visibility and humidity parameters are nonlinear while all the other
predictors produce linear effects. The factor variable dd.se with winds from the southeast
sector has only a minor effect. However, the probability for high lvp states increases with
winds from southeast compared to other directions. Surprisingly, the probability for high
lvp states increases with higher ceiling height (Fig. 6b). An interpretation of this negative
effect is that a low ceiling increases the long-wave downward radiation and prevents strong
radiative cooling of the ground. Thus, it is less likely for a fog layer to develop. The negative
effect of the precipitation within the preceding 12 hours (rr12 ) is also unexpected, but again
a possible explanation is that the remaining precipitation clouds reduce radiative cooling of
the ground.

Comparing the effect plots from the +30-min (Fig. 6a) and +120-min (Fig. 6b) forecasts
illustrate in general lower probabilities for the higher lvp states at the +120-min forecasts.
This indicates that the OLR model forecasts tend to converge to climatology with increasing
lead times. Furthermore, the large effect of the predictor lvp (see Fig. 6a) indicates that the
forecast information is concentrated on this predictor at the lead time +30-min. In contrast
at the lead time +120-min the effect of lvp becomes weaker while the other effects remain
similar. This behavior is consistent with the model coefficients shown in Tab. 3, where the
coefficients for lvp decrease with increasing lead times while the coefficients of several other
predictors, e.g. sza, dpd, or dt.surf, increase or at least remain approximately unchanged.
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Figure 6: Effect of the predictors for the (a) +30-min and (b) +120-min forecast. The four
colors indicate the probability for each lvp state dependent on the particular predictors. The
observed distribution of the particular predictors is shown as bar with gray shading below
each effect plot. Typical conditions before an lvp event (red markers see Tab. 4) are chosen as
representative values for the marginal effects. The effect plot with the fade out indicate that
these predictors have not been selected in the particular model and therefore have constant
effects.
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Table 4: Fixed values for the marginal effects shown in Fig. 6.

parameter value parameter value

lvp 0 rr12 yes
rvr 1500 dt.surf 1
cei 25000 dd.se yes
vis 1500 dd.n no
rh 95 sza 100
dpd 1
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Figure 7: Model stability of the OLR due to variation of training data set length from 1 to
6 cold seasons (CS). RPS values are out-of-sample on a 3 cold season test data set for the
+60-min forecast. Persistence is shown as reference model.

4.2. Model Stability

To estimate the sensitivity of the OLR models to the training data set length Fig. 7 shows
RPS of +60-min forecasts based on 1 up to 6 cold seasons training data. The forecast are
evaluated out-of-sample for 3 cold seasons. The box plots for the OLR models indicate a slight
model improvement with an increasing training data set from 1 cold season to 2 cold seasons.
The OLR models based on 2 or more cold seasons have similar skill but the model based
on 4 cold seasons has the best RPS. The shortest training data set length of 1 cold season
includes about 5000 observations which is already an appropriate data set to estimate an OLR
model with the applied model configuration. Taken together, forecast accuracy improves with
increasing training data set length up to 2 cold seasons and remains similar for longer training
data sets.

4.3. Model Performance

The results of the final lvp forecasts are shown in Fig. 8. The models are based on data of 9
cold seasons using the best model configuration resulting from the stepwise predictor selection.
Fig. 8a illustrates the verification for OLR compared to the climatology and the persistence
forecasts. The OLR outperforms climatology and persistence for each lead time. The skill
of all forecasts decreases with increasing lead time but the benefit of OLR over persistence
increases. OLR and persistence converge to climatology but within the lead times considered
here, the performance of climatology as a forecast of lvp is clearly worse. The spread of the
RPS indicates the uncertainty due to the model estimation determined by bootstrapping (see
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Figure 8: Model skill based on RPS as function of the lead time for (a) the full data set
and (b) for the subset where the human observations are avaliable. The dots represent the
50 percent quantile, the shadings in the lighter color show the 95% confidence interval. The
model acronyms stand for climatology (CLIM), persistence (PERS), ordered logistic regres-
sion (OLR), and the human forecaster (HUMAN). The human forecasts are available from
September 2012 to March 2017 for the lead times +60-min and +120-min between 5 and 20
UTC only.

Sect. 2.3). The uncertainty is smallest for the OLR model as compared to persistence and
climatology and this uncertainty does not vary substantially with lead time.

Human forecasts are available as third reference (Fig. 8b), albeit only over a shorter period
(September 2012 to March 2017), part of the day (5 to 20 UTC) and 60 minutes lead time
intervals instead of 30 minutes. The human forecast is comparable to persistence, therefore
OLR also outperforms the human forecasts. Due to the rare occurrence of lvp events, and the
larger number of lvp 0 during the day, when considering only the daytime OLR, persistence
and climatology perform better compared to the results on the full data set in Fig. 8a.

5. Discussion and Conclusion

Predicting lvp (low-visibility procedure) states is very challenging because small changes in
the physical drivers of low-visibility formation and dissipation processes have a large impact
on lvp. The OLR (ordered logistic regression) model has been used to develop a probabilistic
nowcasting system producing direct airport-specific, low-visibility forecasts tested at Vienna
International Airport.

The OLR model leads to promising forecasts and outperforms persistence and climatology,
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although persistence offers predictions to be reckoned with especially at the very short lead
times. This nowcasting approach is also competitive with human forecasts. A benefit of this
method is to produce probabilistic forecasts of a variable relevant for to the end user within
one consistent model. The probabilistic forecasts of such a model allows different end users,
e.g., air traffic controllers or air traffic managers, to extract the information regarding their
requirements.

The variable influencing the forecasts most is lvp. Additional important variables are the
horizontal visibility and the humidity measures. Contrary to our expectations wind speed
and the temperature stratification of the first 100 meters above the ground did not contribute
information for future lvp states at Vienna International Airport.

The presented data-driven nowcasting system is transferable to other airports but it needs
to consider site-specific predictors. For instance, considering the lvp climatology guides us to
focus on the cold season only and justifies omission of the warm season, during which low-
visibility events almost never occur. The nowcasting system uses the available measurements
on the site and its vicinity and objectively selects the important variables to form the best
model. Dependent on the regime of the site (e.g., coastal or continental) different physical
effects drive the development and dissipation of low-visibility conditions. These effects need to
be adequately represented in the model variables in order to achieve accurate forecasts. The
usage of additional model inputs and increase of the forecast temporal resolution would have
an additional gain for the operational use of the nowcasting system (cf. Dietz et al. 2017).

In summary, these findings suggest that the OLR model is a suitable tool for computationally
fast probabilistic visibility forecasts which can provide useful guidance to aviation decision
makers.
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Bartoková I, Bott A, Bartok J, Gera M (2015). “Fog Prediction for Road Traffic Safety
in a Coastal Desert Region: Improvement of Nowcasting Skills by the Machine-Learning
Approach.” Boundary-Layer Meteorology, 157(3), 501–516. ISSN 0006-8314, 1573-1472.
doi:10.1007/s10546-015-0069-x.

Bergot T (2016). “Large-Eddy Simulation Study of the Dissipation of Radiation Fog.” Quar-
terly Journal of the Royal Meteorological Society, 142(695), 1029–1040. ISSN 1477-870X.
doi:10.1002/qj.2706.

Bocchieri JR, Glahn HR (1972). “Use of Model Output Statistics for Predicting Ceiling
Height.” Monthly Weather Review, 100(12), 869–879. ISSN 0027-0644. doi:10.1175/

1520-0493(1972)100<0869:UOMOSF>2.3.CO;2.



Philipp Kneringer, Sebastian J. Dietz, Georg J. Mayr, Achim Zeileis 15

Bremnes JB, Michaelides SC (2007). “Probabilistic Visibility Forecasting Using Neural Net-
works.” Pure and Applied Geophysics, 164(6-7), 1365–1381. ISSN 0033-4553, 1420-9136.
doi:10.1007/s00024-007-0223-6.

Christensen RHB (2015). “ordinal—Regression Models for Ordinal Data.” R package version
2015.6-28. http://www.cran.r-project.org/package=ordinal/.

Dietz SJ, Kneringer P, Mayr GJ, Zeileis A (2017). “Forecasting Low-Visibilit Procedure States
with Tree-Based Statistical Methods.”Working papers, Faculty of Economics and Statistics,
University of Innsbruck. URL https://eeecon.uibk.ac.at/wopec2/repec/inn/wpaper/

2017-22.pdf.

Dutta D, Chaudhuri S (2015). “Nowcasting Visibility During Wintertime Fog over the Airport
of a Metropolis of India: Decision Tree Algorithm and Artificial Neural Network Approach.”
Natural Hazards, 75(2), 1349–1368. ISSN 0921-030X. doi:10.1007/s11069-014-1388-9.

Egli S, Thies B, Drönner J, Cermak J, Bendix J (2017). “A 10 Year Fog and Low Stratus
Climatology for Europe Based on Meteosat Second Generation Data.” Quarterly Journal
of the Royal Meteorological Society, 143(702), 530–541. ISSN 1477-870X. doi:10.1002/

qj.2941.

Fabbian D, de Dear R, Lellyett S (2007). “Application of Artificial Neural Network Forecasts
to Predict Fog at Canberra International Airport.” Weather and Forecasting, 22(2), 372–
381. ISSN 0882-8156. doi:10.1175/WAF980.1.

Gultepe I, Hansen B, Cober SG, Pearson G, Milbrandt JA, Platnick S, Taylor P, Gordon
M, Oakley JP (2009). “The Fog Remote Sensing and Modeling Field Project.” Bulletin
of the American Meteorological Society, 90(3), 341–359. ISSN 0003-0007. doi:10.1175/

2008BAMS2354.1.

Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Müller MD, Pagowski
M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007). “Fog Research: A Review
of Past Achievements and Future Perspectives.” Pure and Applied Geophysics, 164(6-7),
1121–1159. ISSN 0033-4553, 1420-9136. doi:10.1007/s00024-007-0211-x.

Haeffelin M, Bergot T, Elias T, Tardif R, Carrer D, Chazette P, Colomb M, Drobinski P,
Dupont E, Dupont JC, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat
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Airport operations are sensitive to visibility conditions. Low-visibility events may
lead to capacity reduction, delays and economic losses. Different levels of low-
visibility procedures (lvp) are enacted to ensure aviation safety. A nowcast of the
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these probabilities directly. It is applied to cold season forecasts at Vienna Interna-
tional Airport for lead times of 30-min out to two hours. Model inputs are standard
meteorological measurements. The skill of the forecasts is accessed by the ranked
probability score. OLR outperforms persistence, which is a strong contender at the
shortest lead times. The ranked probability score of the OLR is even better than
the one of nowcasts from human forecasters. The OLR-based nowcasting system is
computationally fast and can be updated instantaneously when new data become
available.

ISSN 1993-4378 (Print)
ISSN 1993-6885 (Online)


