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Abstract: Bayesian methods have become increasingly popular in the past two decades.
With the constant rise of computational power even very complex models can be estimated
on virtually any modern computer. Moreover, interest has shifted from conditional mean
models to probabilistic distributional models capturing location, scale, shape and other
aspects of a response distribution, where covariate effects can have flexible forms, e.g.,
linear, nonlinear, spatial or random effects. This tutorial paper discusses how to select
models in the Bayesian distributional regression setting, how to monitor convergence of
the Markov chains, evaluate relevance of effects using simultaneous credible intervals and
how to use simulation-based inference also for quantities derived from the original model
parameterisation. We exemplify the work flow using daily weather data on (i) temperatures
on Germany’s highest mountain and (ii) extreme values of precipitation all over Germany.

Key words: Distributional regression; generalized additive models for location, scale and
shape; Markov chain Monte Carlo simulations; semiparametric regression; tutorial;

1 Introduction

While it is well known that the distribution of any quantity of interest is not well charac-
terised by the mean alone, this is still frequently ignored in regression analyses since most
common model specifications (linear models, generalized linear models, generalized additive
models, etc.) focus on relating the mean of the response variable to a set of explanatory
variables. While such models have the advantage of being easy to estimate and to interpret,
they also have the risk of model misspecification which will often imply that conclusions
drawn from the model estimates are misleading. In addition, in many applications the
analysist may not only be interested in effects on the mean of the response, but rather
on additional features of the response distribution. This is for example the case if one is
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Figure 1: Simulated data example, shown are the estimated 2.5%, 10%, 50%, 90% and
97.5% quantiles of a homoscedastic normal model, left panel, and a heteroscedastic loaction-
scale normal model.

interested in quantifying risks or extreme observations rather than the average behaviour
of the response.

One common approach to overcome the obsession with means in regression analyses are
quantile regression methods (see Koenker, 2005, for a detailled introduction) which are also
discussed in another contribution to this special issue. While conditional quantiles provide a
characterisation of local characteristics of the response distribution (indexed by the quantile
level), we will focus on distributional regression models that provide a complete probabilistic
characterisation of the response distribution in one joint model. These models will rely on
the assumption of a specific distributional type for the response but allow potentially all
parameters of this distribution to depend on covariates. This is illustrated in Figure 1 for
simulated data from a normal distribution where both the mean the variance are related to
a continuous covariate x. In particular, not only the mean but also the variance increases
with larger values of the covariate such that the data are subject to heterogeneity. The left
plot shows an estimated linear model for this data along with a 95% and an 80% prediction
interval. While the tendency in the mean is still approximated reasonably well despite the
misspecification of the variance, the prediction intervals derived from the model will be
highly misleading. In contrast, the estimates in the right plot represent regression effects
not only for the mean but also for the variance and nicely reflect the increasing variability
associated with larger values of the covariate.

While in the particular case of a normal location-scale model with only one single covariate
as in Figure 1 it is still fairly easy to understand the structure and implications of a dis-
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tributional regression specification, this typically becomes more difficult in more complex
specifications with either a more flexible specification of the regression predictor or the re-
sponse distribution. This tutorial therefore aims at providing more insight for practitioners
into the work flow of building distributional regression models illustrated alongside meteo-
rological examples of daily temperature observations of the Zugspitz mountain in Germany
and on extreme values of precipitation all over Germany. For inference, we will follow a
Bayesian approach based on Markov chain Monte Carlo (MCMC) which are particularly at-
tractive in distributional regression, since the inferential framework provides valid credible
intervals for estimators in situations where confidence intervals for corresponding maximum
likelihood estimators based on asymptotic properties fail and also enables immediate in-
ference for quantities from the original model parameterisation. Since MCMC approaches
imply a number of additional challenges for applied researchers (in particular monitoring
mixing and convergence of Markov chains), we will also provide step by step guidance on
those aspects of the analysis. Model fitting is carried out using the R (R Core Team, 2017)
package bamlss (Umlauf et al., 2017). The R code to reproduce all examples is provided
in the online materials of this paper. Since the Bayesian distributional modeling framework
is very flexible and a lot of models are contained special cases, e.g., the generalized addi-
tive model (GAM, Hastie and Tibshirani, 1990), this tutorial paper also provides useful
information on how to implement Bayesian inference in such simplified model types.

The remainder of this paper is structured as follows: The data used to illustrate the mod-
eling work flow are presented in Section 2. In Section 3, the models and model terms
supported by the distributional regression framework are briefly introduced. Section 4
gives an overview on monitoring convergence of the Markov chains while tools for model
selection are discussed in Section 5. Bayesian inference based on the posterior samples is
the illustrated in Section 6. The final section 7 comments on additional sources of more
detailled information on distributional regression models.

2 German daily weather data

As illustrative examples we use two data sets of German daily weather observations provided
by the German Meteorological Service (Deutscher Wetterdienst, DWD), which are freely
available (ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/daily/kl/historical/). The
data are a collection of over 1000 meteorological stations all across Germany and comprise
several physical parameters. In the first analysis, we focus on 2 meters above the ground
air temperature (T, in degree Celsius) of the highest mountain in Germany, the Zugspitze
(47◦N, 11◦E; 2964m a.s.l.). The second example focuses on modeling extreme values of
precipitation (P, in millimeters) all over Germany, i.e., values higher than 30 millimeters of
daily precipitation sums.
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2.1 Zugspitz daily temperature

The main interest in the first example is to evaluate trends in temperatures not only in
terms of the average temperature but also in terms of changes of the general distributional
shape. For estimating time trends using meteorological data, especially temperature, it is
important to ensure that the data produced by the weather station is homogenized. For
example, if a station is moved to another location with higher altitude, this can result in
a dramatic drop of measured temperatures, similarly, exchanging physical sensors can shift
meteorological observations which needs to be accounted for prior to analyzing the data.
Since the Zugspitz daily temperature time series is one of the longest homogenized series in
Germany, it is especially suited for estimating long term time trends.

In the top row of Figure 2, a histogram of the daily temperature observations together with a
plot vs. the day of year is shown. The histogram shows that the distribution is not symmetric
but slightly left-skewed towards lower temperatures, which had a minimum of −33.1 ◦C in
February 1940. The maximum temperature of +13.3 ◦C was measured more recently in
August of 2012, which may be seen as some indication of an increase in temperature over the
years. The top right plot shows the seasonal pattern over all years. The peak temperatures
are clearly during the summer times around August. Moreover, the 5% and 95.5% daily
quantiles suggest that in the winter season from November to March temperatures vary
more compared to the summer.

In the bottom row of Figure 2, the full temperature time series is shown. Compared to the
global mean temperature of −4.6 ◦C it seems that after 1980 a temperature increase takes
place, as indicated by the 20 years running mean. Before, the running mean fluctuates
around its global mean in a more unstructured way. In addition, there is a very small
increase in temperature variation over the last 30 years visible when comparing the 5% and
95% 20 years running quantiles.

In practice, (temperature) climatology models are are oftentimes used for improving proba-
bilistic weather forecasts, e.g., by statistical downscaling or as a baseline model for verifica-
tion. Therefore, it is important to capture the full information of the distribution such that
correct inference can be made for all quantities of interest, e.g., for 5% and 95% quantiles.
Therefore, as already suggested from the descriptive data analysis in Figure 2, next to auto-
correlated observations, subsequent models need to account for complex seasonal patterns,
possibly varying over time, as well as varying uncertainty over season and observation time.
Due to the skewness of the response data, a simple Gaussian model is most likely not ca-
pable to model all features of the data. Therefore, we exemplify a complex distributional
modeling task using three different distributions for daily temperature observations.

2.2 German extreme precipitation

This example focuses on extreme values of precipitation all over Germany, i.e., observations
of the very right hand side of the distribution that exceed a threshold of 30 millimeters of
precipitation (corresponding to the empirical 99.5% quantile of all precipitation measure-
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Figure 2: The Zugspitz daily temperature data set.

ments). Extreme precipitation events can lead to strong environmental impacts, therefore,
evaluating the amount of maximum precipitation over a certain time period, e.g., the level
of daily precipitation sums that can be observed at least once in 100 years (100 year re-
turn level), is an important information for environmental risk management. This analysis
can be seen as an enhancement of Fischer et al. (2013) which use station-wise models all
over Germany applying a generalized extreme value (GEV) distribution on monthly block
maxima to compute return levels. Instead of station-wise modeling, the main focus of this
analysis is to develop a model for all of Germany and provide a smooth map of 100 year
return levels.
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Figure 3: Distribution of available meteorological stations (left panel) fitted generalized
Pareto distribution to the daily precipitation observations (right panel).

Similarly to the first example, to account for possible time trends in extreme precipitation it
is necessary to use homogenized long term time series. Therefore, we only used observations
of meteorological stations with the highest quality, as reported by the quality flags from the
DWD. Additionally, we analyzed data from stations that did not change in altitude more
than 10 meters, only. The final data set consists of 28634 observations of 640 meteorological
stations.

The spatial distribution of the stations is shown in the left panel of Figure 3. A histogram
of observations over 30 millimeters of daily precipitation sums is shown in the right panel
of Figure 3. A natural distribution for such extreme value data, or peak over threshold
(POT) data, is the generalized Pareto (GP) family (see, e.g., Coles, 2001), which has the
probability density function

f(y; ξ, σ, µ) =
1

σ

(
1 +

ξ(y − µ)

σ

)(
− 1
ξ
−1

)

.

Here, parameter µ is the threshold that is usually specified in advance by, e.g., visual
inspection of so called mean residual life plots (Coles, 2001). Parameters ξ and σ are the
shape and scale parameters of the distribution. In the right panel of Figure 3, the orange
line represents the corresponding estimated density of a simple GP model illustrating the
goodness-of-fit to the precipitation data. Note that the mean of the GP distribution is given
by

µ+
σ

1− ξ , for ξ < 1.

Another special interest of this analysis is treating the question if the average amount of
extreme precipitation has changed over time. However, as mentioned above the main focus
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is to provide a smooth map of Germany with 100 years return levels. The 100 year return
levels of daily observations are calculated with

µ+
σ

ξ
(365 · 100 · λµ)ξ − 1,

where λµ = Prob(Y > µ) which is estimated by the empirical threshold exceedance rate.
Therefore, this analysis is an example of distributional regression where the interest lies not
only on determining the impact of covariates on the parameters of the response distribution
but also on quantities derived from transformations of the distributional parameters. This
is particularly easy in Bayesian inference based on Markov chain Monte Carlo simulations.

3 Model structure

Most common regression specifications relate the conditional expectation of the response
variable of interest yi to a set of explanatory variables (or covariates) xi via

E(yi|xi) = h(η(xi)), i = 1, . . . , n,

where h(·) is a response function that ensures that only admissible values for the expectation
can be observed (e.g. ensuring nonnegativity in case of responses with only positive support)
while η(xi) is a regression predictor formed from the covariates (e.g. η(xi) = x′iβ in case
of generalized linear models). Of course, specifying a regression model for the expectation
alone provides only an incomplete picture for the distribution of the response. While an
additional distributional assumption has to be made for yi to facilitate maximum likelihood
or Bayesian inference that both require the specification of a likelihood, all parameters
potentially involved in the likelihood except for the mean are treated as nuisance parameters
(for example the error variance in case of a linear model with normal errors) and are, in
particular, not related to regression effects.

Distributional regression models overcome this limitation and allow for regression effects on
potentially all parameters of the response distribution. More specifically, distributional re-
gression assumes that the conditional distribution is of a specific type (e.g. normal, gamma,
etc.) with K parameters and that all parameters are determined in a regression, i.e.

yi|xi ∼ D (ϑ1(xi), . . . , ϑK(xi)) ,

where D denotes the parametric distribution for the response variable yi. In our anal-
ysis of the Zugspitz temperature data presented in Section 2, the normal distribution
Ti ∼ N(µ(xi), σ(xi)

2) is a natural starting point since temperatures data do not involve
natural limits on the domain but have continuous support over the whole real line. Since
we are also allowing for regression effects on the variance parameter σ(xi)

2, the distribu-
tional normal model already allows us to account for regression effects beyond the mean
in the form of covariate-dependent, heteroscedastic variances. However, as illustrated in
the previous paragraph, there is also some empirical indication that the temperature data
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exhibit skewness (see Figure 2) which may also change over time such that it makes sense
to consider some competing distributional specifications.

We therefore work with two alternative, more flexible distributions with distinguished pa-
rameters for skewness and kurtosis. More precisely, we consider the Box-Cox t distribu-
tion Ti ∼ BCT(µ(xi), σ(xi), ν(xi), τ(xi)) and the Box-Cox Power Exponential distribution
Ti ∼ BCPE(µ(xi), σ(xi), ν(xi), τ(xi)) which involve not only a location parameter µ(xi) and
a scale parameter σ(xi) that determine the location and the variability of the distribution
but also additional shape parameters ν(xi) and τ(xi) controlling the skewness and kurtosis
of the respective distribution. We will later discuss possibilities to compare the fit of these
candidate distributions in more detail.

For modeling extreme values of precipitation, we rely on the generalized Pareto distribution
Pi ∼ GP(ξ(xi), σ(xi)) which naturally arises from extreme value theory based on the peak
over threshold approach.

For relating the different distributional parameters ϑ1(xi), . . . , ϑK(xi) to the covariates, we
rely on additive predictors of the form

ηϑki = fϑk1 (xi;β
ϑk
1 ) + . . .+ fϑkJk (xi;β

ϑk
Jk

),

where the unspecified (possibly nonlinear) functions fϑkj (·), j = 1, . . . , Jk relate to different

types of regression effects characterised by regression parameters βϑkj . In analogy to gen-
eralized linear models, the predictors are then linked to the distributional parameters via
known monotonic and twice differentiable response functions hk(·) such that

ϑk(xi) = hk

(
ηϑki

)
.

In the case of our analysis of the daily Zugspitz temperatures, the location and skewness
parameters (µ(xi) and ν(xi)) are real-valued such that no response function is required. In
contrast, the scale parameter σ(xi) as well as the kurtosis parameter τ(xi) have strictly
positive support and we therefore use the exponential response function to ensure this
restriction. For simplicity, we treat the kurtosis parameter as a constant (τ(xi) ≡ τ in-
dependently of covariates) while for all other parameters, we consider a predictor of the
form

η◦i = β◦0 + f◦1 (Ti − Ti−1) + f◦2 (ydayi) + f◦3 (yeari) + f◦4 (ydayi, yeari), i = 1, . . . , 42414,

where ◦ denotes any of the parameters µ(xi), σ(xi), ν(xi) and i = 1, . . . , 42414 identifies
the consecutive days of the observation period. The effects f1(·) to f4(·) relate to different
types of regression effects chosen to fit with certain stylized features of the data:

� Temperature data are temporally correlated and we therefore include daily temper-
ature differences Ti − Ti−1 in the nonlinear effect f1(·) to account for this temporal
correlation assuming that rather the change in temperature than the absolute value
is relevant.
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� Due to seasonal variation over the year, we include a cyclic trend component based on
the day of the year in f2(·) which is allowed to vary smoothly over the year but repeats
every year while ensuring that the nonlinear effect on December 31 and January 1 are
fused together smoothly.

� To account for a potential long term trend in temperatures, we include an overall time
trend based on the years from 1954 to 2015 in f3(·).

� To allow for time-variation in the seasonal component, we furthermore include an
interaction between day of the year and year in f4(·).

In the second example, for modeling extreme values of precipitation, we use exponential
response functions for both parameters, ξ(xi) and σ(xi), as well as the predictor

η◦i = β◦0 + f◦1 (alt) + f◦2 (yeari) + f◦3 (ydayi) +

f◦4 (loni, lati) + f◦5 (ydayi, loni, lati), i = 1, . . . , 28634,

where we include the following effects:

� Function f1(·) reflects the natural, potentially nonlinear effect of altitude on precipi-
tation.

� Similarly to the temperature model, effects f2(·) and f3(·) account for a possible long
term time trend as well as seasonal trends of the day of the year.

� In addition, to account for spatial variation we include a spatially correlated effect
f4(·) of longitude and latitude coordinates modelled as a two-dimensional smooth
surface.

� Moreover, spatial variation might be pronounced for the seasonal trend, therefore, a
spatially-varying seasonal effect f5(·) is included as an interaction.

For all model components, we make use of penalized splines (Eilers and Marx, 2003; Wood,
2003) and their tensor product interactions since they provide a flexible and versatile tool for
estimating nonlinear effects also with cyclic constraints. Note, however, that the framework
of additive predictors applicable in distributional regression is much broader as indicated
by the overview in Table 1.

Estimation of the different model specifications will be based on Markov chain Monte Carlo
(MCMC) simulations using iteratively weighted least squares (IWLS) proposals. Since
distributional regression models are rather complex including a quite high number of pa-
rameters, finding good starting values is important. Therefore, a backfitting algorithm for
finding posterior mode estimates is commonly applied before running the MCMC simula-
tion. Details on the implementation of Bayesian inference in distributional regression can
be found in Klein et al. (2015d).

Obviously, Bayesian distributional regression involves a number of distinct choices and
challenges an analyst is faced with. These include
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Covariates Effect types

Scalar covariates (categorical or continuous)

Linear effect x · β
Linear interaction x1 · x2 · β
Smooth nonlinear effect f(x)
Varying coefficient f(x2) · x1
Smooth interaction surface f(x1, . . . , xL)

Grouping variable s
Random intercept βs
Spatial effect f(s)

Grouping and scalar,
Random slope x · βs

time variable t
Space-time effect f(s, t)
Functional random intercept fs(t)

Table 1: Commonly used effect types in distributional regression models.

� the choice of a suitable class of potential response distributions,

� the determination of candidate regression predictors for the different distributional
parameters, and

� the monitoring and evaluation of Bayesian, simulation-based inference.

In the following, we will provide guidance on these various aspects of performing an analysis
based on Bayesian distributional regression.

4 Monitoring and convergence of Markov chains.

Let us start with the situation that a fixed model specification is given and we are estimating
the model based on MCMC simulations. In this case, it is important to monitor the mixing
and convergence behaviour of the underlying Markov chain to avoid that spurious results are
obtained. All methods discussed in the following rely on inspecting the posterior samples
either based on graphical visualisation or certain summary statistics. In the following,
we assume some familiarity with the principles of Bayesian inference based on MCMC as
provided, for example in Green (2001).

The necessity to monitor the convergence of the Markov chain arises from the fact that
MCMC simulations are not optimising a certain estimation criterion (such as least squares
or the log-likelihood) where convergence implies that the estimate of interest converges to
the optimal value but rather we are interested in achieving convergence to the posterior
distribution. This unfortunately implies that convergence is way harder to determine in
practice although it is guaranteed from a theoretical perspective under mild regularity con-
ditions. Furthermore, since we are generating a Markov chain, the samples will necessarily
exhibit some degree of autocorrelation that has to be taken into account. To illustrate
different aspects of monitoring Markov chains in MCMC, Figure 4 contains sampling paths
as well as autocorrelation functions (ACFs) for three different scenarios.
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Figure 4: Trace- and ACF plots generated from the Gaussian daily temperature model.
The samples of one smoothing variance of model term f4 of the µ parameter are shown in the
first column together with a smooth trend line. The second column shows the corresponding
empirical ACF, while the third column visualizes the maximum ACF values over all model
parameters. The upper row illustrates the behavior of the Markov chain using poor starting
values. The second row shows the effect of using good starting values, e.g., generated by
a backfitting algorithm. The bottom row shows samples generated from 8 parallel Markov
chains with 6000 samples, a burnin phase of 2000 and thinning of 10 for each chain.
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The first row illustrates the behaviour of the Markov chain when starting from a badly
chosen starting value. In this case, it takes roughly 300 iterations until the Markov chain
has reached the part of the parameter space that is supported by high values of the posterior
distribution. This phase is known as the burn in period of MCMC simulations and should
be discarded so that results are not impaired by the convergence towards the posterior.
Unfortunately, even after the burn in period, the mixing of the Markov chain shown in
the first row is far from satisfactory and shows insufficient mixing as demonstrated by the
extremely high autocorrelations.

The Markov chain in the second row starts from better initial guesses and therefore only
shows a smaller trend towards the posterior and already considerably reduced autocorre-
lation. Still, the samples can not yet be considered as being independent. The third row
contains samples from eight independent chains after removing a burn in period and after
thinning the Markov chain to make the samples approximately independent. The Markov
chains do not show any indication of a trend, autocorrelations are very low, and repeated
runs of the Markov chain produce a similar behaviour. In summary, graphical inspection of
the sampling paths and the autocorrelation function provide good guidance on convergence
and mixing of the Markov chains with respect to the following aspects: determination of
the burn in period, thinning of the Markov chain to make the samples independent and
mixing of the Markov chain by comparing different chains.

The major drawback of graphical approaches is that for complex models with hundreds
or even thousands of parameters it is hard to monitor all parameters simultaneously. In
this case, it can be useful to rely on convergence diagnostics that can be computed from
multiple Markov chains produced for the same model (as implemented in the R package
coda, Plummer et al., 2006). The most common approaches are

� Gelman and Rubin’s convergence diagnostic (Gelman and Rubin, 1992; Brooks and
Gelman, 1998),

� Geweke’s convergence diagnostic (Geweke, 1992),

� Heidelberger and Welch’s convergence diagnostic (Heidelberger and Welch, 1981, 1983).

The Gelman and Rubin’s convergence diagnostic is a general approach for monitoring con-
vergence of parallel MCMC chains. Using different starting values, convergence is indicated
if all chains approach stationarity within the first half of the samples which is tested by
calculating within-chain and between-chain variances. For each variable, if MCMC chains
have converged the value of the diagnostic is approximately 1, e.g., the diagnostic for the
final BCPE model for daily temperatures indicates convergence with a total range of the
diagnostic of [0.99, 1.01] calculated over all single chains.

Similarly, Geweke’s diagnostic is testing for convergence based on differences of the mean
of the first and last part of the MCMC chains. The test statistic is asymptotically normal
distributed, i.e, if MCMC chains have converged differences should be small when quanti-
fying them using a standard Z-score. If the Z-score shows a lack of convergence, it is useful
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to successively discard more and more samples until the chain is halfed in order identify
the iteration from which convergence is achieved. Again, convergence of the MCMC chains
of the final BCPE model is achieved according to a 1% significance level since the range of
almost 95% of all Z-values is [−2.27, 1.94] when dividing the chains in half.

Heidelberger and Welch’s run length control test is computed by successively discarding
samples until either the test is passed or half of the chain has been discarded. In practice,
the diagnostic can be used to automatically define an accurate burn-in phase for the MCMC
chains. When computing the test for the MCMC chains of the final BCPE model all chains
passed the stationarity test.

5 Model selection

We now turn our attention to the actual determination of suitable models for an empirical
analysis. A common way can be to proceed along the following steps:

1. Compile a list of potential response distributions: Based on some stylized features
of the data and in particular the domain of the observed response values, one can
often come up with a sensible list of candidate response distributions. For exam-
ple, in case of the Zugspitz temperature data, we are interested in continuous data
without any domain restrictions and potentially skewed distributions while for the
precipitation data the peak over threshold approach implied the generalized Pareto
distribution as a suitable model class. Other types of common response structures
relate to continuous nonnegative responses (e.g. log-normal or gamma distribution),
count data (Poisson, negative binomial, zero inflated Poisson, zero-inflated negative
binomial, hurdle models), zero-adjusted responses (log-normal or gamma with an ad-
ditional spike in zero), fractional responses (beta), etc. A good reference for available
distributions is http://www.gamlss.org/.

2. Define a candidate predictor: Based on subject-matter considerations about covari-
ates to include and exploratory analyses, define a candidate predictor to be considered
for potentially all parameters of the response distribution. This will often be a quite
complex model version that defines an upper limit of what the analyst would po-
tentially be willing to consider. Note that very complex models are likely to be a
numerical challenge and may lead to difficulties in estimation especially in case of
small data sets. The candidate predictor should therefore rather be considered the
basis for building sparser models than the ultimate goal for the analysis.

3. Eliminate covariates / candidate distributions: To determine a suitable subset of
covariate effects and to evaluate the ability of the candidate distributions to fit the
data, one can rely on different criteria such as quantile residuals, information criteria
and predictive scoring rules (see below for details). In particular, information criteria
can be used to implement different types of stepwise model selection although the
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complexity of the model space increases considerably when working with models with
multiple predictors.

4. Interpret the results: Once having reduced the list of potential model specifications
to a subset of specifications that are compatible with the data, one can interpret the
results by identifying both common results and differences between rival specifications.
We will return to this issue later based on the temperature data. Note that data-
driven model decisions will lead to overly optimistic uncertainty assessments in the
final model estimates such that results in such models should be interpreted with care.
For confirmatory analyses, model choice steps should therefore be avoided to allow
for a meaningful interpretation of significances and the like.

Randomized quantile residuals (Dunn and Smyth, 1996) are based on the probability in-
tegral transform that indicates that for a continuous random variable Y with cumulative
distribution function F , we have

F (Y ) ∼ U(0, 1)

i.e. evaluating the cumulative distribution function on the random variable yields a uniform
distribution. For discrete random variables, there is a corresponding approximate version.
For distributional regression models, one can now replace F with the estimated cumulative
distribution function F̂ = Fϑ̂ and evaluate it on the observed response values. If the model
provides a good approximation of the true data generating mechanism, this should yield a
sample of approximately i.i.d. uniform distributed random variables that can be visualized
in a probability integral transform histogram. Alternatively, a quantile-quantile-plot can
be used to determine deviations of Φ−1(F (Y )) from the standard normal distribution, as
demonstrated in Figure 5 for the Zugspitz temperature data. Clearly, the mean of the
quantile residuals using the normal distribution slightly deviates from zero and the residuals
exhibit some skewness. This is also indicated by the corresponding Q-Q plot where for high
and low temperatures the quantiles deviate from the diagonal line. Modeling the skewness
and kurtosis parameter seems to improve the model fit, the histogram of the residuals of
the Box-Cox t model already seems to be more or less symmetric around zero, however,
concerning the Q-Q plots the Box-Cox Power Exponential model is more normal such that
the confidence bands computed using all parameter samples almost cover the diagonal over
the full range. Therefore, the Box-Cox Power Exponential model is considered as the best
model for the daily temperature data

Quantile residuals and the probability integral transform mostly provide a basic check
whether a candidate model provides a reasonably flexible description of the observed data
but they are not well suited to discriminate between rival model specifications in terms
of covariate effects. The latter can, for example, be achieved by Bayesian analogues to
frequentist information criteria such as Akaike’s information criterion (AIC). The most
popular approaches are the deviance information criterion (DIC ?) and the widely appli-
cable information criterion (WAIC Watanabe, 2010). Both can be easily determined based
on the samples for the paramaters of a Bayesian model specification and can be interpreted
in complete analogy to the AIC (i.e. smaller values indicate a better fit). However, since
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Figure 5: Randomized quantile residuals of the daily temperature models The top row
shows histograms of posterior mean quantile residuals together with a kernel density esti-
mate, the bottom row the resulting quantiles vs. the theoretical quantiles of the standard
normal distribution. The small black dots represent the posterior mean quantiles of over
all posterior samples, the blue dashed lines the corresponding 95% credible bands.

they are estimated from the data, there is inherent sampling variability such that small dif-
ferences in the information criteria should not be overinterpreted. Table 2 reports the DIC
for the three different models for the Zugspitz daily temperature data along with the esti-
mated effective number of parameters (that provide an estimate for the effective dimension
of the model). The DIC also clearly favors the Box-Cox-Power-Exponential model over the
competing approaches although it is also the model with the largest number of parameters.

When being interested in the predictive ability of distributional regression model, comparing
results based on predictive proper scoring rules (Gneiting et al., 2007) can be a valuable
alternative. Klein et al. (2015d) provide details on different scores for various types of
responses. Basically the goal of all specifications is to evaluate the predictive ability based
on rules that favor honest predictions while simultaneously taking sharpness (i.e. precision)
of the prediction into account. To obtain a truly predictive assessment, the scores will
usually be evaluated based on a cross validation approach which makes their computation
numerically demanding compared to information criteria and quantile residuals which can
be obtained from one single estimation run.
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Model DIC pd

N(µ, σ2) 232426.6 138.7
BCT(µ, σ, ν, τ) 231168.1 181.7
BCPE(µ, σ, ν, τ) 230938.6 189.7

Table 2: Deviance information criterion (DIC) together with estimated effective number
of parameters (pd) of the daily temperature models.

6 Empirical Analyses

6.1 Zugspitz daily temperature

From our previous considerations, we found that the Box-Cox-Power-Exponential model
provided the best fit for the Zugspitz daily temperature data. Estimated effects of this
model are shown in Figure 6. Note that all effects are shown on the scale of the predictor
and all estimates are based on all samples of the MCMC chains. Concerning possible shifts
of seasonal variability in the first row of Figure 6, the plots indicate that the two-dimensional
effect of the day of the year and time for parameter µ and σ is not very pronounced and
could be dropped in further analysis. Only for the skewness parameter ν the time-variation
of the seasonality seems to be more distinct. For the second and third row, additional to
the mean effect the 95% credible intervals are shown by the gray shaded areas. For all
distributional parameters, the effect of temperature differences Tt−Tt−1 is the largest. The
effect for parameter µ is increasing for negative differences, i.e., if it was warmer at day
t− 1, and is zero for positive differences. The effect for the scale parameter σ is decreasing,
i.e., uncertainty is increasing if the weather is getting colder. The effect on the skewness
parameter ν has a small positive peak for small differences and is about zero for larger
differences. The time-trend effect in the last row of Figure 6 is significantly increasing for
parameter µ, especially after the year of 1980. The increase is also significant for parameter
σ indicating higher variation of temperatures. Besides, the effect on the skewness parameter
ν is not significant, since the 95% credible intervals cover the zero line over the full time
period.

A more detailed picture of the temperature time trend is provided in Figure 7. The left
panel shows estimated 10%, 50%, 90% and 97.5% temperature quantiles of the Box-Cox
Power Exponential model. The quantiles are computed using the quantile function of the
Box-Cox Power Exponential distribution by calculating each distributional parameter for
each MCMC iteration and take the average over all iterations. Compared to the 20 years
empirical running quantiles, the model seems to nicely adapt to the distribution of the data.
The middle panel shows the estimated mean temperature trend together with 95% credible
intervals. The time trend is significantly increasing with a difference of about 1.6 ◦C. The
right panel of Figure 7 additionally shows the estimated slopes of the 10%, 50%, 90% and
97.5% temperature quantiles. The plot indicates that only for the lowest 10% temperatures
the time trend was decreasing from the beginning of the observational period. After 1980
all quantile curves show a positive slope, i.e., regardless of looking at cold or warm days,
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Figure 6: Estimated effects of the daily BCPE temperature model. 95% credible intervals
are shown in the middle and bottom row as gray shaded areas.

temperature seems to increase after 1980.

6.2 German extreme precipitation

In this example the focus is on the computation of the mean of the generalized Pareto
distribution and the corresponding 100 year return levels. As already mentioned in Sec-
tion 2.2, these quantities are transformations of the parameters of the distribution. Using
the distributional regression approach in combination with MCMC simulation, it is rela-
tively straightforward to provide correct inference for any desired quantity, e.g., the 100
year return levels. This results from the fact that all inferences are sampling based. Once
samples for all model parameters are available, we can determine samples also for all derived
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Figure 7: Estimated mean temperature trends of the daily BCPE temperature model. The
left panel shows the estimated 2.5%, 10%, 50%, 90% and 97.5% temperature quantiles of
the time trend, blue lines, together with the raw data, black lines. The middle panel shows
the mean time trend together with 95% credible intervals, gray shaded area. Estimated
slopes of corresponding quantiles are shown in the right panel.

Figure 8: Estimated effects on the mean of the generalized Pareto distribution of the
precipitation model.

quantities and base inferences on those.

The estimated effects on the mean of the GP distribution are shown in Figure 8. Note that
all effects are visualized using the same scale on the y-axis, such that the comparison of the
importance of individual effects is straightforward. The left panel shows the effect of altitude
on precipitation. The effect is increasing as expected and basically linear, i.e., a linear
instead of a spline representation of the function seems to be sufficient. The estimated time
trend in the middle panel shows two maxima around 1940 and 1980, however, no consistent
trend can be identified as the estimated function basically follows the estimated average
mean precipitation of 40mm. The spatially varying seasonal effect in the right panel has a
clear peak in late summer concerning the main effect represented by the black dashed line.
Moreover, considerable variation can be identified between north and south of Germany.
Some regions in the north obviously have the highest precipitation from Juli to September
which are most probably driven by extreme local events. The seasonal effect is also the
most important effect on extreme precipitation with the highest variation of about 14mm
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Figure 9: Estimated spatial effect, left panel, estimated maximum 100 year return levels,
right panel. The spatial effect is centered around the overall mean of 40mm, the 100 year
return levels are centered around the overall mean of 105mm of precipitation.

compared to the altitude effect with 4mm and the time trend with 3mm. The estimated
spatial effect is shown in Figure 9. Note that the effect is centered around the estimated
mean of 40mm of precipiation, i.e., blue colors represent areas with lower estimated mean
and red color areas with higher values. The importance of the effect is similar to the altitude
effect with a range of 4mm. The map shows that regions in the south of Germany that are
close to the mountains have a positive effect on mean precipitation and, similarly, regions
around the highest mountain of central Germany, the Brocken (51◦N, 10◦E; 1141.2m a.s.l.),
and in the east of the Brocken have positive effects. This reflects that regions in the north-
east have extreme local events driven by the season as shown in Figure 8, i.e., compared
to the north-west where the weather is more continuous. For example, in an extreme event
the area of Lindenberg (Brandenburg) 172mm of precipitation where measured in 1978, the
highest value in the data set. Finally the map of estimated 100 return levels is shown in the
right panel of Figure 8. Initially, the return levels are calculated for each day of the year,
afterwards, the maximum over the whole year yields the final return level map. Again note
that the return levels are centered around its mean of 111mm of precipitation and that the
range of the colorlegend is based on the 97% quantile of estimated return levels. The full
range of the maximum 100 year return levels is [90, 181]. Mostly because of the altitude
effect, the highest return levels can be identified in the mountainous regions in the south of
Germany as well as regions around the Brocken in the center and in the north-east.
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7 Summary and Conclusions

Distributional regression models as described in this tutorial are a flexible extension of
generalized additive models (Wood, 2006; Ruppert et al., 2003; Fahrmeir et al., 2013) that
allows to apply flexible, additive predictor structures not only on the mean but on potentially
all parameters of even complex response distributions. This idea has been introduced in
a penalized likelihood context by Rigby and Stasinopoulos (2005) as generalized additive
models for location, scale and shape (GAMLSS) and transferred to a Bayesian context in
Klein et al. (2015b,c). We prefer the notion of distributional regression over GAMLSS since
in many distributions the parameters are not or only very indirectly related to location or
scale of the distribution.

The main competitor to distributional regression in applied regression analyses is quantile
regression as also discussed in one of the contributions to this special issue. While the main
advantage of quantile regression is that one can avoid an explicit distributional assumption
for the response distribution which also alleviates the danger of model misspecification.
On the other hand, quantile regression requires strictly continuous responses while distri-
butional regression provides a convenient framework for continuous, discrete and mixed
discrete-continuous distributions. Furthermore, quantile regression typically faces the risk
of quantile crossing while distributional regression provides a coherent estimate for the com-
plete distribution of the response. A final advantage of distributional regression is that it
also facilitates the consideration of multivariate response structures (Klein et al., 2015a;
Klein and Kneib, 2016).

Considering Bayesian approaches to distributional regression based on MCMC simulations
is particularly attractive not only due to its flexibility, but due to the virtues of sampling
based inference. MCMC provides samples for all parameters of the distributional regression
model which can be transferred to samples for any quantity of interest that depends on these
parameters. In our application on extreme precipitation values, one such quantity were the
100 year return levels. Based on samples from these return levels, one can determine point
estimates as well as credible intervals without requiring asymptotic considerations.

A particular challenge of distributional regression is the interpretation of results, which
often can no longer be achieved in a ceteris paribus type fashion. As a consequence, design-
ing scenarios of interest for which covariate effects can be evaluated in combination with
carefully chosen visualisation tools is extremely important. In the future, we will work on
making such graphical tools more broably available and easily accessible.
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Abstract
Bayesian methods have become increasingly popular in the past two decades. With
the constant rise of computational power even very complex models can be estimated
on virtually any modern computer. Moreover, interest has shifted from conditional
mean models to probabilistic distributional models capturing location, scale, sha-
pe and other aspects of a response distribution, where covariate effects can have
flexible forms, e.g., linear, nonlinear, spatial or random effects. This tutorial paper
discusses how to select models in the Bayesian distributional regression setting, how
to monitor convergence of the Markov chains, evaluate relevance of effects using
simultaneous credible intervals and how to use simulation-based inference also for
quantities derived from the original model parameterisation. We exemplify the work
flow using daily weather data on (i) temperatures on Germany’s highest mountain
and (ii) extreme values of precipitation all over Germany.
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