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Processing Tree Models

Florian Wickelmaier
University of Tübingen

Achim Zeileis
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Abstract
In multinomial processing tree (MPT) models, individual di�erences between the par-

ticipants in a study lead to heterogeneity of the model parameters. While subject covari-
ates may explain these di�erences, it is often unknown in advance how the parameters
depend on the available covariates, that is, which variables play a role at all, interact,
or have a nonlinear influence, etc. Therefore, a new approach for capturing parameter
heterogeneity in MPT models is proposed based on the machine learning method MOB
for model-based recursive partitioning. This recursively partitions the covariate space,
leading to an MPT tree with subgroups that are directly interpretable in terms of e�ects
and interactions of the covariates. The pros and cons of MPT trees as a means of analyz-
ing the e�ects of covariates in MPT model parameters are discussed based on a simulation
experiment as well as on two empirical applications from memory research. Software that
implements MPT trees is provided via the mpttree function in the psychotree package
in R.

Keywords: multinomial processing tree, model-based recursive partitioning, parameter het-
erogeneity.

1. Introduction
Multinomial processing tree (MPT) models are a class of statistical models for categorical
data. These models are associated with a graph resembling a probability tree, the links being
the parameters, the leaves being the response categories. The path from the root to one of
the leaves represents the latent cognitive processing steps a participant executes to arrive at a
given response. Since they were introduced in a seminal article (Riefer and Batchelder 1988),
MPT models have been applied in numerous ways in cognitive psychology and in related
fields (Batchelder and Riefer 1999; Erdfelder, Auer, Hilbig, Aßfalg, Moshagen, and Nadarevic
2009).
As an example, consider an experimental paradigm prevalent in memory research for investi-
gating recognition memory. A recognition-memory experiment consists of two phases: In the
learning phase, participants are presented with a list of items to be memorized. In the test
phase, old items are presented intermixed with new distractor items, and participants have to
classify them as either old or new. Figure 1 displays the structure of the one-high-threshold
(1HT) model of recognition (Blackwell 1963; Swets 1961), possibly one of the simplest MPT
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Old Items New Items
r “old”

1 ≠ r
b “old”

1 ≠ b “new”

b “old”

1 ≠ b “new”

Figure 1: Graph of the one-high-threshold model for recognition memory (Blackwell 1963;
Swets 1961). Latent cognitive processes are recognition of an old item (r) and guessing that
a not recognized item is old (b).

models. According to this model, an old item is recognized as old with probability r, or, if
not recognized, it is guessed that it is old with probability b. Therefore, on the left-hand
side of the figure, there are two paths leading from the root of the tree to an old response.
Alternatively, displayed on the right-hand side of the figure, a new item can only be guessed
as being old with probability b since, according to the model assumptions, such an item never
exceeds the recognition threshold.
Frequently, it is the goal of a study to investigate the e�ects of explanatory variables on
the parameters of an MPT model. In order to do so, it is common practice to apply the
model to multiple groups defined by these variables and to test for e�ects (see, e. g., Riefer
and Batchelder 1991, who study age e�ects on memory processes). When the influence of
the covariates is linear, it is more powerful to model them directly via specific link functions
(Coolin, Erdfelder, Bernstein, Thornton, and Thornton 2015; Michalkiewicz, Coolin, and
Erdfelder 2013; Oravecz, Anders, and Batchelder 2015). More generally, covariate e�ects
represent a form of parameter heterogeneity: di�erent settings of covariates may lead to a
change in models parameters. Therefore, additional approaches to account for parameter
heterogeneity may be employed to study covariate e�ects; these include latent-class (Klauer
2006) and latent-trait MPT models (Klauer 2010; Smith and Batchelder 2010; Matzke, Dolan,
Batchelder, and Wagenmakers 2015). We will discuss these methods in more detail later and
compare them to our approach.
In this paper, we introduce MPT trees, a novel approach to incorporating covariates into MPT
models. The core of this approach is model-based recursive partitioning (Zeileis, Hothorn,
and Hornik 2008), a tree-based computational method from machine learning for detecting
parameter heterogeneity across covariates in a data-driven way. The result is a tree-based
classification of all individuals into groups where the MPT model parameters are homoge-
neous within each group. Thus, not only do MPT trees test for the presence of parameter
heterogeneity, but they also capture it (if any) in interpretable groups without the need for
pre-specification of the relevant covariates or their interactions.
For illustration, Figure 2 depicts an artificial data set following such a tree. In this data
set, the responses of all participants are represented by the 1HT model from Figure 1, but
the model parameters vary between three groups that are defined in terms of two covariates
x1 and x2. A conceivable situation would be a recognition experiment where x1 could be
an IQ test score (e. g., Fagan 1984) and x2 could be the amount of training with the task.
The interpretation would then be: The recognition probability r is lowest for participants
with lowest IQ scores as measured in x1 (below some threshold or cuto� ‹1), whereas those
with higher IQ scores have a higher recognition probability r, which even increases further
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x1

r = 0.45
b = 0.2

Æ ‹1 x2

r = 0.5
b = 0.2

Æ ‹2

r = 0.6
b = 0.2

> ‹2

> ‹1

Figure 2: Tree structure for the artificial data. Two covariates (x1, x2) along with their binary
cuto�s (‹1, ‹2) define three groups with specific r parameters of the one-high-threshold model.

with su�cient training x2 above some threshold ‹2. In this artificial data set, the guessing
probability b is the same across all groups.
Note that this MPT tree combines two levels of trees. The first level is the tree of the MPT
model (Figure 1). Its tree structure has to be specified in advance and is assumed to be
constant in the entire population; the parameters (r and b) associated with its links, however,
are allowed to vary and need to be estimated. The second level is the recursive partitioning
based on the subject covariates (Figure 2). It does not have to be specified in advance but is
“learned” based on the available data. Specifically, neither the correct order of the variables
x1 and x2 nor their cuto�s ‹1 and ‹2 have to be pre-specified but are estimated from the data
by model-based recursive partitioning.
The remainder of this paper is organized as follows: First, the steps of the model-based
recursive partitioning algorithm for MPT models are outlined. Next, the performance of the
method is investigated in a simulation study based on the artificial scenario from Figure 2.
Then, the use of recursive partitioning for investigating e�ects of covariates on cognitive
processes is illustrated with two examples from memory research. Finally, our approach
is discussed in the context of other methods for incorporating covariates or for detecting
parameter heterogeneity in MPT models.

2. Recursive partitioning based on MPT models
Model-based recursive partitioning (MOB; Zeileis et al. 2008) is a general approach to account
for heterogeneity in parametric models. The basic idea of MOB is that the fit of a model may
be improved by splitting the sample and fitting the model to subgroups. These subgroups
are formed automatically: the algorithm “learns” the optimal partitions using the covariates
available. Thus, by recursively partitioning the sample, MOB seeks to explain parameter
heterogeneity, which is also called parameter instability in the machine-learning context, by
means of main e�ects and interactions of subject covariates.
There already exist adaptations of the MOB algorithm to (multivariate) linear and generalized
linear models (Zeileis et al. 2008), to the Bradley-Terry-Luce choice model (Strobl, Wickel-
maier, and Zeileis 2011), and to the Rasch model and other psychometric models from item
response theory (Komboz, Strobl, and Zeileis 2016; Strobl, Kopf, and Zeileis 2015). Common
to these adaptations are the general steps of the MOB algorithm, which are, in summary, as
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follows:

1. Fit a parametric model to the current (sub-)sample, starting with the full sample, by
estimating its parameters via maximum likelihood.

2. Assess the stability of the model parameters with respect to each available covariate.
This is done using a parameter instability test based on the maximum likelihood scores.

3. If there is significant instability, select the covariate associated with the strongest in-
stability. Compute the cutpoint that leads to the greatest improvement in the model’s
likelihood. Split the sample.

4. Repeat steps 1 to 3 until there is no more significant parameter instability or until the
minimum sample size is reached.

Thus, all steps are based on the model’s likelihood, and the size of the resulting tree is
controlled by significance tests.
In this paper, we will introduce MPT trees, an adaptation of model-based recursive partition-
ing to MPT models. In the following, the steps of the algorithm specific to MPT models are
explained. For the general procedure of model-based recursive partitioning we refer to Zeileis
et al. (2008).

2.1. Likelihood of MPT models
The data consist of the response frequencies for each of i = 1, . . . , n participants in each of
j = 1, . . . , J response categories. Let y

i

= (y
ij

) be the vector of observed frequencies for
participant i in the response categories. Let � = (Ë

k

), k = 1, . . . , K, � œ [0, 1]K , be the
vector of MPT model parameters. The MPT model defines the probability of a response in
each category, p

j

= p
j

(�), as a function of the parameters. Assuming independence of the
responses, the data follow a multinomial distribution. The joint likelihood becomes

L(�; y1, . . . , y
n

) =
nŸ

i=1

Q

ay
i+!

JŸ

j=1

p
j

(�)yij

y
ij

!

R

b , (1)

where y
i+ =

q
J

j=1 y
ij

, and it only depends on the MPT model parameters �. The kernel of
the log-likelihood is proportional to

log L(�; y1, . . . , y
n

) Ã
nÿ

i=1

Jÿ

j=1
y

ij

log p
j

(�) =
nÿ

i=1
¸(�; y

i

), (2)

where ¸(�; y
i

) denotes the log-likelihood contribution of the i-th person.
For example, in the recognition-memory experiment introduced above, items are either old
or new, and participants have to classify them as old or new in a recognition test. Therefore,
the responses of an individual fall into one of J = 4 categories, resulting in a two-by-two table
of response frequencies:

Response
old new

Item old y
i1 y

i2
new y

i3 y
i4
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The 1HT model (Figure 1) has two parameters, � = (r, b), and the predicted probabilities
for each response category are

p1(�) = r + (1 ≠ r)b p2(�) = (1 ≠ r)(1 ≠ b)
p3(�) = b p4(�) = 1 ≠ b.

(3)

Many prevalent MPT models consist of multiple category systems, or subtrees. For example,
the 1HT model has two response categories for old items and two for new items. Thus,
technically, the corresponding likelihood is product (or joint) multinomial. For parameter
estimation and for the instability tests presented below, however, this distinction is irrelevant,
so we keep the simplified notation of J categories in total.

2.2. Maximum likelihood estimation

Maximum likelihood estimates of MPT model parameters are obtained by maximizing Equa-
tion 2 with respect to �,

�̂ = arg max
�

nÿ

i=1
¸(�; y

i

). (4)

One way of solving Equation 4 is by means of the expectation-maximization (EM) algorithm
described in Hu and Batchelder (1994). The idea is that parameter estimation would be
simplified if not only the category frequencies were known, but also the frequencies of every
single branch from the root to the leaves. The latter are missing, of course, but their expected
value can be computed given initial parameter values (E step). With the expected branch
frequencies at hand, the parameter values are updated (M step). These two steps are iterated
until the likelihood converges to a local maximum.
A prerequisite for the application of the EM algorithm is that the link probabilities in a
branch take the form

“
KŸ

k=1
Ë–

k

(1 ≠ Ë
k

)—, (5)

where –, — œ {0, 1} indicate the occurrence of either Ë
k

or 1 ≠ Ë
k

, and “ is a nonnegative
real number. Equation 5 is the structural restriction of the class of MPT models that can be
represented by binary trees. Other model types have to be suitably reparameterized for the
algorithm to apply.
An alternative way of solving Equation 4 is by directly maximizing the log-likelihood using
analytical gradients (Riefer and Batchelder 1988). When doing so, it is advantageous to
transform the parameters to the logit scale in order to remove the [0, 1] boundaries.
Interval estimation is straightforward since both parameter estimation methods lead to ana-
lytical expressions for the observed Fisher information or negative Hessian matrix (Hu and
Batchelder 1994, Equation 16; Riefer and Batchelder 1988, Equation 21). When working on
the logit scale, the information matrix may be obtained by the multivariate delta method
(Agresti 2002; Bishop, Fienberg, and Holland 1975; Grizzle, Starmer, and Koch 1969). The
approximate covariance matrix is available via the inverse information matrix.
Once the model is fit to the full sample, we want to test for parameter heterogeneity that can
be attributed to the covariates; this is described next.
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2.3. Detection of parameter instability
In the framework of model-based recursive partitioning, a test of parameter instability checks
if the model fit can be improved by splitting the sample according to some covariate X and
fitting the model to the subsamples. Under the null hypothesis of parameter homogeneity (or
stability), it is assumed that Equation 1 holds and thus the parameter vector is equal for all
participants,

H0 : �
i

= �0 (i = 1, . . . , n), (6)

where �
i

is the parameter vector of individual i. The alternative hypothesis is that the
parameter vector varies as a function of X with observations x1, . . . , x

n

,

H1 : �
i

= �(x
i

) (i = 1, . . . , n). (7)

The exact pattern of variation is usually unknown. For unordered categorical X, it is common
to test for di�erences in the parameter vector for all categories of X. For continuous and
ordinal X, one frequent pattern of interest is an abrupt change in the parameter vector at an
unknown cutpoint ‹,

Hú
1 : �

i

=
I

�(A) if x
i

Æ ‹,

�(B) if x
i

> ‹,
(8)

where �(A) ”= �(B) (Merkle and Zeileis 2013; Merkle, Fan, and Zeileis 2014). Possible exam-
ples of such a pattern include e�ects of age, expertise, intelligence, etc.
To test the above hypotheses, the parameter instability statistics employed here make use of
the individual contributions to the score function or subject-wise estimating function, s(�; y

i

),
and assess the deviations from its mean zero. For MPT models, due to the multinomial form
of the likelihood, the contribution of individual i to the score function is given by

s(�; y
i

) = ˆ¸(�; y
i

)
ˆ� =

Jÿ

j=1
y

ij

ˆ log p
j

ˆ� =
Jÿ

j=1

y
ij

p
j

(�)
ˆp

j

ˆ� . (9)

For example, in the 1HT model, the individual score contributions are determined by first
partially di�erentiating the probabilities in Equation 3 with respect to �; this yields

ˆp1
ˆ� =

A
1 ≠ b
1 ≠ r

B
ˆp2
ˆ� =

A
b ≠ 1
r ≠ 1

B

ˆp3
ˆ� =

A
0
1

B
ˆp4
ˆ� =

A
0

≠1

B

.

(10)

Second, substituting these terms into Equation 9 gives

s(�; y
i

) =

Q

ccca

y
i1(1 ≠ b)

r + (1 ≠ r)b + y
i2(b ≠ 1)

(1 ≠ r)(1 ≠ b) + y
i3 · 0 + y

i4 · 0

y
i1(1 ≠ r)

r + (1 ≠ r)b + y
i2(r ≠ 1)

(1 ≠ r)(1 ≠ b) + y
i3
b

≠ y
i4

1 ≠ b

R

dddb . (11)

The score contributions behave like residuals and are diagnostic of the model fit. Evaluation
of the score function for each individual at the joint maximum likelihood estimate �̂ measures
the extent to which the model maximizes each individual’s likelihood: Scores further from
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zero indicate that the model provides a poorer description of such individuals. The general
idea of the tests applied here is that under the null hypothesis of parameter homogeneity
(6), the individual score contributions, when ordered by any covariate X, fluctuate randomly
around zero. When parameters are not homogeneous across the entire sample, however, the
scores systematically depart from zero. To capture these deviations, the cumulative score
process

B(t; �̂) = Î≠1/2n≠1/2
Ân·tÊÿ

i=1
s(�̂; y(i)) (0 Æ t Æ 1), (12)

is employed, where Ân · tÊ is the integer part of n · t, Î is an estimate of the covariance matrix
of the scores, and y(i) denotes that y

i

has been ordered by X. Since the sampling distribution
of this process under the null hypothesis is known, critical values and p-values can be derived
either analytically or by simulation. The exact from of the test statistic depends on whether
the covariate is continuous, categorical, or ordinal.
The tests employed to detect parameter heterogeneity are generalized Lagrange multiplier
(LM) tests, also known as score tests. More background information on these tests than
provided here is included in several recent articles: Details of the parameter instability tests
are discussed by Zeileis and Hornik (2007), who show that they are not restricted to maximum
likelihood scores but also apply to other maximum-likelihood-type estimators (M-estimators),
like ordinary least squares. Details of the recursive application of these tests and of the model-
based recursive partitioning algorithm in general are given by Zeileis et al. (2008). Merkle
and Zeileis (2013) discuss the tests in the context of measurement invariance with respect
to structural equation models. Merkle et al. (2014) extend the results to ordered categorical
covariates.

2.4. Cutpoint location and recursive partitioning
When all available covariates have been tested for parameter instability using the procedure
outlined above and at least one test is significant, the MOB algorithm selects the variable that
induces the strongest instability (with the smallest p-value) in order to locate the cutpoint
for splitting the sample. The idea behind the estimation of the optimal cutpoint ‹ is to find
the value of the selected covariate with x

m

Æ ‹ and x
m+1 > ‹ that splits the current sample

such that the likelihood in the two subsamples

¸(�̂(A); y
i

, . . . , y
m

) + ¸(�̂(B); y
m+1, . . . , y

n

) (13)

is maximized. For unordered categorical covariates, all possible binary partitions are com-
puted and the one with the maximum segmented likelihood is chosen.
Once the optimal cutpoint is located and the sample is split, the instability tests are recursively
conducted in the two subsamples until there is no further significant instability. Within model-
based recursive partitioning, there are two built-in mechanisms that prevent inflation of the
type I error rate and, consequently, that a tree grows unwarrantedly large: (1) When testing
for instability in a subsample, Bonferroni correction is applied. Thus, instability tests become
increasingly strict with an increasing number of covariates. (2) Testing proceeds in a nested
fashion, that is, only if a test is significant in a subsample will testing continue in nested
subsamples. As a consequence of (1) and (2), a tree does not exceed the nominal significance
level – (Zeileis et al. 2008). We will address the statistical performance of the proposed
procedure in a simulation study presented next.
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3. Simulation study
This section describes a simulation study to investigate power, type I error rate, and clas-
sification accuracy of MPT trees. The focus of this simulation is restricted to one specific
MPT model that is observed under realistic magnitudes of parameter instability and moder-
ate sample sizes. More general simulation results have been reported elsewhere and include
power and type I error of score tests for measurement invariance in the context of structural
equation modeling (Merkle and Zeileis 2013; Merkle et al. 2014), performance of recursive par-
titioning and comparison to mixture models for linear regression (Frick, Strobl, and Zeileis
2014), performance of Rasch, partial credit, and rating scale trees for detecting di�erential
item functioning (Komboz et al. 2016; Strobl et al. 2015).

3.1. Simulation design and experimental settings

In order to simulate responses, the 1HT model (see Figure 1) is employed as the data-
generating process with group-specific r parameters and a constant b parameter, � =
(r

group

, b = 0.2) for group œ {1, 2, 3}, see Figure 2. Each virtual subject contributes 40
simulated responses (to 20 old and 20 new items). Three subject-specific covariates (x1, x2,
x3) are included that are independently uniformly distributed in the interval [≠1, 1]. The
interaction between x1 and x2 along with the corresponding binary cuto� values ‹1 and ‹2
defines three groups: x1 Æ ‹1 versus x1 > ‹1 · x2 Æ ‹2 versus x1 > ‹1 · x2 > ‹2. The noise
variable x3 is unrelated to the groups.
The magnitude of parameter instability is controlled by the deviation ” œ
{0, 0.01, 0.02, . . . , 0.20} from the average recognition probability r = 0.5. The group-specific
recognition probabilities are r1 = 0.5 ≠ ”/2, r2 = 0.5, and r3 = 0.5 + ”. Thus, ” = 0 cor-
responds to parameter homogeneity across the three groups with r1 = r2 = r3 = 0.5. The
setup with ” = 0.1 is shown in Figure 2. Moreover, three small to moderate sample sizes
n œ {80, 120, 200} are considered. We expect that increasing both the magnitude ” and the
number n of participants will lead to improved detection performance of the MPT trees.
Two scenarios are considered for the cuto�s ‹1 and ‹2: First, the median value of the dis-
tributions of x1 and x2 is used, that is, ‹1 = ‹2 = 0, so that on average the group sizes are
1/2, 1/4, and 1/4, respectively, of the total sample. Second, ‹1 = ≠0.5 and ‹2 = 0.5 are used
as the cuto�s resulting in group sizes of about 1/4, 9/16, and 3/16, respectively. Thus, in
the latter scenario, the parameter di�erences are harder to detect because the middle group
(with r2 = 0.5) is the largest and the deviating groups are smaller.
For benchmarking the power and the accuracy of MPT trees (see below for details on the
outcome measures), the frequently used likelihood ratio test (LRT) is employed as a reference
method. Because the LRT requires a pre-specified split into groups, we consider the common
strategy of splitting at the median of a relevant covariate. Here, we consider splitting either
x1 or x2 at their corresponding medians. Note that this gives the LRT a somewhat unfair
advantage, especially in the first scenario where the true cuto�s are at the median of zero.
Also, the irrelevant covariate x3 is not considered at all and no Bonferroni correction is applied
for aggregating multiple LRTs.
In summary, for each of the two cuto� scenarios and each combination of magnitude of
parameter instability and sample size, 2000 data sets are generated to compute the outcome
measures below for the MPT tree method, the LRT with splitting at the median of x1, and
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the LRT with splitting at the median of x2, respectively. All simulations were run in R using
software described in the “Computational details” section.

3.2. Outcome measures
Two kinds of outcome measures are considered: (1) the power with which the MPT tree
and the two LRTs reject the null hypothesis of parameter stability; (2) the accuracy with
which the true groups were recovered. For the MPT tree, the power is the proportion of
experiments in which the score test in the root node is significant for x1 or x2, that is, in
which the sample is split at least once. For comparison, the power of the two LRTs is the
proportion of experiments in which the null hypothesis of r

x1Æ0 = r
x1>0 or r

x2Æ0 = r
x2>0,

respectively, is rejected. Note that the hypothesized cuto� value of zero, the median of x1
and x2, either coincides with the true cuto� (first cuto� scenario) or di�ers (second cuto�
scenario).
The classification accuracy for MPT trees is assessed using the Cramér coe�cient of agree-
ment defined as the normalized ‰2 statistic of the crosstabulated true and predicted group
membership (Mirkin 2001). This takes a value of zero if the true and predicted groups are
uncorrelated, and a value of one if true and predicted groups essentially match. However,
unlike many other cluster indices (e. g., the Rand index), it does not penalize if some of the
groups are split up further. This property is particularly useful when assessing recursive par-
titions that might need several splits to form a certain group. Note that for the LRTs, we
do not simulate the Cramér coe�cient but simply determine its theoretical value assuming a
given cuto� of zero in either one of x1, x2, or x3 alone.

3.3. Results
Figure 3 displays the simulated power of the MPT tree in comparison to LRTs based on x1
or x2 as a function of the magnitude of parameter instability (”) and sample size (n). In
the first row, the results for the scenario are shown where the true cuto�s coincide with the
medians of x1 and x2, respectively. Thus, the LRT that splits at the median of x1 performs
best for all magnitudes and sample sizes as it tests for the correct split of the root node. The
MPT tree performs second best (except for very small magnitudes ”), although it neither
knows which variable (x1, x2 or x3) nor which cuto� point is correct. Furthermore, under
the null hypothesis of homogeneous parameters (” = 0), the MPT tree holds its nominal
significance level of 5%, although it is somewhat conservative, especially for small sample
sizes n, due to the asymptotic nature of the tests employed. Finally, the LRT that splits at
the median of x2 performs worst among the three methods despite using the correct split in
one of the relevant variables. In the second row, where the true cuto�s do not coincide with
the medians, the power of all methods goes down because the groups are more unbalanced
(see above) and, more importantly, the search for the correct variables and cuto�s in the MPT
tree pays o�. This advantage of the MPT tree over the LRTs becomes more pronounced for
larger magnitudes of parameter instability and larger sample size.
In summary, because the MPT tree always determines the cuto�s in a data-driven way, it
cannot profit from “knowing” the true cuto�s in contrast to the LRTs. Therefore, the latter
tests will have a power advantage over MPT trees if the true cuto� and the relevant variables
are used. Conversely, when the cuto�s are unknown, the MPT tree has an advantage over
LRTs, which depend on an often arbitrary choice of the cuto� (here, the median).
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Figure 3: Simulated power as a function of the magnitude of parameter instability (”), sample
size (n), and the method used to test for instability. For the likelihood ratio tests (LRT),
the median of x1 or x2, respectively, is used that either coincides with the true cuto� (upper
panel) or not (lower panel).

The second part of the results shows the accuracy of the MPT tree in recovering the true
partitions. Figure 4 displays the average Cramér coe�cient of agreement between true and
predicted group membership as a function of the magnitude of parameter instability (”) and
sample size (n). In both cuto� scenarios, the Cramér coe�cient of the MPT tree increases
with increasing parameter instability and sample size; however, it is generally somewhat lower
in the second scenario in the right panel. This is due to the fact that the groups 1 and 3, which
di�er from the middle group 2, are smaller and hence harder to detect. As a reference, both
panels show the theoretical Cramér coe�cient of the deterministic splits using the medians
of x1, x2, and x3, respectively. For the split in x3, this is generally 0 because this split is
completely unrelated to the true groups in either scenario. For a split at the median of x1 in
the first scenario, the Cramér coe�cient is 1 because this exactly catches the first split of the
tree (and ignoring the second split is not penalized by the Cramér coe�cient). However, if
the true cuto� in x1 di�ers from the median, the theoretical Cramér coe�cient drops to 1/3.
Similarly, the Cramér coe�cient for the deterministic split at the median of x2 yields 1/2 if
this coincides with the true cuto�, and 1/4 otherwise. Thus, in both scenarios, the Cramér
coe�cient of the MPT tree approaches the best possible value of 1 only for large ” and/or n;
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Figure 4: Average Cramér coe�cient of agreement between true and MPT-tree-predicted
group membership as a function of the magnitude of parameter instability (”) and sample
size (n). Horizontal lines indicate the Cramér coe�cient when splitting the sample along the
median of x1, x2, or x3, which may either be the true cuto� (left panel) or not (right panel).
As x3 is unrelated to the groups, its Cramér coe�cient is zero.

however, in the second scenario, this outperforms the deterministic splits already for values
of ” above around 0.1 (depending on the sample size).
In conclusion, these results show that subgroups previously defined on the covariates are
satisfactorily recovered by recursive partitioning based on an MPT model. In contrast to the
likelihood ratio test, neither the relevant covariates nor the cutpoints have to be known in
advance. A limitation of the results presented here is that they were obtained for a single
MPT model (the 1HT model) and two similar tree structures (cuto� scenarios). Nevertheless,
similar results can be obtained in other setups (see references cited above). Hence, we believe
that these insights contribute evidence that MPT trees constitute a useful tool for detecting
parameter heterogeneity in realistic settings.

4. Two applications
This section covers two applications of recursive partitioning based on MPT models. The
first analyzes a new data set for which the potential partitions were unknown a priori (as in
most applications) but were the primary research interest. The second is a reanalysis of a
published data set (Riefer, Knapp, Batchelder, Bamber, and Manifold 2002), where the focus
is on how well the MPT tree succeeds in uncovering the a priori hypothesized partitions.

4.1. Source monitoring

The first application considers a typical source monitoring experiment: Participants study
two lists of items as presented by either Source A or Source B. Afterwards, in a memory test,
participants are shown old and new items intermixed and asked to classify them as either A,
B, or new (N).
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Source A Items Source B Items New Items

D1

d1 A

1 ≠ d1
a A

1 ≠ a B

1 ≠ D1

b
g A

1 ≠ g B

1 ≠ b N

D2

d2 B

1 ≠ d2
a A

1 ≠ a B

1 ≠ D2
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1 ≠ g B

1 ≠ b N

b
g A

1 ≠ g B

1 ≠ b N

Figure 5: Graph of the MPT model for the source monitoring paradigm (Batchelder and Riefer
1990). Latent cognitive processes are detectability of Source A items (D1), detectability of
Source B items (D2), source discriminabilities for Source A (d1) and Source B items (d2), bias
for responding “old” to a nondetected item (b), guessing that a detected but nondiscriminated
item belongs to Source A (a), and guessing that the item is a Source A item (g).

Figure 5 displays the MPT model for the source monitoring paradigm by Batchelder and
Riefer (1990). To illustrate, consider the paths from the root to an A response for a Source A
item (left tree in the figure). With probability D1, a respondent detects an item as old. If, in
a second step, he or she is able to discriminate the item from a Source B item (d1), then the
response will correctly be A; else, if discrimination fails (1≠d1), a correct A response can only
be guessed with probability a. If the item was not detected as old in the first place (1 ≠ D1),
the response will be A only if there are both a response bias for “old” (b) and a guess for the
item being Source A (g). The remaining paths in the left tree lead to classification errors (B,
N). The middle and right trees in Figure 5 represent processing of Source B or new items,
respectively.
Such a source monitoring experiment was conducted at the Department of Psychology, Uni-
versity of Tübingen. The sample consisted of 128 participants (64 female) aged between 16
and 67 years. Two source conditions were used in the study phase: In the first one, respon-
dents had to read the presented items either quietly (think) or aloud (say). In the second one,
they wrote them down (write) or read them aloud (say). Items were presented on a computer
screen at a self-paced rate. In the final memory test, studied items were mixed with new
distractor items, and respondents had to classify them as either A, B, or new by pressing a
button on the screen.
The response frequencies are analyzed using the above MPT model for source monitoring
(Figure 5; Batchelder and Riefer 1990), where a = g is assumed for identifiability. In addition,
discriminability is assumed to be equal for both sources (d1 = d2). As a research question,
we investigate whether there are any e�ects of source condition, gender, or age on the model
parameters. The MPT tree uses a Bonferroni-corrected significance level of – = 0.05 and a
minimum number of five participants per node.
Figure 6 shows the tree resulting from recursive partitioning of the source monitoring MPT
model. The node numbers are labels assigned from left to right, starting from the top, used
to identify a given node. Table 1 displays the results of the parameter instability tests for
every node. In Node 1, the full sample, only source type is significant, S = 28.48, p < 0.001,
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Figure 6: Partitioned MPT model for source monitoring data indicating that parameters vary
with combinations of the covariates source type and age.

Sources Age Gender
Node S p S p S p

1 28.48 0.000 16.93 0.249 9.00 0.292
2 – – 20.77 0.043 2.84 0.924
3 – – 10.25 0.763 4.28 0.760
4 – – 8.59 0.822 5.46 0.593
5 – – 8.06 0.965 7.41 0.347

Table 1: Parameter instability test statistic (S) and Bonferroni-adjusted p-value for each
covariate per node (see Figure 6). Note: Significant test results are in bold face.

so it is selected for splitting; since it is a binary variable, no cutpoint has to be computed.
For the think–say subgroup in Node 2, age is selected for splitting, S = 20.77, p = 0.043,
and the optimal cutpoint is found at age 46. No further parameter instability is detected in
the subgroups, so the procedure stops. The fact that gender is never selected as the splitting
variable suggests that there is no significant parameter heterogeneity with respect to gender.
The resulting three sets of parameter estimates reflect the combined influence of the covariates.
For the think–say sources (Nodes 3 and 4 in Figure 6), D2 exceeds D1 indicating an advantage
of say items over think items with respect to detectability. For the write–say sources (Node 5),
D2 and D1 are about the same indicating that for these sources no such advantage exists.
The think–say subgroup is further split by age with the older participants having lower values
on D1 and d, which suggests lower detectability of think items and lower discriminability as
compared to the younger participants. This age e�ect seems to depend on the type of sources
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c
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1 ≠ c
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1 ≠ u E3

1 ≠ u
u E3

1 ≠ u E4

Figure 7: Graph of the storage-retrieval model for pair clustering (Batchelder and Riefer
1986). Latent cognitive processes are clustering of a pair (c), retrieval of a pair (r), and
storage/retrieval of a single item (u).

as there is no such e�ect for the write–say sources. In addition, there are only small e�ects
for the bias parameters b and g, which are psychologically less interesting in this application.

4.2. Storage-retrieval model for pair-clustering data
Riefer et al. (2002) report a study on memory deficits in schizophrenic (n = 29) and organic
alcoholic (n = 21) patients, who were compared to two matched control groups (n = 25, n =
21). Participants were presented with 20 pairs of semantically related words. In a subsequent
memory test, they freely recalled the presented words. This procedure was repeated for a
total of six study and test trials. Responses were classified into four categories: each pair
is recalled adjacently (E1), each pair is recalled non-adjacently (E2), one word in a pair is
recalled (E3), neither word in a pair is recalled (E4). Riefer et al. (2002) analyzed the data
using the storage-retrieval model for pair clustering (Batchelder and Riefer 1986) displayed in
Figure 7. This model aims at separately measuring storage and retrieval capacities of episodic
memory by its parameters c and r.
Figure 8 shows the results of the recursive partitioning based on the storage-retrieval model.
Table 2 contains the parameter estimates associated with the end nodes of the MPT tree. The
first split separates the two patient and control groups. In the control groups, the parameters
improve with repeated presentation of the items: In Node 5, trial is selected as splitting
variable, and the optimal cutpoint is Æ 2, > 2. Within the Æ 2 partition, there is again a
split into Æ 1, > 1. All three parameters constantly increase for one, two, and more than
two presentations; the increase is particularly pronounced for the r parameter. The patient
groups, on the other hand, do not improve to the same extent. Indeed, their improvement
over trials is so weak that it does not attain significance. Neither storage (c) nor retrieval
(r) parameters for these groups on average reach the level of the control groups. Marginally
significant (Node 2) is the di�erence between schizophrenic and organic alcoholic patients:
While these groups are comparably weak at storing new information, the retrieval is even
more impaired in the organic alcoholic patients. The results of our MPT tree analysis of the
data are consistent with the findings in Riefer et al. (2002). One of the main conclusions
is that alcoholic patients with organic brain damage exhibit essentially no improvement in
retrieval over trials. Schizophrenic patients improve, albeit less than the control patients, in
both storage and retrieval capacities.
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Figure 8: Partitioned storage-retrieval model for pair-clustering data indicating that param-
eters vary with combinations of the covariates patient group and trial number.

Node c r u

3 0.46 0.47 0.42
4 0.45 0.24 0.32
7 0.37 0.27 0.31
8 0.43 0.56 0.45
9 0.60 0.83 0.58

Table 2: Maximum likelihood estimates of storage-retrieval model parameters associated with
the end nodes of the MPT tree in Figure 8.

Other than in the first application, partitioning is done here between observations, not be-
tween participants. Each participant contributes six response vectors, one for each trial, to
the data set. Consequently, responses from the same participant may appear in more than a
single end node. In order to account for the clustering of the responses contributed by the
same person, a clustered covariance matrix estimate Î for the maximum likelihood scores in
Equation 12 is employed in the instability tests. Generally, in situations with clustered data,
the parameter instability tests within the tree should be considered with care. In the present
application, the resulting tree structure is well in line with the hypothesized e�ects and the
results of previous analyses (Riefer et al. 2002).
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5. Discussion

We introduce MPT trees as a tool for investigating the e�ects of covariates on MPT model
parameters. The core of MPT trees is model-based recursive partitioning (MOB), which
recursively searches for covariates that induce parameter heterogeneity. When such a variable
is found, an optimal cutpoint is located and the sample is split. As a result, groups of
participants are established with (approximately) the same model parameters. As has been
illustrated by simulation and in the application examples, the groups do not have to be
known beforehand, combinations of relevant covariates are identified, and interactions between
covariates are incorporated automatically if the data demand them. The general idea of
MOB is not restricted to MPT models but has proved useful in other areas of psychological
modeling (Merkle and Zeileis 2013; Strobl, Kopf, and Zeileis 2015; Strobl, Wickelmaier, and
Zeileis 2011). Therefore, it seems promising to further extend it to models where individual
di�erences in parameters due to covariate e�ects need to be accounted for.
There are a number of approaches that partly share the same goals with MPT trees, that is,
accounting for individual di�erences in model parameters by covariate e�ects or explaining
parameter heterogeneity in general. Most notably, such approaches include latent-class MPT
models, latent-trait MPT models with random subject e�ects, and fully parameterized MPT
models with covariates as fixed e�ects. In the remainder, similarities and di�erences of these
methods to MPT trees will be discussed.
MPT trees share similarities with latent-class MPT models (Klauer 2006). As with latent-
class models, the sample is partitioned into a discrete number of groups within each of which
parameter homogeneity holds, while between groups parameters di�er. The di�erence be-
tween these two approaches to parameter heterogeneity is that latent-class models identify a
previously specified number of groups on the basis of the response variables only. MPT trees,
on the other hand, identify an unknown number of groups based on splits in the available
covariates. In doing so, the groups become immediately interpretable in terms of covariate
e�ects and interactions. A caveat is that in MPT trees the parameter heterogeneity is entirely
attributed to covariate e�ects. Thus, without predictive covariates, heterogeneity might go
unnoticed. As latent-class MPT models, MPT trees assume homogeneity across items. This
is sometimes considered a less problematic assumption than the assumption of subject homo-
geneity (Klauer 2006); not least because the item material can be experimentally controlled,
whereas di�erences between participants in cognitive processes are often the main focus of
the study.
In contrast to models with a discrete number of classes, random e�ects models represent
heterogeneity in a continuous way. The beta MPT model (Smith and Batchelder 2010) uses
independent beta hyperdistributions for the MPT parameters to account for individual dif-
ferences. Similarly, the latent-trait MPT model (Klauer 2010) uses probit-transformed mul-
tivariate normal hyperdistributions to represent parameter heterogeneity induced by persons
and accounts for correlation between parameters. Both models assume homogeneity of items
but can be extended to deal with heterogeneity of persons and items. The crossed random
e�ects extension of the latent-trait MPT model (Matzke et al. 2015) accounts for both sources
of parameter heterogeneity simultaneously. For these random e�ects models, parameter es-
timation and hypothesis testing is carried out in a Bayesian framework using Markov chain
Monte Carlo sampling. Whereas random e�ects models treat parameter heterogeneity by
introducing nuisance variables and assumptions about their distributions, MPT trees seek to
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explain heterogeneity by covariate e�ects and interactions.
Alternatively to MPT trees, the e�ects of covariates can be directly incorporated as fixed
e�ects into a parametric model using a specific link function that relates a linear predictor to
model parameters. Examples of such an approach include models with probit link function in
cultural consensus theory (Oravecz et al. 2015), logit-link MPT models (Coolin et al. 2015;
Coolin, Erdfelder, Bernstein, Thornton, and Thornton 2016; Michalkiewicz et al. 2013), and
their hierarchical extensions (Arnold, Bayen, and Böhm 2014; Arnold, Bayen, and Smith 2015;
Michalkiewicz, Arden, and Erdfelder 2016a; Michalkiewicz, Minich, and Erdfelder 2016b).
Such models will have high power for detecting covariate e�ects if the model specification
matches the true data-generating process. The main advantage of MPT trees over direct
modeling becomes apparent when such a functional form of the covariate e�ects cannot be
justified or is unknown a priori: Because of its semi-parametric nature, an MPT tree is
able to detect even nonlinear e�ects and interactions between covariates without the need
of a fully parameterized model. This flexibility with respect to the functional form and
its straightforward graphical representation make MPT trees a useful tool for analyzing the
e�ects of covariates in MPT models.
To summarize, recent methodological, statistical, and computational advances have produced
a diversity of methods that account for parameter heterogeneity in MPT models. These
methods can be broadly distinguished by whether (1) the heterogeneity-inducing variables
are observed and (2) the form of the influence of these variables on the parameters are
known. If the relevant variables are not observed, latent class and latent trait MPT models
are promising candidates for capturing unobserved heterogeneity. If the variables are observed
and the form of their influence is known, fully parameterized MPT models are applicable. If,
however, the relevant variables are observed (plus potentially many irrelevant variables) and
the form of their influence is unknown, MPT trees provide an elegant approach to detecting
and explaining heterogeneity by means of subject covariates.

Computational details
Our results were obtained using R 3.3.1 (R Core Team 2016) and the package psychotree 0.15-
1 (Zeileis, Strobl, Wickelmaier, Komboz, and Kopf 2016a), which implements MPT trees as
introduced in this manuscript. It relies on packages partykit 1.1-1 (Hothorn and Zeileis 2015)
for recursive partitioning and psychotools 0.4-2 (Zeileis, Strobl, Wickelmaier, Komboz, and
Kopf 2016), which also contains the data for the source monitoring and the memory-deficits
examples. In addition, for the simulation study, mpt 0.5-3 (Wickelmaier and Zeileis 2011) was
used. R itself and all packages used are freely available under the terms of the General Public
License from the Comprehensive R Archive Network (https://CRAN.R-project.org/). Code
for replicating our analyses is available in the psychotree package via example("mpttree",

package = "psychotree").
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Cutting fertility? The e↵ect of Cesarean deliveries on subsequent fertility and
maternal labor supply

2016-13 Wolfgang Frimmel, Martin Halla, Rudolf Winter-Ebmer: How does
parental divorce a↵ect children’s long-term outcomes?

http://eeecon.uibk.ac.at/wopec/
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-26
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-26
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-25
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-24
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-24
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-23
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-23
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-22
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-21
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-21
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-19
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-18
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-18
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-17
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-17
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-14
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-14
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-13
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-13


2016-12 Michael Kirchler, Stefan Palan: Immaterial and monetary gifts in econo-
mic transactions. Evidence from the field

2016-11 Michel Philipp, Achim Zeileis, Carolin Strobl: A toolkit for stability
assessment of tree-based learners

2016-10 Loukas Balafoutas, Brent J. Davis, Matthias Sutter: A�rmative ac-
tion or just discrimination? A study on the endogenous emergence of quotas
forthcoming in Journal of Economic Behavior and Organization

2016-09 Loukas Balafoutas, Helena Fornwagner: The limits of guilt

2016-08 Markus Dabernig, Georg J. Mayr, Jakob W. Messner, Achim Zeileis:
Spatial ensemble post-processing with standardized anomalies

2016-07 Reto Stau↵er, Jakob W. Messner, Georg J. Mayr, Nikolaus Umlauf,
Achim Zeileis: Spatio-temporal precipitation climatology over complex ter-
rain using a censored additive regression model

2016-06 Michael Razen, Jürgen Huber, Michael Kirchler: Cash inflow and tra-
ding horizon in asset markets

2016-05 Ting Wang, Carolin Strobl, Achim Zeileis, Edgar C. Merkle: Score-
based tests of di↵erential item functioning in the two-parameter model

2016-04 Jakob W. Messner, Georg J. Mayr, Achim Zeileis: Non-homogeneous
boosting for predictor selection in ensemble post-processing

2016-03 Dietmar Fehr, Matthias Sutter: Gossip and the e�ciency of interactions

2016-02 Michael Kirchler, Florian Lindner, Utz Weitzel: Rankings and risk-
taking in the finance industry

2016-01 Sibylle Puntscher, Janette Walde, Gottfried Tappeiner: Do methodical
traps lead to wrong development strategies for welfare? A multilevel approach
considering heterogeneity across industrialized and developing countries

2015-16 Niall Flynn, Christopher Kah, Rudolf Kerschbamer: Vickrey Auction
vs BDM: Di↵erence in bidding behaviour and the impact of other-regarding
motives

2015-15 Christopher Kah, Markus Walzl: Stochastic stability in a learning dyna-
mic with best response to noisy play

2015-14 Matthias Siller, Christoph Hauser, Janette Walde, Gottfried Tapp-
einer:Measuring regional innovation in one dimension: More lost than gained?

2015-13 Christoph Hauser, Gottfried Tappeiner, Janette Walde: The roots of
regional trust

http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-10
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-10
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-09
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-08
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-07
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-07
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-06
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-06
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-05
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-05
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-04
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-04
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-03
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-02
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-02
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-01
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-01
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-01
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-14
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-13
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2015-13


2015-12 Christoph Hauser: E↵ects of employee social capital on wage satisfaction,
job satisfaction and organizational commitment
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Abstract
In multinomial processing tree (MPT) models, individual di↵erences between the
participants in a study lead to heterogeneity of the model parameters. While sub-
ject covariates may explain these di↵erences, it is often unknown in advance how
the parameters depend on the available covariates, that is, which variables play a
role at all, interact, or have a nonlinear influence, etc. Therefore, a new approach
for capturing parameter heterogeneity in MPT models is proposed based on the
machine learning method MOB for model-based recursive partitioning. This recur-
sively partitions the covariate space, leading to an MPT tree with subgroups that
are directly interpretable in terms of e↵ects and interactions of the covariates. The
pros and cons of MPT trees as a means of analyzing the e↵ects of covariates in MPT
model parameters are discussed based on a simulation experiment as well as on two
empirical applications from memory research. Software that implements MPT trees
is provided via the mpttree function in the psychotree package in R.
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