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Abstract
Cognitive diagnosis models (CDMs) are an increasingly popular method to assess

mastery or nonmastery of a set of fine-grained abilities in educational or psychological
assessments. Several inference techniques are available to quantify the uncertainty of
model parameter estimates, to compare di�erent versions of CDMs or to check model
assumptions. However, they require a precise estimation of the standard errors (or the
entire covariance matrix) of the model parameter estimates. In this article, it is shown
analytically that the currently widely used form of calculation leads to underestimated
standard errors because it only includes the items parameters, but omits the parameters
for the ability distribution. In a simulation study, we demonstrate that including those
parameters in the computation of the covariance matrix consistently improves the quality
of the standard errors. The practical importance of this finding is discussed and illustrated
using a real data example.

Keywords: cognitive diagnosis model, G-DINA, standard errors, information matrix.

1. Introduction
Cognitive diagnosis models (CDMs) are restricted latent class models that can be used to
analyze response data from educational or psychological tests. In the educational context,
they are becoming a popular method for measuring mastery or nonmastery of a set of fine-
grained abilities (called attributes) that can be used, for example, to support teachers to
recognize strengths and weaknesses of students. Lee, Park, and Taylan (2011) and Li (2011)
are examples of cognitive diagnostic analyses of mathematics and language skills in large-scale
assessments. However, the method has also been suggested to identify the presence or absence
of psychological disorders (de la Torre, van der Ark, and Rossi 2015; Templin and Henson
2006), or can be used for a detailed measurement of fluid intelligence using abstract reasoning
tasks (Yang and Embretson 2007; Rupp, Templin, and Henson 2010).
The field of cognitive diagnostic assessments has also become a popular area for methodolog-
ical research over the past 20 years. Many di�erent versions of CDMs have been proposed
to analyze responses from tests with various characteristics (e.g., models for dichotomous
and polytomous responses, compensatory and noncompensatory processes). See Rupp et al.
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(2010) for a taxonomy of CDMs. Many of these models can be subsumed within a more
general framework, such as the generalized deterministic input, noisy “and” gate (G-DINA;
de la Torre 2011) model, the log-linear CDM (LCDM; Henson, Templin, and Willse 2009),
or the general diagnostic model (GDM; von Davier 2008). Aside from Bayesian approaches,
which are presented in the literature for di�erent versions of CDMs (see e.g., Culpepper
2015), the model parameters are usually estimated via marginal maximum likelihood esti-
mation (MMLE) using, for example, the EM algorithm (Dempster, Laird, and Rubin 1977;
McLachlan and Krishnan 2007). In the marginal formulation of the model, a probability
distribution that models the attribute space is imposed in conjunction with the traditional
item response function, that models the conditional probability of a correct response given
the attributes.
An important step of any practical analysis is to assess the uncertainty of the estimated model
parameters using confidence intervals or significance tests. Furthermore, several techniques
are available to investigate the model fit or to check the model assumptions of a CDM,
including tests for (item-level) model comparisons (de la Torre and Lee 2013) and to detect
di�erential item functioning (Hou, de la Torre, and Nandakumar 2014). These methods
require a precise estimation of the model parameters and their standard errors (or the entire
covariance matrix).
However, according to the CDM literature (see e.g., Chen and de la Torre 2013; George
2013; Rojas 2013; Song, Wang, Dai, and Ding 2012; de la Torre 2009, 2011) and open source
software implementations (e.g., in the R package cdm, version 4.991-1), it is common to
compute the standard errors only for the parameters which are used to specify the item
response function while ignoring the parameters used to specify the joint distribution of the
attributes. Consequently, this approach is frequently applied in substantive as well as in many
methodological research applications.
Unfortunately, this widely used approach can lead to underestimated standard errors, as we
will demonstrate in this paper. The aim of this article is to provide detailed guidance on how
standard errors for cognitive diagnosis models should be computed correctly. In addition to
analytic arguments, we will investigate the quality of the standard errors using simulations.
The severity of the underestimation varies considerably depending on some known factors
(e.g., test length and number of attributes in the assessment), as well as unknown factors
(e.g., parameters of the item response function and distribution of the attributes). Although
this may seem negligible in absolute values, in many situations the underestimation seriously
deteriorates the quality of confidence intervals and statistical tests. Several studies in the field
of item response theory (IRT) have demonstrated the influence of the estimation approach on
the quality of procedures that require a covariance matrix. Woods, Cai, and Wang (2012),
for example, found better controlled Type I error in the Wald test to detect di�erential item
functioning in the Rasch model if the covariance matrix was computed using the supplemented
EM algorithm (Cai 2008).
Other statistical issues might also cause biases in standard errors for CDMs when using
MMLE. Similar to traditional latent class analysis, for example, parameter estimates some-
times converge towards the boundary of the parameter space for small data sets. This causes
numerical problems in the calculation of the information matrix, which is inverted to get the
covariance matrix. Posterior mode (PM) estimation has been suggested to overcome these
problems (DeCarlo 2011; Garre and Vermunt 2006). However, in the CDM literature and in
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some frequently used software packages, the traditional maximum likelihood (ML) estimation
is prevalent. Therefore, we will focus on the estimation of standard errors in this framework
for this article.
The rest of the article is organized as follows. Section 2 contains a short formal introduction
of CDMs before the correct estimation of the standard errors is discussed in detail. Later
in the Section, the G-DINA model will be introduced for the remaining aspects discussed in
the article. In Section 3, the quality of the standard errors is investigated using simulation
studies and a real data example. Section 4 concludes with a discussion. To simplify notation
and language, we will focus on CDMs for dichotomous responses in the context of educational
assessments for the rest of the article. Please note, however, that the calculation of the
standard errors described here holds for all types of CDMs estimated via MMLE.

2. Cognitive diagnosis models
The primary goal in cognitive diagnosis modeling is to infer mastery or nonmastery of K

attributes from the responses of each individual to J items in an assessment. For this task
a J ◊ K Q-matrix (Tatsuoka 1983) must be specified to identify the cognitive specification
of the items, where Q = {qjk} and qjk = 1 if attribute k (k = 1, . . . , K) is required to solve
item j (j = 1, . . . , J), and 0 otherwise. The Q-matrix requires domain-specific knowledge,
and should ideally be specified together with experts from the field for which the assessment
will be needed.
Let Xi = {Xij} be the binary response pattern of individual i (i = 1, . . . , N). The conditional
probability of a correct response to item j given the unobserved attribute profile ↵i = {–ik}
is parametrized using a specific item response function, denoted by Pj(↵i) = Pr(Xij = 1|↵i).
Furthermore, let �j denote the vector of all parameters used to specify Pj(↵i) and, let � =
(�1, . . . , �J)€ denote the vector of parameters that contains all item parameters. For reasons of
consistency, it is usually suggested to estimate � and ↵i using a marginal maximum likelihood
approach (de la Torre 2009; Neyman and Scott 1948). The marginal probability is given by
the sum over all L = 2K possible attribute patterns, called latent classes:

Pr(Xi = xi) =
Lÿ

l=1
p(↵l) · Pr(Xi = xi|↵l),

where Pr(Xi = xi|↵l) =
rJ

j=1 Pj(↵l)xij [1 ≠ Pj(↵l)]1≠xij .
A distribution p(↵l) is imposed to specify a prior probability for each latent class. Let ⇡

be the vector of all parameters used in the model that specifies p(↵l). For this article, we
choose a saturated model by estimating a probability fil = p(↵l) for each latent class, where
fiL = 1 ≠

qL≠1
l=1 fil. Di�erent models can be assumed to reduce the number of parameters (de

la Torre and Douglas 2004; Rupp et al. 2010).
Thus, let # = (�,⇡)€ be the complete vector of all model parameters of a CDM, and further
p = dim(�) and q = dim(⇡). The marginal log-likelihood that is maximized to estimate #

given the data sample X = {xi} for individuals i = 1, . . . , N , is given by

¸(#;X) = log [L(#;X)] = log
NŸ

i=1

Lÿ

l=1
fil · Pr(Xi = xi|↵l),



4 On the Estimation of Standard Errors in Cognitive Diagnosis Models

and can be maximized using the EM algorithm as described in de la Torre (2009). The
estimation procedure provides the posterior probability for each latent class, „Pr(↵l|xi), that
can be used to find ⇡̂ and the attribute profiles ‚

↵i. However, the aim of this article is to
discuss the estimation of standard errors for the estimated model parameters ‚

#, which will
be the focus of the next section.

2.1. Theory and estimation of standard errors

The standard errors of the estimated model parameters ‚
# =

1
‚
�,

‚
⇡

2€
can be computed as the

square root of the diagonal elements of the covariance matrix of ‚
#. Regarding the two types

of parameters, � and ⇡, the covariance matrix of ‚
# can be divided into four blocks:

Cov( ‚
#) = V# =

A
V� V�,⇡

V⇡,� V⇡

B

,

where V� = Cov(‚
�) is the covariance matrix of the parameters used to specify the item

response function, V⇡ = Cov(‚
⇡) is the covariance matrix of the parameters used to specify

the distribution of the latent classes and V�,⇡ = V

€
⇡,� = Cov(‚

�,

‚
⇡) is the covariance matrix

between the two types of parameters.

Complete and incomplete information matrix

The (asymptotic) covariance matrix of ‚
# is equal to the inverse of the information matrix,

V# = I≠1
# , which is defined as

I# = E

Ë
Â(#)Â(#)€

È
, (1)

where

Â(#) =
!
Â(�), Â(⇡)

"€ =
A

ˆ¸(#;x)
ˆ”1

, . . . ,

ˆ¸(#;x)
ˆ”p

,

ˆ¸(#;x)
ˆfi1

, . . . ,

ˆ¸(#;x)
ˆfiq

B€

is the score function (i.e., the partial derivatives of the log-likelihood with respect to all model
parameters).
Similar to the covariance matrix, the information matrix can be divided into four blocks:

I# =
A

I� I�,⇡

I⇡,� I⇡

B

= E

CA
Â(�)Â(�)€

Â(�)Â(⇡)€

Â(⇡)Â(�)€
Â(⇡)Â(⇡)€

BD

,

where I� is the information matrix for the parameters used to specify the item response
function, I⇡ is the information matrix for the parameters used to specify the distribution of
the latent classes and I�,⇡ = I€

⇡,� is the information matrix for the two types of parameters.
In many practical applications (e.g., tests for di�erential item functioning) researchers are
primarily interested in the parameters �, and thus they incorrectly compute the covariance
matrix for ‚

� via the inverse of the incomplete information matrix I�. This approach, however,
considers only a submatrix of the complete information matrix including all model parameters
I#. It is important to note that, since � and ⇡ are generally not mutually independent in
CDMs (i.e., I�,⇡ = I€

⇡,� ”= 0), inverting the incomplete information matrix I� systematically
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underestimates the standard errors for ‚
�. In some cases, only the item-wise information

matrix I�j (a submatrix of I�) is computed and inverted to get the covariance matrix of
the parameter vector �j . However, similar to traditional IRT models (Yuan, Cheng, and
Patton 2014), I� is not block-diagonal. And thus, inverting the item-wise information matrix
underestimates the standard errors even stronger compared to the incomplete information
matrix approach.
The above statement can be derived in a formal way using matrix algebra. Let (I�)≠1 be
the covariance of ‚

�, based on the incomplete information matrix and let V� be the covariance
of ‚

�, based on the complete information matrix. From blockwise matrix inversion (see e.g.,
Banerjee and Roy 2014), it follows, that

V� = (I�)≠1 + �, (2)

with � = (I�)≠1I�,⇡V⇡I⇡,�(I�)≠1. If the inverse of I# exists1 and I�,⇡ = I€
⇡,� ”= 0, then the

diagonal elements of all terms in (2) are positive (see Appendix A), which implies,
Ò#

V�
$
r,r

>

Ò#
(I�)≠1$

r,r
r = 1, . . . , p.

This means that the standard errors of the estimated parameters ‚
� are consistently underes-

timated if the incomplete or the item-wise – instead of the complete – information matrix is
used. Later, in Section 3, we will demonstrate by means of simulations that standard errors
computed using the complete information matrix are of better quality. But first, we will
discuss two important techniques to estimate the information matrix.

Estimating the information matrix and standard errors

Computing the (expected) information matrix by evaluating the expected value at the max-
imum likelihood estimate is infeasible for large assessments. The expectation must be taken
over the support of the random response vector xi, which becomes very large even if J (the
number of items) is only moderately large (e.g., J = 25) and computation becomes very slow
due to memory limitation.
Thus, the information matrix is often estimated by the empirical counterpart of Equation 1,
given by

J#,OP G = 1
N

C
Nÿ

i=1
Â(#;xi)Â(#;xi)€

D -----
Ë=‚Ë

, (3)

also known as the “outer product of gradients” (OPG) estimator, where Â(#;xi) is the con-
tribution of individual i to the score function.
Another estimator follows from the fact that under the true parameter values and standard
regularity conditions the information matrix (as defined in Equation 1) is equivalent to the
expected value of the negative Hessian matrix of the log-likelihood. Thus, the information
matrix may also be estimated via

J#,Hess = ≠ 1
N

C
Nÿ

i=1

ˆ

2
¸(#;xi)

ˆ#ˆ#

€

D -----
Ë=‚Ë

. (4)

1The inverse exists in many practical cases. However, it does not exist, e.g., when the parameters lie at
the boundary of the parameter space (but estimating standard errors for such parameters is not meaningful
anyway), or when the latent classes are not completely identified by the items in the test.
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In practice, however, (3) and (4) are evaluated at the estimated parameter values and, thus,
the two estimators di�er by

J#,Hess ≠ J#,OP G = 1
N

C
Nÿ

i=1

1
L(#;xi)

ˆ

2
L(#;xi)

ˆ#ˆ#

€

D -----
Ë=‚Ë

.

Often (3) is easier to compute, but (4) promises a better finite sample approximation of the
information matrix (McLachlan and Krishnan 2007).
From the above definitions, the standard error for the parameter Ër (r = 1, . . . , p + q), can
be computed via the inverse of the complete information matrix, using

‚se(‚
Ër) =

Ò#
(J#,OP G)≠1$

r,r
or ‚se(‚

Ër) =
Ò#

(J#,Hess)≠1$
r,r

,

estimated via the outer-products of gradients or the Hessian matrix, respectively. Since the
di�erences between the OPG and the Hessian approach turned out to be relatively small for
simple CDMs (results not shown), we will only consider the OPG estimator for the rest of
the article.
In Section 3, the improvement of the quality of the standard errors by using the inverse of
the complete information matrix will be illustrated using three specific versions of CDMs.
Therefore, we will briefly introduce the generalized DINA model framework proposed by de
la Torre (2011), which covers other CDMs as special cases. For a comprehensive description
of the framework, its relation to other general CDMs and parameter estimation, we refer the
reader to the original article.

2.2. The G-DINA model
A comprehensive and very flexible version of a CDM is the generalized deterministic input,
noisy “and” gate (G-DINA) model (de la Torre 2011). Due to its general formulation, it
includes many other (more restrictive) CDMs as special cases.
For each item in the assessment, the individuals are separated into 2Kú

j latent groups, where
K

ú
j is the number of attributes required by item j (i.e., the sum of the jth row in the Q-

matrix). Presence or absence of all the other attributes does not a�ect the group membership
of an individual. Consequently, the attribute vector ↵i can be reduced to the attributes
required by the particular item.
Let ↵

ú
ij = (–i1, . . . , –iKú

j
) denote the reduced attribute vector of individual i for item j.

The conditional probability to answer item j correctly is then defined by the item response
function

Pj(↵ú
ij) = g

≠1

Q

a
”j0 +

Kú
jÿ

k=1
”jk–ik +

Kú
j ≠1ÿ

k=1

Kú
jÿ

kÕ=k+1
”jkkÕ

–ik–ikÕ + . . . + ”j12...Kú
j

Kú
jŸ

k=1
–ik

R

b
,

where g(·) is a link function, such as identity, log or logit.
The �j are the model parameters of item j. In case of the identity link, ”j0 represents the
baseline probability for correctly answering item j when none of the required attribute has
been mastered (i.e., a lucky guess); ”jk is the main e�ect that increases (or in rare cases
decreases) the probability for correctly answering item j when attribute k has been mastered;
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and the rest of the parameters represent interaction terms that can increase or decrease the
response probability when two or more of the required attributes have been mastered.
Other CDMs can be obtained by restricting the parameters in the G-DINA model. An
intuitive, simple and parsimonious CDM is the deterministic input, noisy “and” gate (DINA;
Haertel 1989; Junker and Sijtsma 2001) model. In the DINA model the individuals are
separated into two latent groups, depending on whether they have mastered all the attributes
required to solve the item or not. Thus, the DINA model is a completely noncompensatory (or
conjunctive) model, which means that having mastered only part of the required attributes
does not increase the probability of answering the item correctly. It can be obtained from the
G-DINA model by restricting all parameters except ”j0 and ”j12...Kú

j
to zero. Thus, = gj is

called the guessing probability, since individuals that have not mastered all attributes required
by the item can only guess the correct response. On the other hand, 1 ≠ (”j0 + ”j12...Kú

j
) = sj

is called the slip probability, since in this probabilistic model individuals that have mastered
all attributes required by the item may still slip and give the wrong response.
Another CDM that can be obtained from the G-DINA model is the additive CDM (A-CDM).
It is slightly more flexible than the DINA model because the conditional response probability
can increase (or in some cases decrease) for each attribute that has been mastered. It can be
obtained from the G-DINA model by restricting all interaction parameters to zero.

Score contributions for parameters in the G-DINA model

To estimate the information matrix of the model parameters of the G-DINA model via OPG,
the contributions of individual i to the score function, Â(#;xi), are required. They are given
by the first-order derivative of the casewise log-likelihood contribution with respect to the
model parameters:

Â(#;xi) = ˆ¸(#;xi)
ˆ#

= ˆ log L(#;xi)
ˆ#

= 1
L(#;xi)

· ˆL(#;xi)
ˆ#

= 1
L(#;xi)

· ˆ

ˆ#

A
Lÿ

l=1
fil · Pr(xi|↵l)

B

.

Using formula (A6) from the Appendix in de la Torre (2009) for the partial derivative of the
conditional likelihood, the score contributions of the parameters of item j can be computed
via

ˆ¸(#;xi)
ˆ�j

=
Lÿ

l=1
Pr(↵l|xi) ·

C
xij ≠ Pj(↵ú

lj)
Pj(↵ú

lj)(1 ≠ Pj(↵ú
lj))

D

·
ˆPj(↵ú

lj)
ˆ�j

. (5)

To estimate the score contributions, we plug-in the estimated parameters ‚
�j to get Pj(↵ú

lj)
and use Pr(↵l|xi) that is also available from the estimation procedure. The last term in
Equation (5) depends on the type of CDM that is used. It is also possible to compute the
score contributions directly for the conditional response probabilities. In this case, the last
term in Equation (5) needs to be derived with respect to the conditional response probability
of interest.
For the score contributions of the latent class probabilities, the constraint fiL = 1 ≠

qL≠1
l=1 fil
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must be taken into account, and thus,

ˆ¸(#;xi)
ˆfil

= 1
L(#;xi)

ˆ

ˆfil

A
L≠1ÿ

l=1
fil · Pr(xi|↵l) + fiL · Pr(xi|↵L)

B

= 1
L(#;xi)

ˆ

ˆfil

A
L≠1ÿ

l=1
fil · Pr(xi|↵l) +

A

1 ≠
L≠1ÿ

l=1
fil

B

· Pr(xi|↵L)
B

= 1
L(#;xi)

ˆ

ˆfil

A
L≠1ÿ

l=1
fil ·

1
Pr(xi|↵l) ≠ Pr(xi|↵L)

2
+ Pr(xi|↵L)

B

= 1
L(#;xi)

1
Pr(xi|↵l) ≠ Pr(xi|↵L)

2
.

Since the parameters in the last iteration of the EM algorithm are computed from the posterior
values Pr(↵l|xi), it is more precise to also compute the score function for the latent class
probabilities using the posterior values, via

ˆ¸(#;xi)
ˆfil

= 1
fil

1
Pr(↵l|xi) ≠ Pr(↵L|xi)

2
.

Nonidentifiability of latent classes

In the theory about standard errors of parameters that is presented above, it is assumed that
the inverse of the complete information matrix I# exists. This, however, is not always the
case in practical applications due to di�erent causes. The most common cause has previously
been discussed in Haertel (1989) as the nonidentifiability of latent classes. The problem
arises whenever a test does not involve a single-attribute item for each of the K attributes
(see Chiu, Douglas, and Li 2009, for a theoretical discussion of the completeness of a Q-matrix
in the DINA model, and Chiu and Köhn 2015, for CDMs in general). The G-DINA model
can still be estimated, but some of the latent classes are not identified and the estimates
of the corresponding latent class probabilities are equivalent. Moreover, when computing
the covariance matrix using the complete information matrix, the corresponding columns
and rows in the information matrix are alike (i.e., they are linearly dependent). Thus, the
information matrix is nonsingular and cannot be inverted.
To avoid problems of identification in practice, it is therefore recommended that, whenever
possible a single-attribute item is included for each of the K attributes when developing new
tests for cognitive diagnostic assessment. For researchers who perform a cognitive diagnostic
analysis of data from an existing assessment (so-called retrofitting), the inversion problem
can be circumvented by pooling latent classes that cannot be separated from each other.

3. Illustrations
Following the theoretical derivation of the underestimation of the standard errors – resulting
from the inversion of the incomplete or the item-wise information matrix – the goal of this
section is to illustrate the extent of this underestimation, and its e�ect on confidence intervals
for the parameter estimates. In addition, we show for an exemplary real data set how much
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Items
Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q
k

–1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 6
–2 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 6
–3 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 6
–4 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 6
–5 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 6q

j 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Table 1: Transposed Q-matrix used in the simulation study.

the standard errors may be underestimated in practice when the wrong methods are used.
For both illustrations, the OPG estimator was used to estimate the covariance matrix of the
model parameter estimates.

3.1. Coverage study

In the first study, we compare the quality of the standard error estimates based on the com-
plete, the incomplete, and the item-wise information matrix (see Section 2.1), by estimating
the coverage probability of the true parameter in a Wald-type confidence interval that uses a
normal approximation given by

Ë
‚
Ë ± z

–
2

· ‚se(‚
Ë)

È
.

Four di�erent sample sizes (N = 500, 1000, 2000, 5000) were investigated using the Q-matrix
given in Table 1. The Q-matrix included five attributes and was constructed such that each
attribute was measured equally often (equal row sums in the table) and that the number of
items that required the same number of attributes was equally distributed (i.e., five single-
attribute items, five two-attribute items, and five three-attribute items). Thus, the Q-matrix
represented a test with J = 15 items.
The DINA model and the A-CDM were used to generate response data. For each item, the
true value of the baseline parameter (”j0) was set to 0.2. In case of the DINA model, the
true value of the interaction parameter between all attributes required by the item (”j12...Kú

j
)

was set to 0.6. Therefore, the guessing and the slip probabilities were both equal to 0.2.
In case of the A-CDM, the main e�ect parameters were set to ”jk = 0.6/K

ú
j . Thus, with

each additionally mastered attribute, the conditional response probability increased by the
same amount. The K attributes for each individual were sampled independently from a
Bernoulli distribution with probability Pr(–k = 1) = 0.5, for all k = 1 . . . K. The joint
distribution of the attributes (i.e., the latent class distribution) is then given by a categorical
distribution with equal probabilities fil = Pr(–l) = 1/(2K). Responses that were simulated
under the DINA model were analyzed using the DINA and the G-DINA model using the
identity link. Note, that the G-DINA is also correct for data that were generated under the
DINA model. It was fitted in addition to the DINA model because in practice the true model
is usually unknown. However, in this situation the G-DINA model is overspecified, due to the
many additional parameters estimated, for which the true values are zero according to the
data generating model. Responses that were simulated under the A-CDM were accordingly
analyzed using the A-CDM and the G-DINA model using the identity link. Again, the G-
DINA is also correct – yet overspecified – for data generated under the A-CDM. To estimate
the models and the standard errors, the EM algorithm was implemented in R (R Core Team
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2016) based on the description in de la Torre (2009), but including our new suggestions on
how the standard errors should be estimated.
Figures 1 and 2 illustrate the coverage probabilities for the data generated under the DINA
model and the A-CDM, respectively. For all sample sizes and models, the coverage prob-
abilities were computed for the � parameters using standard errors based on the complete
information matrix J# (correct approach), and the incomplete information matrix J� and the
item-wise information matrix J�j (incorrect approaches). It turned out that the asymptoti-
cally expected standard errors of the item parameters are identical across items that require
the same number of attributes. In the DINA model, for example, the baseline (guessing)
probabilities of all single-attribute items share the same asymptotic standard error, no mat-
ter which of the attributes is required. This also holds for other item parameters, items
that require more attributes and di�erent models. Therefore, the coverage probabilities were
averaged over the parameters within those groups, which are illustrated on the x-axis of
the graph. The parameter group “0”, for example, represents the baseline probability of all
single-attribute items. The parameter group “111” represents the parameter of the three-way
interaction of all three-attribute items.
By definition, the coverage probability of a 95% confidence interval has an expected nominal
coverage rate of 95%. However, due to sampling error, the estimated coverage probabilities
may randomly deviate from this nominal value. To achieve a high precision of the esti-
mated coverage probabilities, each configuration was repeated 10,000 times. Assuming an
exact binomial distribution for the coverage probabilities, the sampling error was equal toÒ

0.95·0.05
10,000 ¥ 0.002. Thus, based on a Wald-type confidence interval, we would consider cov-

erage probabilities within
#
94.6%, 95.4%

$
as su�ciently close to the nominal rate. Numbers

within this interval are depicted with solid circles (otherwise empty circles) in Figures 1 and 2.
Figure 1 shows the coverage probabilities for the data generated under the DINA model. When
the DINA model was used to analyze the data (see left column in Figure 1), the coverage prob-
abilities for the standard errors based on the complete information matrix (solid line) were
reasonably close to the expected coverage rate for small data samples, and converged quickly
toward the nominal rate with increasing sample size N . The coverage rates for the standard
errors based on the incomplete (dashed line) or the item-wise (dotted line) information ma-
trix, however, were systematically smaller than the nominal coverage probability, particularly
for the first parameter groups. Even for the largest sample size considered, their coverage
probability does not converge towards the nominal rate. This is caused by the structural
underestimation of the standard errors discussed earlier. We observed the largest underesti-
mation for the baseline probabilities of single-attribute items (parameter group “0”). For the
other parameters, the di�erence to the correct approach is smaller, but still lower than for
the correct approach and notably below the nominal rate. A similar pattern can be observed
when the G-DINA model was used to analyze the data generated under the DINA model
(see right column in Figure 1). However, for smaller sample sizes the coverage probabilities
were generally estimated considerably below the nominal coverage rate of 95%. This artifact
may be explained by several circumstances. First, the normal approximation underlying the
Wald-type confidence intervals might fail, particularly for the baseline probabilities that are
restricted between zero and one. The coverage probabilities were closer to the nominal rate
when the model parameters were estimated using the logit link (results not shown). Second,
for smaller data sets and more complex models, the conditional response probabilities and the
parameters used to specify the attribute distribution are often estimated on the boundary of



Michel Philipp, Carolin Strobl, Jimmy de la Torre, Achim Zeileis 11

DINA G−DINA

●
● ●

● ● ●

●

●
●

● ● ●

●

●
●

●
● ●

● ● ●● ● ●

●

●
●

● ● ●

●

●
●

● ● ●

● ● ●● ● ●

●

●
●● ● ●

●

●
●

● ● ●

● ● ●● ● ●

●

●
●● ● ●

●

●
●

● ● ●

●

●
●

● ●

●●

●

● ●

●

● ●●

●

● ●

●
●

●

●

●

● ●

●

● ●●

●

● ●

●
●

●

●

●

● ●

●

● ●●

●

●
●● ●

●
●● ● ●● ● ●●

●

●

●●
●

●

●● ● ●● ● ●●

●

●

●
●

●
●

●● ● ●● ● ●●

●
● ●● ●

●●● ● ●● ● ●●

●

●
●● ●

●●● ● ●● ● ●●

●

●
●

●
● ●●● ● ●● ● ●●

● ● ●● ● ●●● ● ●● ● ●●

●

● ●● ● ●●● ● ●● ● ●●

●

● ●
●

● ●●● ● ●● ● ●●

50

60

70

80

90

100

50

60

70

80

90

100

50

60

70

80

90

100

50

60

70

80

90

100

N
 = 500

N
 = 1000

N
 = 2000

N
 = 5000

0 1 00 11 000 111 0 1 00 10 01 11 000 100 010 001 110 101 011 111

Parameter group

C
ov

er
ag

e 
pr

ob
ab

ilit
y 

(in
 %

)

Information
matrix
●

●

●

complete
incomplete
item−wise

Figure 1: Coverage probabilities of 95% Wald-type confidence intervals for data generated
under the DINA model are illustrated (on the y-axis) separately for parameters of items that
require the same number of attributes (= parameter groups on the x-axis) using three di�erent
calculation methods for the standard errors. For ease of readability, values su�ciently close
to the nominal coverage probability are depicted as solid circles, all others as empty circles.

the parameter space. As mentioned earlier, this causes numerical problems in the calculation
of the information matrix. Finally, the ratio between the number of estimated parameters
per observation is larger for more general models. Thus, inferior asymptotic convergence has
to be reckoned with the G-DINA when compared to the DINA model. Nevertheless, the com-
plete information matrix approach clearly provided more accurate results in all conditions
considered.
Figure 2 shows the coverage probabilities for the data generated under the A-CDM. For the
same reasons as discussed above, the coverage probabilities were estimated below the nominal
rate for smaller samples. As the sample size increased, the coverage probabilities computed
with the standard errors based on the complete information matrix again approached the
nominal rate for the A-CDM and the G-DINA model. The coverage probabilities computed
with the standard errors based on the incomplete or the item-wise information matrix, how-
ever, were again systematically underestimated. Overall, the complete information matrix
approach again provided more accurate results across all conditions considered.

3.2. Empirical example
To illustrate the practical importance of estimating standard errors via the complete infor-
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Figure 2: Coverage probabilities of 95% Wald-type confidence intervals for data generated
under the A-CDM are illustrated (on the y-axis) separately for parameters of items that
require the same number of attributes (= parameter groups on the x-axis) using three di�erent
calculation methods for the standard errors. For ease of readability, values su�ciently close
to the nominal coverage probability are depicted as solid circles, all others as empty circles.

mation matrix, data from a real assessment was analyzed using CDMs. The data stem from
a learning experiment at the University of Tuebingen in Germany and is available in the R
package pks (Heller and Wickelmaier 2013). The participants were required to answer 12
items about elementary probability theory. For example, “A box contains 30 marbles in the
following colors: 8 red, 10 black, 12 yellow. What is the probability that a randomly drawn
marble is yellow?”. Four di�erent attributes (concepts) were tested: How to calculate

• the classic probability of an event (pb),

• the probability of the complement of an event (cp),

• the probability of the union of two disjoint events (un),

• the probability of two independent events (id).

These concepts were combined to form the 12 items. Therefore, the Q-matrix (see Table 2)
was defined by the design of the items. The first four items required only one attribute, the
items 5 to 10 required two attributes and the items 11 and 12 required three attributes. For
this illustration, the responses of 504 participants from the first part of the experiment were
analyzed.
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Items
Attributes 1 2 3 4 5 6 7 8 9 10 11 12

q
k

pb 1 0 0 0 1 1 1 1 1 0 1 1 8
cp 0 1 0 0 1 1 0 0 0 1 1 0 5
un 0 0 1 0 0 0 1 1 0 0 0 1 4
id 0 0 0 1 0 0 0 0 1 1 1 1 5q

j 1 1 1 1 2 2 2 2 2 2 3 3

Table 2: Transposed Q-matrix used for analyzing the elementary probability theory data.

The data was fitted using the DINA, the A-CDM and the G-DINA model with the resulting
BIC values of 5200.46 (df = 39), 5154.58 (df = 49) and 5241.70 (df = 63), respectively. The
results of the A-CDM – which had the lowest BIC value – are illustrated in Table 3. The
table summarizes the estimated parameters, the corresponding standard errors based on the
complete, the incomplete and the item-wise information matrix, and the relative change in
the standard errors between the correct and the two incorrect approaches (in parentheses).
For each item, the first parameter estimate represents the baseline probability (i.e., the prob-
ability of correctly answering the item when the attributes required by the item have not been
mastered). Thus, large values for this guessing probability are unusual. For item 8, however,
a value of over 0.4 is reported. A possible explanation is that the item – “What is the prob-
ability of obtaining an odd number when throwing a dice?” – was not very di�cult, even
for individuals without knowledge in basic probability theory. Further parameter estimates
represent the amount of increase (or seldom decrease) in probability of answering an item
correctly when the corresponding attribute had been mastered. For example, the probability
of answering item 1 increased by 0.71 when attribute “pb” had been mastered.
The relative change between the standard errors based on the complete and the incomplete
information matrix showed substantial di�erences (highlighted by bold letters in Table 3) for
both parameters of the single-attribute item 2, for some of the parameters of the two-attribute
items 5, 8 and 10, and for some of the parameters of the three-attribute items 11 and 12. The
underestimation of the standard errors based on the item-wise information matrix was even
worse. For 30 out of 34 item parameters the standard error was underestimated.
It should be noted that ten out of 48 conditional response probabilities and four out of 16
parameters of the latent class probabilities were estimated at the boundary of the parameter
space (not displayed in Table 3). As mentioned earlier, this can cause numerical problems
in computing the information matrix. According to the previous simulation study, where
a similar scenario was investigated (see top-left panel in Figure 2 for the same model and
a nearly equal sample size), it must be assumed that some of the standard errors reported
for this data are generally underestimated. Nevertheless, just like in the simulation study –
and as expected from our theoretical considerations – the additional severe underestimation
caused by the wrong computation of the information matrix can easily be avoided by using
the complete information matrix.

4. Discussion
Standard errors are an important measure to quantify the uncertainty of an estimate. They
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Standard errors
Item Attribute Est. Complete Incomplete Item-wise

1 baseline 0.224 0.065 0.061 (≠0.071) 0.052 ( ≠ 0.203)
pb 0.710 0.067 0.063 (≠0.061) 0.055 (≠0.186)

2 baseline 0.275 0.105 0.080 (≠0.241) 0.068 (≠0.356)
cp 0.699 0.105 0.081 (≠0.232) 0.069 (≠0.346)

3 baseline 0.097 0.060 0.055 (≠0.082) 0.048 (≠0.194)
un 0.864 0.061 0.056 (≠0.082) 0.050 (≠0.188)

4 baseline 0.125 0.038 0.035 (≠0.072) 0.032 (≠0.159)
id 0.837 0.039 0.037 (≠0.064) 0.034 (≠0.140)

5 baseline 0.201 0.067 0.055 (≠0.187) 0.048 (≠0.288)
pb 0.364 0.116 0.101 (≠0.130) 0.094 (≠0.191)
cp 0.293 0.125 0.111 (≠0.116) 0.103 (≠0.181)

6 baseline 0.194 0.062 0.058 (≠0.058) 0.051 (≠0.185)
pb 0.462 0.085 0.080 (≠0.053) 0.074 (≠0.125)
cp 0.308 0.083 0.081 (≠0.021) 0.077 (≠0.071)

7 baseline 0.278 0.071 0.068 (≠0.049) 0.062 (≠0.126)
pb 0.292 0.095 0.088 (≠0.078) 0.083 (≠0.127)
un 0.372 0.116 0.105 (≠0.094) 0.097 (≠0.164)

8 baseline 0.430 0.087 0.076 (≠0.132) 0.063 (≠0.277)
pb 0.065 0.095 0.066 (≠0.297) 0.059 (≠0.371)
un 0.462 0.111 0.088 (≠0.212) 0.079 (≠0.293)

9 baseline 0.116 0.045 0.043 (≠0.042) 0.038 (≠0.145)
pb 0.510 0.084 0.079 (≠0.060) 0.074 (≠0.113)
id 0.154 0.075 0.070 (≠0.065) 0.065 (≠0.124)

10 baseline 0.083 0.050 0.044 (≠0.115) 0.037 (≠0.248)
cp ≠0.056 0.060 0.055 (≠0.086) 0.048 (≠0.190)
id 0.781 0.036 0.035 (≠0.027) 0.034 (≠0.062)

11 baseline 0.053 0.049 0.045 (≠0.086) 0.038 (≠0.229)
pb 0.010 0.106 0.086 (≠0.184) 0.080 (≠0.244)
cp ≠0.037 0.094 0.084 (≠0.109) 0.078 (≠0.173)
id 0.672 0.034 0.033 (≠0.030) 0.032 (≠0.060)

12 baseline 0.000 0.039 0.036 (≠0.090) 0.029 (≠0.269)
pb 0.140 0.469 0.191 (≠0.592) 0.169 (≠0.640)
un 0.000 0.452 0.181 (≠0.600) 0.162 (≠0.643)
id 0.660 0.046 0.042 (≠0.067) 0.042 (≠0.084)

Table 3: Estimates and standard errors of parameters for the elementary probability theory
data. Numbers in brackets correspond to the relative change to the standard errors based on
the complete information matrix. Note: Strongest relative changes are printed in bold letters
for better readability.

are required for many di�erent statistical techniques to evaluate model fit or to check model
assumptions. It is therefore crucial in practical research to estimate standard errors as pre-
cisely as possible. In the commonly used approach for computing standard errors in CDMs,
however, the information matrix is based only on those parameters which are used to spec-
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ify the item response function. The parameters used to specify the joint distribution of the
attributes (i.e., latent class distribution) are not incorporated in the computation.
In this article, we have shown that with this approach, the standard errors for the parame-
ters of the item response function are systematically underestimated. We therefore strongly
recommend to compute the standard errors based on the complete information matrix, which
also includes the parameters used to specify the latent class distribution. In addition to the
clear theoretical result, we have also illustrated by means of simulations that our approach
leads to a higher quality of Wald-type confidence intervals. An additional benefit of using the
complete instead of the incomplete information matrix is that it also provides the informa-
tion required to compute standard errors for the parameters used to specify the latent class
distribution.
We assume that the incomplete information matrix approaches have only become widely used
in the CDM literature because previous authors might have assumed that the o�-diagonal
elements of the information matrix would have negligible impact under certain conditions.
With respect to the item-wise computation of the standard errors, the CDM literature may
be partially influenced by the traditional IRT literature, where approaches exist that lead
to block diagonal information matrices (e.g., in Thissen and Wainer 1982), in which case an
item-wise computation of the standard errors is possible. However for CDMs, as we showed
analytically and illustrated with examples, the complete information matrix approach clearly
generates better standard errors than the incomplete and the item-wise approaches and is
computationally well feasible. Similar to our results, Yuan et al. (2014) showed that the
item-wise computation of the standard errors in IRT models also leads to undersized standard
errors.
In the simulation study, we did not specifically vary design factors, such as the Q-matrix,
the true values of the item parameters, or the latent class distribution. Varying these factors
might positively or negatively a�ect the severity of underestimation. In a preliminary study
with the DINA model, we found that longer tests and highly discriminating items can alle-
viate the underestimation. It should be highlighted, however, that the proposed method for
estimating the standard errors cannot make the quality of the standard errors worse. In prac-
tical situations, however, it is di�cult (or even impossible) to control the factors that have
a large impact on the underestimation. As such it is always preferable to compute standard
errors using the complete information matrix.
We note that di�erences between the approaches are not only expected for the standard errors,
but for the entire covariance matrix of the model parameters (although not generally in the
same direction). Thus, many techniques used to investigate a fitted model may be a�ected.
The impact of under- or overestimation of the entire covariance matrix will be multiplied
for multivariate methods. It is therefore worth in any circumstances to estimate standard
errors (and also the entire covariance matrix) from the complete information matrix. As we
did not specifically investigate the impact of misestimating the entire covariance matrix on
multivariate techniques, it will be interesting for future research to investigate how much the
quality of the covariance matrix can be improved by using the complete information matrix
in computing it.
The results of the simulation study revealed problems of asymptotic convergence when more
complex models were fitted to smaller data sets. This might partially be caused by boundary
problems that often occur for smaller data sets. DeCarlo (2011) suggested posterior mode
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(PM) estimation to overcome these problems. Whether PM estimation leads to more accurate
parameter and standard error estimates than the traditional ML approach in CDMs was not
the scope of this work, but something that can be investigated in future research. Moreover,
the normal approximation of the ML estimates is perhaps more accurate under the logit
link than on the (bounded) parameter scale under the identity link. In substantial research,
however, item parameter estimates are often reported on the probability scale, in particular
when the parsimonious DINA model is used. This suggests that researchers prefer the identity
link for a better interpretability of the parameter estimates. Further research is required to
investigate how much the quality of the standard errors could be improved under the logit
link. In general, the result from our simulation study suggests that it is recommended to use
simpler models whenever possible and appropriate because it may avoid boundary problems
or problems with asymptotic convergence.
Finally, in the present article, we assumed that the Q-matrix is known or well specified for
an assessment. However, in practice (especially when retrofitting CDMs to existing data),
the Q-matrix may be unknown or misspecified, which can a�ect parameter estimation and
classification accuracy (de la Torre 2008; Rupp and Templin 2007). To minimize the impact
of a misspecified Q-matrix, several methods have been proposed. de la Torre (2008) proposed
an iterative procedure to evaluate the correctness of the Q-matrix specification in the context
of the DINA model. The approach was extended by de la Torre and Chiu (2016) to apply
generally to other CDMs. Other recent approaches include that of Chen, Liu, Xu, and Ying
(2015), which estimates the Q-matrix of the DINA model using regularization, whereas Chiu
(2013) proposed a nonparametric approach to Q-matrix validation that does not require
specifying the exact form of the CDM, only that the underlying process is conjunctive in
nature. Future research should examine the extent of the impact of Q-matrix mispecifications
on standard error estimation, and whether specific steps can be taken to minimize such an
impact.
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A. Blockwise matrix inversion
The following statements about blockwise matrix inversion of a symmetric matrix can be used
to establish the inequality between standard errors based on the complete and the incomplete
information matrix discussed in Section 2.1. The corresponding theorems (and proofs) can
be found in Chapter 13 of Banerjee and Roy (2014), if not stated otherwise.
Let A be a positive definite (p.d.) symmetric matrix, i.e. the inverse A

≠1 exists and is also
p.d.. Suppose A is partitioned as

A =
A
A11 A12
A

€
12 A22

B

,

where A11 is p ◊ p, A12 is p ◊ q and A22 is q ◊ q. Then its principal submatrices A11 and
A22 are also invertible and p.d.. Let B = A

≠1 be partitioned (similar to A) as

B =
A
B11 B12
B

€
12 B22

B

,

where B11 =
1
A11 ≠ A12A

≠1
22 A

€
12

2≠1
and B22 =

1
A22 ≠ A

€
12A

≠1
11 A12

2≠1
are given by the

inverse of the Schur complements of A22 and A11, respectively, which are also p.d.. By the
Sherman-Woodbury-Morrison formula (see e.g., Banerjee and Roy 2014, p. 82),

1
A11 ≠ A12A

≠1
22 A

€
12

2≠1
= A

≠1
11 + A

≠1
11 A12

1
A22 ≠ A

€
12A

≠1
11 A12

2≠1
A

€
12A

≠1
11

B11 = A

≠1
11 + A

≠1
11 A12B22A

€
12A

≠1
11

B11 = A

≠1
11 + C

€
B22C.

where C = A

€
12A

≠1
11 = (A≠1

11 A12)€. For the diagonal elements, we have

diag(B11) = diag(A≠1
11 ) + diag(C€B22C),

where B11 and A

≠1
11 are both positive definite, i.e., their diagonal elements are positive.

Lemma 1. If B22 and A

≠1
11 are positive definite and A12 ”= 0, then each diagonal element of

C

€
B22C is positive.

Proof. Since B22 is positive definite, x€
B22x > 0 whenever x ”= 0. Choosing x = Cei reveals

that
x

€
B22x = e

€
i C

€
B22Cei > 0,

where ei is the ith unit vector that is used to extract the ith diagonal element from C

€
B22C.

Hence, the diagonal elements in C

€
B22C are also positive.

So, if A12 ”= 0, all diagonal elements in C

€
B22C are positive and therefore,

diag(B11)r > diag(A≠1
11 )r ’ r œ {1, . . . , p}.

To obtain the inequality of the standard errors as stated in Section 2.1, use A = I# and
B = V# and let I�,⇡ ”= 0.
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Please note, that the symmetric information matrix I# is only positive semidefinite. A positive
semidefinite symmetric matrix is, however, positive definite if and only if it is nonsingular (see
e.g., Harville 2008, Corollary 14.3.12). Thus, the inequality holds if I# is invertible, which is
required anyway to compute the standard errors.
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Abstract
Cognitive diagnosis models (CDMs) are an increasingly popular method to assess
mastery or nonmastery of a set of fine-grained abilities in educational or psycholo-
gical assessments. Several inference techniques are available to quantify the uncer-
tainty of model parameter estimates, to compare di↵erent versions of CDMs or to
check model assumptions. However, they require a precise estimation of the stan-
dard errors (or the entire covariance matrix) of the model parameter estimates. In
this article, it is shown analytically that the currently widely used form of calcu-
lation leads to underestimated standard errors because it only includes the items
parameters, but omits the parameters for the ability distribution. In a simulation
study, we demonstrate that including those parameters in the computation of the
covariance matrix consistently improves the quality of the standard errors. The prac-
tical importance of this finding is discussed and illustrated using a real data example.
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