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Abstract

We study the potential role of correlated refinancing abilities among di↵erent countries

for the disruption of government bond markets in a currency union. Following Morris

and Shin (2004) we use a global games framework and model the simultaneous investment

decision into two assets, which are subject to correlated fundamental states, as a coordination

problem with correlated imperfect information. Based on this model we evaluate the role of

information about one country for the coordination of creditors of another country. We find,

however, that the contagious e↵ects on the price of debt precipitated through correlation are

modest. Hence, assuming that investors behave as modeled in the global game, we conclude

that correlated fundamentals that precipitate informational spillovers appear to be unlikely

to play a major role for e.g. the disruption of some Eurozone government bond markets in

the aftermath of the recent financial and economic crisis.
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⇤Financial support through the Jubiläumsfonds (Project No. 15304) of the Oesterreischische Nationalbank is
gratefully acknowledged.

†Department of Economics, University of Innsbruck, Universitätsstrasse 15, A-6020 Innsbruck, Austria, Phone:
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1 Introduction

News about one country can a↵ect the refinancing costs of another one. This particularly

applies to bonds of countries that share common characteristics and strong ties as it is the

case for Eurozone members, and even more so, for the South-West Eurozone Periphery, namely

Greece, Ireland, Italy, Portugal and Spain (see e.g. Metiu, 2012; Beetsma et al., 2013; Mink

and de Haan, 2013; Giordano et al., 2013). Spreads of these countries do not only depend on

country-specific characteristics1 and an international risk factor2, but also on news about foreign

countries3. Such interdependencies are also a major motivation for European policies such as

financial assistance measures for countries that experienced a so-called sovereign debt crisis to

calm the markets and to prevent ‘contagion’.4 Contagion might be particularly disruptive in the

Eurozone since the introduction of the common currency has led to high degrees of convergence

and co-movement of government bond yields in the Eurozone.5

Why should yields in a currency union be correlated? And more specifically, why should

news about one country a↵ect the refinancing conditions of another country? On the demand

side, investors have to estimate the probability of default of a single country in order to price

the bond. If the fundamental states underlying the refinancing ability of di↵erent countries

are correlated, investors will use information about one country to estimate the probability of

default of the other country. From this point of view, it is plausible that the correlation of yields

in government bond markets in the Eurozone are associated with correlation of fundamental

states and correlation of news about them.6

In this paper we discuss an investment model that allows us to study the coordination of

agents processing correlated information about assets that are subject to correlated fundamen-

1Country characteristics that potentially a↵ect spreads are e.g. outstanding government debt and government
deficits, inflation, the current account, the real e↵ective exchange rate, economic growth (Aizenman et al., 2013;
De Grauwe and Ji, 2013).

2It is quite common to use the VIX index that is representing the implied volatility of S&P 500 stock market
index options, to proxy global risk aversion (De Santis, 2012; Beetsma et al., 2013).

3In the literature, news about other countries is e.g. proxied by changes in sovereign ratings (De Santis, 2012)
or events associated with high price fluctuations (Metiu, 2012; Mink and de Haan, 2013).

4Examples are the Outright Monetary Transactions (OMT) Program and the establishment of the European
Stability Mechanism (ESM).

5Pagano and von Thadden (2004) as well as Manganelli and Wolswijk (2009) argue that as the Euro was
introduced, the exchange rate risk more or less vanished and identify this as a the major driver of convergence of
government bond yields. Sims (2012), on the other hand, argues, that the provisions (treating bonds of European
countries similarly) for collateral that is accepted by the ECB are the major cause for the convergence of bond
yields.

6There are several reasons which may increase correlation due to the monetary union. Firstly, monetary policy
is delegated to a central authority and the option of nominal exchange rate devaluation is no longer available.
Secondly, the institutional architecture of currency unions generates a number of contingent liabilities among the
participating countries. Thirdly, it is often argued that business cycle correlation increases once countries join a
currency union (Frankel and Rose, 1998; de Haan et al., 2008; Enders et al., 2013).
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tal states. We follow the seminal contribution by Morris and Shin (2004), who model debt

refinancing as a coordination game using the global games approach to get a unique equilib-

rium.7 We adapt the Morris and Shin (2004) model to the case of sovereign debt refinancing in

currency unions. Thus, we introduce a two-asset coordination game and study the simultaneous

investments decision into two assets, A and B, that are subject to correlated fundamentals. The

intuition of the model is that correlation of the fundamental states implies that signals about

one asset may also be informative about the other asset and vice versa. This way our set up

incorporates informational interdependencies. Moreover, the extension of the Morris and Shin

(2004) framework to a second dimension constitutes a novel methodological contribution to the

literature.

Using our model we analyse how information about one country a↵ects the price of debt

of the other country and vice versa. This allows us to assess the potential role of correlated

fundamental states for the disruption of government bond markets during the recent European

sovereign debt crisis. Specifically, our model depicts a specific channel of simultaneous con-

tagious e↵ects of information in the context of financial markets.8 It does not capture direct

spillovers such as e.g. wealth e↵ects transmitted through a common creditor or direct linkages

among fundamental states that become active once a country defaults (see e.g. Goldstein and

Pauzner, 2004; Trevino, 2015). Spillovers of this kind are discussed in a complementary litera-

ture where spillovers are typically modeled as sequential games. E.g., Manz (2002, 2010) studies

contagion among firms that are subject to common fundamentals. The performance of firms

a↵ects other firms by altering the behavior of creditors. Goldstein and Pauzner (2004) elaborate

a model of self-fulfilling financial crises. Two countries exhibit independent fundamentals and a

group of investors is engaged in both countries. Since the occurrence of a crisis in one country

reduces the wealth of investors, the investment behavior of these investors with respect to the

second country is a↵ected by the events in the first country. As a consequence, a crisis in the

second country becomes more likely. Similarly, Dasgupta (2004) focuses on capital relations

among banks. Goldstein and Pauzner (2005) discuss the mutual repercussions of interdepen-

7Global games were first studied by Carlsson and van Damme (1993) and further popularized by Morris and
Shin (1998), who applied the global games refinement in a macroeconomic context. They can be applied to wide
range of decision problems where coordination risk and incomplete information is involved. In such settings, the
agents’ payo↵s depend on the actions of others as well as on an economic fundamental which is not perfectly
observable.

8There is not one single unambiguous definition of contagion but rather disagreement on which interdepen-
dencies and spill-overs qualify as contagion and which do not. Most papers, however, agree that the transmission
of a shock through non-traditional channels such as trade, banking relations, or investment flows constitutes
contagion (see e.g. Forbes (2012) for a comprehensive discussion of the literature). In this broad sense, the
informational interdependencies we investigate in this this paper may be referred to contagion.
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dencies between banking and currency crises. These studies, however, avoid the di�culty of

two-dimensional thresholds by setting up the game sequentially and solving it with backward

induction.

To evaluate the e↵ects of contagion we consider the ex ante probability of default of the

assets, which determines the price of debt in our model. The asset defaults if the fundamental

state is not large enough to sustain partial foreclosure. Assuming that agents play switching

strategies, we get conditions for the critical fundamental state, which is in our case a function

dividing the two-dimensional fundamental state space into a solvency and a default region. We

show that, under weak assumptions on the parameters, the equilibrium in switching strategies

is a Nash equilibrium. Given the function for the critical fundamental state and the probability

density of the fundamental states one can calculate the probability of default, and hence, the

price of debt. To evaluate the contagious e↵ects we consider the changes in the price of debt

of one asset caused by changes in (i) public signals, in (ii) the amount of correlation of the

fundamental states and private signals, and (iii) in the precision of the public and private signals.

The somewhat surprising result of the analysis is that the contagious e↵ects transmitted through

correlated fundamentals of one asset onto another are generally very moderate. This does not

mean, however, that agents do not use the additional information about the asset. Rather, the

contagious e↵ect through optimal processing of correlated information on the price of debt is

small.

Supporting this intuition, our first main observation is that, ceteris paribus, a change in the

public signal about asset B has no e↵ect on the price of debt of asset A in our setting. The

reason is that a change in the public signal about asset B shifts both, the critical fundamental

state function as well as the distribution of the fundamental states leaving the mass of the

distribution located in the default region constant.

Our second main observation is that under certain circumstances, i.e. when precision of

signals are identical for both assets and the correlation is the same for the fundamental states

and private information, information about one asset does not influence the agents’ estimate of

the default risk of the other asset. In such cases, the agent optimally behaves as if she does not

consider information about the second asset. Notably, for this special case, the two-dimensional

decision problem boils down to the one-dimensional case discussed in Morris and Shin (2004)

because B-dimensional parameters cancel from the investment strategy. Hence, the critical

fundamental state function which divides the fundamental state space into solvency and default

regions for one asset is constant in the public signal and in the informational precision of the
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other asset, and it is constant in the correlation of fundamental states and private information.

The third main observation is that for cases that do not represent the special case, changes

in the correlation of the fundamental state and in the correlation of private signals as well as

changes in the precision of private and public signals about asset B do exert e↵ects on the price

of debt of asset A, but the e↵ects are modest. In numerical experiments, the maximum change

in the price of debt precipitated by changes in the correlations is not more than 0.16 percentage

points and changes in the informational precision about asset B do not a↵ect the price of asset

A by more than 0.07 percentage points. In contrast, changes in precision of information about

asset A are much more decisive and can trigger up to 25 percentage point variation in the price

of debt of asset A for the numerical experiments we conduct.

Overall, our results lead us to the conclusion that contagion of the kind of informational

spillovers captured by our model are not likely to explain a large portion of risk premia for

government bonds of currency union members. Thus, we conclude that these spillovers only

played a minor role for disruption of government bond markets that occurred in the wake of the

recent economic and financial crisis. Evidently, this indicates that while the rational processing

of correlated information appears to be unlikely to cause contagious disruption in these markets,

one may have to consider other disruptive sources such as direct spillovers, e.g. transmitted

through wealth e↵ects, or non-rational behavior involved in the coordination of creditors.

The remainder of the paper is organized as follows: First, we present the two-dimensional

model in Section 2 and discuss the equilibrium and the existence of a unique equilibrium in our

setting in Section 3. In Section 4 we present some analytical results and we discuss a number of

numerical experiments to quantify the e↵ects of informational contagion in Section 5. Section

6 concludes the paper.

2 The Model

In our model, agents face idiosyncratic uncertainty about economic fundamentals which deter-

mine the willingness of governments to pay creditors. In an individual decision problem, payo↵s

are determined by one’s own actions and the state of the world. Hence, when the agent receives

a message which rules out some states of the world, she can simply disregard these states of

the world. The same does not apply to a setting where payo↵s are conditional on both, fun-

damentals as well as the beliefs of others, as it is the case in the type of coordination problem

we model: “Since my payo↵ depends on your actions and your actions are motivated by your
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beliefs, I care about the range of possible beliefs you may hold (Morris and Shin, 2001)”.

We apply this very general idea of a coordination problem with uncertain fundamentals to

the case where the agent faces the investment decision into two assets where fundamentals are

correlated. We assume that agents are risk neutral and maximize their expected payo↵, i.e. the

total expected payo↵ is the sum of the expected payo↵ of each asset. Since we are primarily

interested in the contagious e↵ects of information, we rule out direct spillovers, i.e., the payo↵

of one asset does not depend on the agents’ decision on the other asset and the payo↵ of one

asset is independent of the realization of default or solvency of the other asset.

At an interim stage, creditors can review their investment; i.e. they decide whether or not

to rollover. Following Morris and Shin (2004), the face value of the investments is fixed and

normalized to 1. But creditors only receive the face value when the debtor is solvent and willing

to pay at maturity. The values of the assets at maturity, v
A

and v

B

, determine the willingness

to pay creditors. They depend on an unobservable fundamental state ✓ = (✓
A

, ✓

B

) and on

the portion of creditors who foreclose, l
A

and l

B

, weighted by a measure for the severity of

disruption of partial foreclosure which we denote z

A

and z

B

:

v

A

(✓
A

, l

A

) =

8
><

>:

� 1 if l

A

z

A

 ✓

A

0 if l

A

z

A

> ✓

A

, v

B

(✓
B

, l

B

) =

8
><

>:

� 1 if l

B

z

B

 ✓

B

0 if l

B

z

B

> ✓

B

.

The debtor is solvent in case the value is at least 1. In case of solvency, creditors are paid back

in full.

2.1 The Two-Asset Game: SB2

We now define the corresponding two asset coordination game SB2. A continuum of creditors

invests into two assets, asset A and asset B. At the interim stage, creditors can either seize

a collateral (i.e. the outside option), �
A

and �

B

2 (0, 1), which is strictly larger than 0 and

strictly lower than the face value of the asset, or rollover. The face value of the asset is 1 in

case of solvency and 0 otherwise. For the game SB2, payo↵s for one player for the respective

combinations of actions and outcomes are shown in Table 1. The payo↵ for project A, u
A

, is

the first entry in the sum of each cell, while the payo↵ for project B, u
B

, is the second one.

The information structure for the game is as follows: The unobservable fundamental state

✓ is distributed with density g

✓

and mean y. All agents know the mean y, i.e. receive a
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common public signal, y = (y
A

, y

B

). In addition, each agent gets an idiosyncratic private signal,

x

i

=
�
x

i

A

, x

i

B

�
with probability density f

x

. Private signals x
i

are independently distributed with

density f

x

and mean ✓.

All agents know the distribution of ✓ and that of the signals x
i

.

We assume a the bivariate normal distribution for the distribution of the fundamental state

and private signals, because they are conjugate, incorporate correlation, and are intuitively

appealing to model the case of informational dispersion. Hence, we assume that agents know

that ✓ is normally distributed with known mean y and known covariance matrix ⌃
public

.

✓ =

0

@ ✓

A

✓

B

1

A ⇠ N

0

@

0

@ y

A

y

B

1

A
,⌃

public

1

A

with covariance matrix

⌃
public

=

0

@
1
↵

A

⇢

publicp
↵

A

p
↵

B

⇢

publicp
↵

A

p
↵

B

1
↵

B

1

A
,

and

x

i

=

0

@ x

i

A

x

i

B

1

A ⇠ N

0

@

0

@ ✓

A

✓

B

1

A
,⌃

private

1

A

with covariance matrix

⌃
private

=

0

@
1
�

A

⇢

privatep
�

A

p
�

B

⇢

privatep
�

A

p
�

B

1
�

B

1

A
.

The precisions of the information about asset A and B are denoted ↵

A

and ↵

B

(precision of the

public signals) �

A

and �

B

(precision of the private signals), ⇢
public

denotes correlation of the

fundamental states and ⇢

private

is the correlation of the private signals.

We assume that agents update their information by computing the conditional distribution

of the fundamental state ✓ given their private signal x
i

.9 The density of ✓ conditional on x

i

is

notated as g
✓|x

i

.

✓|x
i

⇠ N

0

@

0

@ ⇠

i

A

⇠

i

B

1

A
,⌃

conditional

1

A

9This is equivalent to using Bayes rule. For a discussion of Bayes rule applied to bivariate normal distributions
see Lehmann and Casella (1998) and DeGroot (2004).
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where the mean of ✓ conditional on x

i

is:

0

@ ⇠

i

A

⇠

i

B

1

A =
⇣
⌃�1
public

+ ⌃�1
private

⌘�1 ⇣
⌃�1
public

y + ⌃�1
private

x

i

⌘

and the conditional covariance matrix of ✓ is

⌃
conditional

=
⇣
⌃�1
public

+ ⌃�1
private

⌘�1
.

2.2 Best Response in the game SB2 and the One-Asset-Game SB1A

A strategy for player i is a decision rule which maps each realization of the private signal x
i

to

an action for asset A, ai
A

(x
i

) and to an action for asset B, ai
B

(x
i

). In other words, actions are

conditional on the player’s type, that is determined by the private signal.

s

i

=
�
a

i

A

(x
i

) , ai
B

(x
i

)
�
where a

i

A

, a

i

B

2 {0, 1}.

The fraction of foreclosers is determined by the investment strategy (depending on the id-

iosyncratic signal x, which is informative about the fundamental state ✓). We assume symmetric

behavior of the investors, i.e. they follow identical investment strategies a
A

and a

B

. Because of

the law of large numbers the portion of creditors that foreclose is:

l

A

= 1� E (1
a

A

(x)) = 1�
Z 1

�1

Z 1

�1
f

x

(x
A

, x

B

, ✓

A

, ✓

B

) 1
a

A

(x)dx
A

dx
B

,

l

B

= 1� E (1
a

B

(x)) = 1�
Z 1

�1

Z 1

�1
f

x

(x
A

, x

B

, ✓

A

, ✓

B

) 1
a

B

(x)dx
A

dx
B

,

where

1
a

A

(x) =

8
><

>:

1 if a

A

(x) = 1

0 if a

A

(x) = 0
, and 1

a

B

(x) =

8
><

>:

1 if a

B

(x) = 1

0 if a

B

(x) = 0
.

Given our assumptions it is quite obvious that the game SB2 can be analysed by looking

at each asset separately. Therefore, we introduce the games SB1
A

and SB1
B

, which consider

only the separate investments into asset A and asset B. The setup of SB1
A

is exactly the same

as that of SB2, i.e. there are two countries, and the information structure is identical. The

only di↵erence is that the agent holds only the asset A (and asset B for SB1
A

respectively)

and decides whether or not to roll over or foreclose on the asset. The corresponding payo↵s are
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shown in Table 2.

Proposition 1. The strategies a

⇤
i,A

and a

⇤
i,B

are the Nash equilibrium strategies for the game

SB2 if and only if a⇤
i,A

is a Nash equilibrium strategy for the game SB1
A

and a

⇤
i,B

is a Nash

equilibrium strategy for the game SB1
B

.

In a Nash equilibrium of SB2, player i invests if and only if the expected payo↵ from investing

exceeds the expected payo↵ from not investing into the respective asset:

a

⇤
i,A

(x
i

) = 1 if E (u
A

(1, l
A

, x

i

)) � E (u
A

(0, l
A

, x

i

)) , else a

⇤
i,A

(x
i

) = 0,

a

⇤
i,B

(x
i

) = 1 if E (u
B

(1, l
B

, x

i

)) � E (u
B

(0, l
B

, x

i

)) , else a

⇤
i,B

(x
i

) = 0.

These conditions are exactly the Nash equilibrium conditions for SB1
A

and SB1
B

respectively,

as l
A

is independent of a⇤
i,B

(x
i

) and l

B

is independent of a⇤
i,A

(x
i

).

Hence, we can consider the game SB2 as two seperate games. In the exposition of the

model, we focus on the game SB1
A

but all conclusions are applicable to the game SB1
B

and

thus generalize to the game SB2.

3 Equilibrium of the Game SB1
A

In this section we investigate the equilibrium of the game Subscript SB1
A

. As a first step, we

dicuss the equilibrium in switching strategies. We then show that the equilibrium in switching

strategies prevails under more general assumptions.

3.1 Equilibrium in Switching Strategies

To solve for the equilibrium in our model, we generalize the argument of Morris and Shin (2004)

to the two-dimensional case and assume that agents play switching strategies. In switching

strategies, the agent computes a critical signal and a corresponding critical fundamental state

for the respective asset, and either rolls over or forecloses, depending on whether her own private

signal x
i

is above or below the critical signal which she uses as cuto↵. The critical signal is a

function x

crit

A

that divides the signal space into an acceptance and a denial region:

a

⇤
i,A

(x
i

) =

8
><

>:

1 if x

i

A

� x

crit

A

(xi
B

)

0 if x

i

A

< x

crit

A

(xi
B

)
.
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To compute the equilibrium in switching strategies, observe first that – because of the law

of large numbers and our assumption of an infinite number of investors – the solvency state

for ✓ is deterministic. If all investors play the switching strategy with the same cuto↵, there

is a function ✓

crit

A

which maps each ✓

B

to a critical value of the fundamental state for asset A

such that the asset is on the margin of success and failure in this state. Recall that the asset is

successful in case the fundamental state is large enough to sustain partial foreclosure. At the

margin of success and failure for each ✓

B

the critical value ✓

crit

A

(✓
B

) is exactly equal to z

A

l

A

and therefore solves the following equation:

8✓
B

: ✓crit
A

(✓
B

) = z

A

Z 1

�1

Z
x

crit

A

(x
B

)

�1
f

x

�
x

A

, x

B

, ✓

crit

A

(✓
B

), ✓
B

�
dx

A

dx
B

| {z }
l

A

. (C1)

Note that ✓

crit

A

summarizes the impact of partial foreclosure of all other agents from the per-

spective of one agent.

Simultaneously, in equilibrium, at the critical value of the signal xcrit
A

(x
B

), the creditor is

indi↵erent between foreclosure and rollover such that the expected return on the investment

conditional on the private information is equal to the outside option:

8x
B

: �
A

= E (u
A

(1, l
A

, x)) (C2)

=

Z 1

�1

Z 1

✓

crit

A

(✓
B

)
g

✓|x
�
✓

A

, ✓

B

, ⇠

A

�
x

crit

A

(x
B

) , x
B

�
, ⇠

B

�
x

crit

A

(x
B

) , x
B

��
d✓

A

d✓
B

.

Definition (equilibrium in switching strategies of the game SB1

A

). The functions

✓

crit

A

and x

crit

A

are an equilibrium in switching strategies if and only if they fulfill equations C1

and C2.

The two corresponding equilibrium equations have to be solved for the two critical functions,

✓

crit

A

and x

crit

A

. In general, this can only be done numerically.

Figure 1 illustrates the critical functions and visualizes the game for one arbitrary state of

the world. The ellipses illustrate the bivariate normal distributions of ✓ and x

i

. The left panel

shows the critical fundamental state function, ✓crit
A

, which divides the fundamental state space

into the default and solvency region for ✓. The left panel shows the acceptance and denial

region (divided by the critical private signal function, xcrit
A

) for private signals. If ✓ is to the

right of ✓crit
A

(✓ � z

A

l

A

) the asset pays out creditors because su�ciently many creditors have

received a su�ciently good signal – a signal which is to the right of xcrit
A

. On the other hand,
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in case ✓ is to the left of ✓crit
A

, the fraction of creditors who foreclose is too large such that the

country defaults. Figure 1 illustrates the solvency case for one arbitrary random realization of

the fundamental state and a subset of corresponding private signals. Signals for creditors who

foreclose are represented by hollow dots.

Under the assumption of risk neutral agents the price of debt, p
A

, in our model is represented

by the ex ante probability of the asset to be successful such that creditors are paid back in full:

8✓
B

: p
A

= Prob

�
✓

A

� ✓

crit

A

(✓
B

)
�
=

Z 1

�1

Z 1

✓

crit

A

(✓
B

)
g

✓

d✓
A

d✓
B

.

3.2 Existence and Uniqueness of the Equilibrium

To analyse the properties of the Nash equilibrium we proceed in three steps. First, we show

that there are equilibria in switching strategies as long as cuto↵s converge to a solution for

the equilibrium conditions C1 and C2. Second, we argue that if cuto↵s converge to the same

function pair x

crit

A

–✓crit
A

regardless of the initial cuto↵ in the switching strategies, there is a

unique equilibrium in switching strategies. Finally, we show that in these cases the switching

strategy around x

crit

A

survives the iterated deletion of dominated strategies which establishes

the unique equilibrium in switching strategies as a unique Nash equilibrium.

Lemma 2. There exists a range of parameter values of the public and private signal such that

the conditional mean of the fundamental state of asset A, ⇠
A

, is non-decreasing in the private

signal about asset A, x
A

.

Proof. To check whether there is a parametrization such that the ⇠

A

is non-decreasing in x

A

we consider the first derivative, ⇠
A

:

⇠

0
A

=
�

A

(↵
B

+ �

B

)�
p
↵

A

↵

B

�

A

�

B

⇢

private

⇢

public

� �

A

�

B

⇢

2
public

↵

A

⇣
↵

B

+ �

B

� ↵

B

⇢

2
private

⌘
� 2

p
↵

A

↵

B

�

A

�

B

⇢

private

⇢

public

+ �

A

⇣
↵

B

+ �

B

� �

B

⇢

2
public

⌘

The denominator is positive for all admissible parameters (↵
A

> 0, ↵
B

> 0, �
A

> 0, �
B

> 0,

0 < ⇢

public

< 1, 0 < ⇢private < 1) whereas this is not necessarily the case for the numerator.

Nevertheless, there is large set of parameters for which the numerator is positive such that

⇠

0
A

> 0. Irrespective of the correlation parameters, in particular all parameters for which there

exists a unique equilibrium in the one-dimensional case for asset A and asset B respectively

(z
A

↵

A


p
2⇡�

A

and z

B

↵

B


p
2⇡�

B

; see Morris and Shin (2004)) yield ⇠

0
A

> 0. ⌅
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If the conditions of Lemma 1 are fulfilled, we can determine the switching strategy by

a sequential process, whose intuition is illustrated in Figure 2. We start by assuming that

investors always roll over (or never) in which case ✓

crit ⌘ 0. An individual agent will choose a

switching strategy x as a best response, which will lead to a new critical ✓, and so on. Based

on this idea we can derive the following proposition:

Proposition 2. If ⇠
A

, is non-decreasing in the private signal about asset A, x
A

, and if a pair

of functions, xcrit
A

and ✓

crit

A

, exists, that is a unique solution of equations C1 and C2, then a

unique Nash equilibrium for SB1
A

exists. In this case the Nash equilibrium is the equilibrium

in switching strategies with the solutions x

crit

A

and ✓

crit

A

.

Proof. We define two operator sT
✓

and T

x

as follows:

T

✓

: L
x

! L

✓

: xi
A

! ✓

i

A

with

8✓
B

: ✓i
A

(✓
B

) = z

A

Z 1

�1

Z
x

i

A

(x
B

)

�1
f

x

�
x

A

, x

B

, ✓

B

✓

i

A

, ✓

B

�
dx

A

dx
B

,

T

x

: L
✓

! L

x

: ✓i�1
A

! x

i

A

with

8x
B

: �
A

=

Z 1

�1

Z 1

✓

i�1
A

(✓
B

)
g

✓|x
�
✓

A

, ✓

B

, ⇠

A

�
x

i

A

(x
B

) , x
B

�
, ⇠

B

�
x

i

A

(x
B

) , x
B

��
d✓

A

d✓
B

.

Intuitively, given the strategy x

i

A

, T
✓

calculates the corresponding threshold for default, ✓i
A

,

and, given the critical fundamental state function ✓

i�1
A

, T
x

calculates the corresponding best

response strategy x

i

A

.

We define the function pair ✓i
A

, xi
A

for all i inductively.

Starting with x

0
A

⌘ �1 and ✓

0
A

= T

✓

�
x

0
A

�
⌘ 0, we define x

i

A

:= T

x

�
✓

i�1
A

�
, ✓i

A

:= T

✓

�
x

i

A

�
.

Analogously, starting with x

0
A

⌘ 1 and ✓

0
A

⌘ 1, we define x

i

A

:= T

x

⇣
✓

i�1
A

⌘
, ✓

i

A

:= T

✓

�
x

i

A

�
.

In a first step of the proof we show by induction that ✓i
A

 ✓

i+1
A

, xi
A

 x

i+1
A

and ✓

i

A

� ✓

i+1
A

,

x

i

A

� x

i+1
A

. To show this we first consider the sequence initialized from the left where x0
A

⌘ �1

and ✓

0
A

= T

✓

�
x

0
A

�
⌘ 0.

For the base case we discuss T
✓

�
x

i

A

�
for i = 0 and i = 1 as well as T

x

�
✓

i�1
A

�
for i = 1.

Consider T
✓

�
x

0
A

�
.

As x

0
A

⌘ �1 it follows that 8i : ai
A

(x
i

) = 1 (i.e. no coordination problem) and default only

occurs if ✓
A

 0 implying that the cuto↵ is 8✓
B

: ✓0
A

(✓
B

) = 0. This result can also be seen

directly from T

✓

: Since there is no mass of distribution within the integration domain [�1,1],

8✓
B

: ✓0
A

(✓
B

) = 0.

12



Next we look at T
x

�
✓

0
A

�
.

For i = 1 the lower integration limit in T

x

is ✓

0
A

(✓
B

) = 0. For fixed x

B

, a change in x

A

shifts

the mean of the conditional distribution but leaves the covariance matrix unchanged. Due

to the properties of the bivariate normal distribution there exists a unique conditional mean

⇠

1 = (⇠1
A

, ⇠

1
B

) > �1 such that a �

A

-portion of the conditional density g

✓|x with mean ⇠

1 is

above the integration limit ✓0
A

(✓
B

) = 0. As ⇠1
A

> �1 and since ⇠

A

depends linearly on x

A

, we

get x1
A

> �1.

For the exposition of the logic of the sequence we also discuss T
✓

�
x

1
A

�
. For fixed ✓

B

, there

is a positive density of f
x

within the integration domain [�1, x

1
A

(x
B

)]. Hence, we have that

0 < ✓

1
A

(✓
B

) because the integral is larger 0. This is obviously true for normal distribution.

Next we consider the inductive step. We have to prove that ✓i
A

 ✓

i+1
A

and x

i

A

 x

i+1
A

.

We look at T
x

�
✓

i

A

�
.

For fixed x

B

we have from the induction hypothesis 8✓
B

: ✓i�1
A

(✓
B

)  ✓

i

A

(✓
B

), the integration

limit shifts to the right and thus the value the integral decreases below �

A

. Therefore, in order

to have a constant �
A

-portion of the density located above the lower integration limit, the mean

of the conditional density g

✓|x, ⇠ = (⇠
A

, ⇠

B

) corresponding to the critical value x

i+1
A

(x
B

), has

to shift to the right too, i.e ⇠

A

�
x

i+1
A

(x
B

) , x
B

�
> ⇠

A

�
x

i

A

(x
B

) , x
B

�
.

From our assumption that ⇠
A

is non-decreasing in x

A

we get that xi+1
A

(x
B

) has to increase

as well for all x
B

, which proves xi
A

 x

i+1
A

.

Now we consider T
✓

�
x

i+1
A

�
.

From the first part of the proof we thus get xi
A

(x
B

)  x

i+1
A

(x
B

).

We fix ✓

B

. Clearly, the equation used in T

✓

does not hold anymore for ✓i
A

because the integration

limit shifted outwards such that

✓

i

A

(✓
B

) < z

A

Z 1

�1

Z
x

i

A

(x
B

)

�1
f

x

�
x

A

, x

B

, ✓

i

A

(✓
B

) , ✓
B

�
d✓

A

d✓
B

.

Hence, to compensate, ✓i+1
A

(✓
B

) has to shift outwards to let the right hand side in T

✓

�
x

i

A

�
, the

integral, decreases. Note that at the same time the left hand side increases. The new solution

✓

i+1
A

(✓
B

) is where the shift in ✓

i+1
A

(✓
B

) is su�cient to make the equation hold again.

This means that we have proven the inductive step and hence, ✓i
A

 ✓

i+1
A

and x

i

A

 x

i+1
A

.

Analogously, it holds that ✓
i

A

� ✓

i+1
A

, xi
A

� x

i+1
A

.

Because for each ✓

B

, ✓i
A

(✓
B

) is defined on the compact set 0  ✓

A

 1 and the sequence is

monotonously increasing from the left (and monotonously increasing from the right), we have

13



that the sequence converges pointwisely to a function pair ✓lim
A

= lim
n!1 ✓

n

A

, xlim
A

= lim
n!1 x

n

A

.

As T
✓

�
x

lim
A

�
= ✓

lim
A

and T

x

�
✓

lim
A

�
= x

lim
A

the function pair is an equilibrium in switching strate-

gies.

To complete the proof we have to show that the switching strategy using x

lim
A

survives

iterated deletion of dominated strategies. As n ! n+ 1, observe that because of the induction

hypothesis, all strategies remaining after n iterations always foreclose for x < x

n

A

. As x

n+1
A

is

the best response to the corresponding critical border ✓n
A

, it dominates all remaining strategies

that are not foreclosing in the region between x

n

A

and x

n+1
A

. The same logic applies for the

sequence initiated from above where ✓

0
A

⌘ 1 (corresponding to x

0
A

⌘ 1).

Finally, if the solution x

crit

A

for T

�
x

crit

A

�
= T

x

�
T

✓

�
x

crit

A

��
is unique (i.e. x

lim
A

= x

lim
A

and

✓

lim
A

= ✓

lim
A

), then the only strategy surviving iterated deletion of dominated strategies (from

left and from the right) is the switching strategy for x

crit

A

and therefore is the unique Nash

equilibrium. ⌅

4 Some analytic results

We now present some analytic results. Some of them are important on their own, while some

are also helpful for the intuition behind the numerical results.

4.1 The best response xcrit
A to a constant fundamental state function ✓critA

Recall that in order to get a solution for xcrit
A

we have to solve:

�

A

=

Z 1

�1

Z 1

✓

crit

A

(✓
B

)
g

✓|x
�
✓

A

, ✓

B

, ⇠

A

�
x

crit

A

(x
B

) , x
B

�
, ⇠

B

�
x

crit

A

(x
B

) , x
B

��
d✓

A

d✓
B

.

We define a function m

�:

⇠

B

! m

� (⇠
B

) with �

A

=

Z 1

�1

Z 1

✓

crit

A

(✓
B

)
g

✓|x

⇣
✓

A

, ✓

B

,m

� (⇠
B

) , ⇠
B

⌘
d✓

A

d✓
B

.

Obviously, m� depends on ✓

crit

A

, the outside option �

A

, and ⌃
conditional

, but we suppress these

arguments for notational convenience if they are not needed.

The solution x

crit

A

(x
B

) is then found by the intersection of the curves defined by m

� and

the conditional mean ⇠:

⇠

A

�
x

crit

A

(x
B

) , x
B

�
= m

�

�
⇠

B

�
x

crit

A

(x
B

) , x
B

��
.
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In case of a constant critical function ✓

crit

A

(✓
B

) = ✓

0, it is obvious that also m

� is constant:

m

� (⇠
B

) = m

0. We can then easily solve ⇠

A

�
x

crit

A

(x
B

) , x
B

�
= m

0.

Proposition 3. In case of a constant critical function ✓

crit

A

(✓
B

) = ✓

0, x

crit

A

(x
B

) = c0yA +

c1m
0 + c2 (xB � y

B

), where c0, c1 are constants depending on the precision of the signals only,

while c2 in addition depends on the correlations.

We can get several insights from Proposition 3:

i) If additionally, ⇠
A

does not depend on x

B

, xcrit
A

is a constant. This will lead to the special

case considered below.

ii) These results hold in particular for the start of our iteration in the solution (because ✓
A

⌘ 0

or 1). From the simulations of the numerical results one gets the intuition, that this first

step already shows the slope of the critical signal functions in equilibrium, with some non-

linearities added because of the feedback of ✓crit
A

.

Specifically, in this first step a change in ⇢

public

and ⇢

private

only rotates x

crit

A

(in opposite

directions) around the point (x
B

� y

B

) because c0 and c1 do not depend on them. As this

translates into a (approximate) rotation of ✓crit
A

, one may expect a small e↵ect of a change in

the correlations on the price of debt. Figure 3 illustrates the e↵ects of changes of either ⇢
public

or ⇢
private

on ✓

crit

A

(Panel A) and x

crit

A

(Panel B). Based on a benchmark case, we either increase

⇢

public

or ⇢
private

by 0.1. Starting from the left (✓
A

⌘ 0), the Figure shows the first and the last

step of the sequence.

4.2 No influence of yB (no contagion)

We next state an invariance result for the solution x

crit

A

:

Lemma 2. Let s = (s
A

, s

B

) be a translation vector and explicitly show the parameter y

in the operator T

x

of the proof of Proposition 2: If x

crit

A

= T

x

�
✓

crit

A

; y
�
, x

crit,transl

A

(x
B

) =

x

crit

A

(x
B

+ s

B

) � s

A

and ✓

crit,transl

A

(✓
B

) = ✓

crit

A

(✓
B

+ s

B

) � s

A

then we have x

crit,transl

A

=

T

x

⇣
✓

crit,transl

A

; y � s

⌘
.

Proof. If ✓

crit

A

is translated to ✓

crit,transl

A

, then obviously, m

� is shifted to m

�,transl with

m

�,transl (⇠
B

) = m

� (⇠
B

+ s

B

) � s

A

. As one can easily show, the conditional mean ⇠ is also

translated to ⇠

transl

A

(x� s; y � s) = ⇠

A

(x; y)� s.
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Therefore, xcrit,transl
A

solves:

⇠

transl

A

⇣
x

crit,transl

A

(x
B

) , x
B

⌘
= ⇠

A

⇣
x

crit,transl

A

(x
B

) + s

A

, x

B

+ s

B

⌘

= ⇠

A

�
x

crit

A

(x
B

+ s

B

) , x
B

+ s

B

�
� s

A

= m

�

�
⇠

A

�
x

crit

A

(x
B

+ s

B

) , x
B

+ s

B

��
� s

A

= m

�

⇣
⇠

A

⇣
x

A

crit,transl (x
B

) + s

A

, x

B

+ s

B

⌘⌘
� s

A

= m

�

⇣
⇠

transl

A

⇣
x

crit,transl

A

(x
B

) , x
B

⌘
+ s

B

⌘
� s

A

= m

�,transl

⇣
⇠

transl

A

⇣
x

crit,transl

A

(x
B

) , x
B

⌘⌘
.

This shows that xcrit,transl
A

is the result of T
x

as desired. ⌅

The intuition of the proposition is easy: If the publicly known signal y is shifted, this

changes the conditional mean, but leaves the conditional covariance matrix unchanged. Thus,

if the critical fundamental state function is shifted by the same vector, then the solution for the

critical signal is also just shifted.

One can derive an analogous result for di↵erent changes of parameters, however for general

transformations one has to be careful about the description of the region R = {✓ : ✓crit
A

(✓
B

) <

✓

A

} in terms of the new variables. The main problem is that e.g. a rotation of a general critical

function ✓

crit

A

may no longer be invertible in the new coordinates. The fundamental problem

with invariance in equation C1 is that the solution is confined to the interval 0  ✓

A

 z

A

. We

will show this by looking at the e↵ect of a translation.

Lemma 3 A translation of xcrit
A

in the direction of x
B

shifts the critical function ✓

crit

A

by the

same amount. A translation in the direction of x
A

leads to a smaller shift in the same direction

because part of the response is compensated by the left-hand side of the equation.

Proof. Clear. ⌅

Proposition 4 (no contagion). Let us explicitly show the dependency of the solution to (C1)

and (C2) from y

B

: x

crit,y

B

A

and ✓

crit,y

B

A

.

We then have: x

crit,y

B

A

(x
B

) = x

crit,0
A

(x
B

� y

B

) and ✓

crit,y

B

A

(✓
B

) = ✓

crit,0
A

(✓
B

� y

B

). As a con-

sequence we get that the price of debt is independent of y
B

since the mass of the distribution

above the critical border is constant.
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Proof. From Lemma 3 above we get that if ✓crit is shifted then the critical signal fulfills the

equation from above. From equation C1 (which does not depend on y

B

) we get exactly the

shifted equation for ✓. ⌅

4.3 The Special Case: Constant Critical Functions

Before we proceed to the numerical experiments to quantify informational contagion we in-

vestigate a special case, namely that of identical precision parameters for asset A and B, and

identical correlation for private information and the fundamental state. This can be thought of

as a border case, because we basically assume that – perhaps precipitated by the introduction

of the currency union – precision parameters for both dimensions are identical and also public

and private correlation have converged.

Proposition 5. If the precisions of the public and the private signal are identical for both

assets and the private and public correlation is the same, we can show that the critical functions

x

crit

A

and ✓

crit

A

, as well as x

crit

B

and ✓

crit

B

, are constant in SB1
A

and SB1
B

, and the respective

game is identical to the one-dimensional case.

Proof. For the special case we have to show that the critical functions are constant. Hence,

we have to show that for the special case, the equilibrium solutions do not depend on x

B

and

✓

B

in SB1
A

and do not depend on x

A

and ✓

A

in SB1
B

. Since in the special case SB1
A

and

SB1
B

are symmetric, we confine our attention to the game SB1
A

.

Note that in equilibrium, the critical signal xcrit
A

only enters the equation C2 via the mean

of the conditional distribution, which links the two equilibrium conditions. Thus, we consider

the mean of the conditional distribution of ✓, ⇠ = (⇠
A

, ⇠

B

), for the special case. For ⇠

A

to be

independent of x
B

and ⇠

B

to be independent of x
A

it is necessary and su�cient that ↵
A

= ↵

B

,

�

A

= �

B

, and ⇢

public

= ⇢

private

. Plugging in these conditions, reduces ⇠
A

and ⇠

B

to:

⇠

A

=
x

A

�

B

+ y

A

↵

B

↵

A

+ �

A

, ⇠

B

=
�

A

x

B

+ ↵

A

y

B

↵

A

+ �

A

.

We can use this result to simplify the equilibrium conditions and plug the the reduced expres-

sions into densities in equations C1 and C2 for the game SB1
A

:
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⇣
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�
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✓
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private
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2
A

+ x

2
A

+ ✓

2
B

� 2✓
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2
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2
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✓✓

✓
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↵
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◆
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A

✓

B

� �

A

✓

B

+�

A

x

B

+ ↵

A

y

B

+ ↵

A

✓

A

⇢

private

+ �

A

✓

A

⇢

private

� �

A

x

A

⇢

private

� ↵

A

y

A

⇢

private

)

+

✓
✓

A

� �

A

x

A

+ y

A

↵

A

↵

A

+ �

A

◆
(�↵

A

✓

A

� �

A

✓

A

+ ↵

A

✓

B

⇢

private

+ �

A

✓

B

⇢

private

��

A

x

B

⇢

private

� yB↵
A

⇢

private

+ �

A

x

A

+ y

A

↵

A

)))

When we now integrate over the densities, under the special case conditions, it turns out that

✓

B

and x

B

cancel out:

�

A

= �
⇣p

↵

A

+ �

A

�
↵

A

y

A

+ �

A

x

crit

A

� (↵
A

+ �

A

) ✓
A

�⌘
,

✓

crit

A

= z

A

�

✓
1p
�

A

�
x

crit

A

� ✓

crit

A

�◆
,

where � is the cumulative distribution function of the univariate normal distribution.

Obviously, the equilibrium conditions for the special case do not depend on ✓

B

and x

B

and there-

fore, the functions solving the equations are constant as stated in the proposition. Moreover,

B-dimensional precision parameters cancel out from the equilibrium conditions. ⌅

Notably, the two equilibrium conditions we derive for the special case are identical to the

equilibrium conditions for the one-dimensional case, which is discussed in Morris and Shin

(2004). This result implies that for the special case, the game SB1
A

is identical to the one-

dimensional game and hence, information about asset B does not a↵ect the probability of

default, and hence the price of debt of asset A.

In addition, as long as the correlations are the same, we obviously have the following result

as the critical functions are independent of the correlation.
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Proposition 6. For the special case, the equilibrium is independent of the correlation.

This means that we have found a constellation of parameters such that the increase of

correlation due to the currency union has no impact on the decisions of the agents and thus, no

impact on the price of debt, and contagion is ruled out. Obviously, it is not clear how relevant

this case is because it assumes that informational precision is identical for both assets and also

correlations are equal – though the currency union might promote such a synchronization.

5 Numerical Experiments

To quantify the contagious e↵ects of news precipitated through correlated fundamentals fur-

ther, we now consider numerical experiments for parameterizations of the model which do not

represent the special case.

We use the operators defined in the proof of Proposition 2 to iteratively solve equations

C1 and C1. Starting with x

i�1
A

(x
B

) = �1000, we solve equation C1 on a grid of ✓
B

-values

{✓1
B

, ..., ✓

n

B

}. We can then interpolate the pointwise solutions linearly to attain a first the

solution of C1, ✓i
A

(✓
B

). In the second step we use ✓

i

A

(✓
B

) to solve equation C2 on a grid of

x

B

-values {x1
B

, ..., x

n

B

} and interpolate the pointwise solutions to obtain x

i

A

(x
B

). We initialize

a second sequence from the right where x

i�1
A

(x
B

) = 1000 and iterate both sequences until they

converge to the same function pair xcrit
A

and ✓

crit

A

. For all numerical experiments discussed below

we obtain unique equilibria.

To focus on the e↵ects of variations of parameters from the second dimension, we consider

parameters which depart considerably from the special case discussed above. Intuitively, we

expect impacts of the B-dimension to be more pronounced, the farther we depart from the

special case. Moreover, signals about asset B are more precise compared to signals about asset

A in the baseline which should increase the weight of B-dimensional information. Also, we have

chosen a low public signal about Asset B to capture the case of negative spillovers. The rest of

the parametrization is chosen such that the values and the resulting yield (approximately 6.5

percentage points) are plausible for the refinancing problem of currency union members.

In each experiment, we vary one parameter while all parameters are held constant. The

baseline values are shown in Table 3. The outside option (�
A

= 0.5) as well as the measure for

the severity of disruption (z
A

= 1) are constant throughout all experiments. We look at changes

in the informational precision, and changes in the correlation of both, the fundamental states

and the private signals, to assess whether changes in these parameters bring about e↵ects on the
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price of asset A. The intuition for contagious e↵ects is that changes in these parameters a↵ect

the weighting of the public and private signals. In particular, we are interested in changes in

correlation and precision parameters of the B-dimensional information but we also show results

for the variation in the A-dimensional precision parameters to have a benchmark to compare

the variation in the B-dimensional parameters with.

We vary the parametrization in 11 equidistant steps while all other parameters are held

constant at the values shown in Table 3. The range of the variation in the parameters is shown

in Table 4. We report the maximum di↵erence in the price of debt due to the parameter

variation, max
⇣
p

j,k

A

⌘
�min

⇣
p

j,k

A

⌘
where j 2 {1, ..., 11} are the equidistant steps and k denotes

the respective experiment. Also, we show how the di↵erences in the price of debt translate into

di↵erences in yields and indicate max
⇣
yield

j,k

A

⌘
�min

⇣
yield

j,k

A

⌘
, where yield

j,k

A

= 1
p

j,k

A

� 1. In

particular, we want to investigate the contagious e↵ects on the price of debt (i) through changes

in changes in the correlation of either the fundamental states of private signals and (ii) through

changes in the informational precision of public and private signals.

Recall that the price of debt is a↵ected by either (i) changes in the density of the fundamental

state ✓, g
✓

, or (ii) changes of the critical fundamental state function, ✓crit
A

. The parameters ↵
A

,

↵

B

and ⇢

public

change the density of the distribution of the fundamental state, while the density

does not depend on �

A

, �
B

and ⇢

private

. ✓crit
A

, on the other hand, depends on all parameters that

are varied in the numerical experiments. Figure 4 shows ✓crit
A

as well as g
✓

for some numerical

experiments to illustrate the e↵ects of the variation in the parameters. Each panel shows three

experiments: The left column shows ✓

crit

A

and g

✓

for the first step of the respective parameter

variation, the second column always shows the baseline case with the parameters shown in Table

3 and the third column shows the last step of the respective parameter variation.

Changes in either ⇢
public

or ⇢
private

exert modest e↵ects on the price of debt of asset A and

the potential for disruption in our experiments is 0.16 percentage points at most in case of

the variation in ⇢

public

and 0.15 percentage points in case of the variation in ⇢

private

. Changes

in ⇢

public

are shown in Panel A of Figure 4. They a↵ect both, the slope and the size of the

elliptical distribution of ✓. As ⇢

public

increases, the minor axes becomes smaller such that the

ellipse becomes narrower. But since ✓

crit

A

mainly rotates around the major axes, the e↵ects of

the parameter variation on the slope are at least partly o↵set and the compression of the ellipse

is mostly ine↵ective for changing the price of debt. Changes in ⇢

private

shown in Panel B of

Figure 4 only rotate ✓

crit

A

while the density g

✓

remains unchanged. ✓

crit

A

again rotates roughly

around the major axis of the elliptical distribution of ✓ and hence, the e↵ects on the price of
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debt are rather modest.

Contagious e↵ects precipitated through changes in the informational precision about asset B

(↵
B

,�
B

) are even smaller and amount to 0.07 percentage points on the price of debt in case of

↵

B

and 0.05 percentage points in case of �
B

. The reason why changes in ↵

B

do not lead to major

changes in the price of debt are twofold since they e↵ect both, g
✓

as well as ✓crit
A

. The changes of

the density of fundamental state caused by changes in ↵

B

mainly result in a contraction of the

minor axes (i.e. the elliptical distribution becomes narrower), which leaves the portion of the

distribution in the solvency region rather constant. The critical function rotates roughly around

the major axes, leaving the fraction of the distribution above ✓

crit

A

rather constant. Changes in

�

B

only a↵ect ✓crit
A

. Also in this case, the mass of the distribution above ✓crit
A

remains relatively

constant despite the rotation of ✓crit
A

since the function mainly rotates around the main axis.

In Table 4 we also show e↵ects of variations in the A-dimensional precision parameters ↵
A

,

�

A

, and of the public signals y
A

, y
B

. The e↵ects of ↵
A

, �
A

are much more pronounced compared

to their B-dimensional counterparts. Variations in y

A

naturally have the largest e↵ects. As we

would expect from the analytical results, variations in the public signal about asset B have no

e↵ects on the price of debt.

6 Conclusion

In order to study public debt refinancing in currency unions we model the simultaneous invest-

ment decision into two assets where fundamental states are subject to positive correlation. To

this end we set up a two-dimensional global game which allows us to study unique equilibria.

Using this model we discuss the contagious e↵ects of information about one country onto the

price of debt of another country. Interestingly, and perhaps also surprisingly, the contagious

channels we study in this paper are not likely to be a major source of the disruption of gov-

ernment bond markets in the aftermath of the recent economic and financial crisis. Assuming

that agents are risk neutral and play Nash, adverse contagious e↵ects precipitated by bad news

about one country are not primarily transmitted through the formation of beliefs about the

refinancing ability of another country. There are some cases where the agent even optimally

behaves as if she does not consider information about the state of one country when taking the

investment decision into another country. Moreover, a change in the public signal about one

country does generally not a↵ect the price of debt of another country. However, correlations of

fundamental states and private signals as well as the precision of information about one country
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do a↵ect the price of debt of another country in most cases. Nevertheless, these e↵ects are

relatively weak. In turn, this indicates that other disruptive sources of contagion such as, inter

alia, direct spillovers, e.g. transmitted through wealth e↵ects, or non-rational behavior involved

in the coordination of creditors may be more important in causing the disruption of government

bond markets.
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Tables

Table 1: Payo↵s SB2

solvency of A
and B

solvency of A,
default of B

default of A,
solvency of B

default of A
and B

l

A

z

A

 ✓

A

l

A

z

A

 ✓

A

l

A

z

A

> ✓

A

l

A

z

A

> ✓

A

l

B

z

B

 ✓

B

l

B

z

B

> ✓

B

l

B

z

B

 ✓

B

l

B

z

B

> ✓

B

invest in both 1 + 1 1 + 0 0 + 1 0 + 0
invest in A not B 1 + �

B

1 + �

B

0 + �

B

0 + �

B

invest in B not A �

A

+ 1 �

A

+ 0 �

A

+ 1 �

A

+ 0
not invest in both �

A

+ �

B

�

A

+ �

B

�

A

+ �

B

�

A

+ �

B

Table 2: Payo↵s SB1
A

solvency of A default of A

l

A

z

A

 ✓

A

l

A

z

A

> ✓

A

invest in A 1 0
not invest �

A

�

A

Table 3: Parametrization

Precision of
public signal

Precision of
private
signal

Correlation
of fund.
states

Correlation
of private
signals

Public
signals

↵

A

, ↵
B

�

A

, �
B

⇢

public

⇢

private

y

A

, y
B

Asset A 0.5 5
0.8 0.5

2.5
Asset B 1 10 0
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Table 4: Numerical Experiments

Parameter ⇢

private

⇢

public

↵

A

↵

B

�

A

�

B

y

A

y

B

from 0.01 0.01 0.1 0.5 2.5 5 0 0
to 0.99 0.99 1.1 2 7.5 15 5 5
steps 0.098 0.098 0.1 0.15 0.5 1 0.5 0.5

Max(pj,k
A

)�
Min(pj,k

A

)

0.0016 0.0015 0.2531 0.0007 0.008 0.0005 0.6505 0

Max(yieldj,k
A

)�
Min(yieldj,k

A

)

0.0018 0.0017 0.3443 0.0008 0.009 0.0006 1.863 0
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Figures

Figure 1: Illustration of the Game SB1
A

Panel A: Solvency and Default Regions Panel B: Acceptance and Denial Regions
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Notes: The density of ✓, g
✓

, is represented by the 99 percent confidence ellipse (black). The density of x, f
x

, is
represented by the 99 percent confidence ellipse (red). Default and solvency regions are illustrated in Panel A.
Realizations of ✓ to the right of ✓crit

A

lead to a payout for the investment into asset A while relations to the left of
✓

crit

A

correspond to no payout. Panel B shows acceptance and denial regions. Agents with realizations of private
signals x

i

to the right of xcrit

A

rollover while agents signal to the left of xcrit

A

foreclose. The parametrization is as
in the baseline discussed in Section 5
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Figure 2: Convergence to ✓

crit

A

and x

crit

A

Panel A: Convergence to ✓

crit

A

Panel B: Convergence to x

crit

A

θA
0θA

1θA
2

θA
0 θA

1

0.2 0.4 0.6 0.8 1.0
θA

-3

-2

-1

1

2

3
θB

xA
1

xA
2

xA
3

xA
1
xA
2

-1.0 -0.5 0.5 1.0 1.5
xA

-3

-2

-1

1

2

3
xB

Notes: As the sequence of the best response iteration progresses, the colors of the critical functions get more
intense.

Figure 3: The correlations ⇢
public

and ⇢

private

and the critical functions ✓crit
A

and x

crit

A

Panel A Panel B
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θA
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1
θB

benchmark higher ρpublic higher ρprivate
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-1

1
xB

benchmark higher ρpublic higher ρprivate

Notes: Starting from the left (✓
A

⌘ 0), the Figure shows the first and the last step of the sequence. The
parametrization for the benchmark is as in the baseline discussed in Section 5; for this case ⇢

public

= 0.8 and
⇢

private

= 0.5. To illustrate how higher correlations a↵ect the shape of ✓crit
A

and x

crit

A

, we increase either ⇢

public

or ⇢
private

by 0.1.

29



Figure 4: ✓crit
A

and g
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Abstract
We study the potential role of correlated refinancing abilities among di↵erent coun-
tries for the disruption of government bond markets in a currency union. Following
Morris and Shin (2004) we use a global games framework and model the simulta-
neous investment decision into two assets, which are subject to correlated fundamen-
tal states, as a coordination problem with correlated imperfect information. Based
on this model we evaluate the role of information about one country for the coordi-
nation of creditors of another country. We find, however, that the contagious e↵ects
on the price of debt precipitated through correlation are modest. Hence, assuming
that investors behave as modeled in the global game, we conclude that correlated
fundamentals that precipitate informational spillovers appear to be unlikely to play
a major role for e.g. the disruption of some Eurozone government bond markets in
the aftermath of the recent financial and economic crisis.
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