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Abstract

To post-process ensemble predictions to a particular location, often statistical meth-
ods are used, especially in complex terrain such as the Alps. When expanded to several
stations, the post-processing has to be repeated at every station individually thus los-
ing information about spatial coherence and increasing computational cost. Therefore,
we transform observations and predictions to standardized anomalies. Site- and season-
specific characteristics are eliminated by subtracting a climatological mean and dividing
by the climatological standard deviation from both observations and numerical forecasts.
Then ensemble post-processing can be applied simultaneously at multiple locations. Fur-
thermore, this method allows to forecast even at locations where no observations are
available. The skill of these forecasts is comparable to forecasts post-processed individu-
ally at every station, and even better on average.

Keywords: Statistical post-processing, ensemble post-processing, spatial, temperature, stan-
dardized anomalies, climatology, generalized additive model.

1. Introduction

Numerical weather prediction (NWP) models provide spatial forecasts of di↵erent meteoro-
logical parameters. Due to limited computational power the grid of NWP models is too coarse
to su�ciently resolve some small-scale processes, especially in complex terrain, such as the
Alps. Therefore, parameterizations together with uncertainties in the initial state and the
chaotic nature of the atmosphere lead to errors. Statistical post-processing introduced by
Glahn and Lowry (1972) is one way to correct these systematical errors.

To capture forecast uncertainties, many weather centers provide an ensemble of numerical
forecasts (Lorenz 1982; Leutbecher and Palmer 2008), with slightly di↵erent initial conditions
or parameterizations. Since ensemble forecasts usually do not capture all error sources they
should also be post-processed with statistical models as in Gneiting, Raftery, Westveld, and
Golfman (2005) or Raftery and Gneiting (2005).

However, these statistical models are usually fit separately for separate locations for which
a set of historical observations and NWP forecasts is available. Several techniques exist to
overcome this limitation and to produce statistical forecasts for an arbitrary point in a re-
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Figure 1: Location of 40 stations in South Tyrol superimposed on topography from the Shuttle
Radar Topography Mission (SRTM) and the grid of the ECMWF ensemble forecasts (dotted
lines).

gion. Statistical forecasts from the observation sites can be interpolated to arbitrary locations
(Hacker and Rife 2007; Glahn, Gilbert, Cosgrove, Ruth, and Sheets 2009), observations can
be interpolated onto the NWP grid to post-process every grid point (Schefzik, Thorarinsdot-
tir, and Gneiting 2013) or statistical forecasts representative for a whole region (Scheuerer
and Büermann 2014; Scheuerer and König 2014) can be produced. The latter forecasts sev-
eral stations simultaneously by using anomalies. By subtracting a climatological mean from
observations and NWP forecasts site-specific characteristics are removed so that multiple sta-
tions can be forecasted with a single model. Additionally, if a spatial climatology of the
observations exists, even points in between stations can be predicted.

We modify this method slightly and standardize these anomalies by dividing the di↵erence
to a mean value by the standard deviation (Wilks 2011). Thus, also di↵erent variabilities of
di↵erent stations are considered. Furthermore, we fit full seasonal climatologies instead of
monthly means to also remove season-specific characteristics. Therefore, all data can be used
for training so that the post-processing model does not have to be refitted every day.

The rest of the article is structured as follows: The data are described in the next section,
followed by the method. Afterwards the di↵erent post-processing models are described and
compared. At the end is the conclusion and discussion.

All work has been performed with the statistical software R (R Core Team 2016).

2. Data

Statistical models will be applied to the province of South Tyrol in northern Italy. South Ty-
rol is an alpine region with a large variation in altitude. 40 stations distributed over altitudes
from 208 to 1900 meters amsl provide temporal observations (Figure 1). The numerical en-
semble forecasts are produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF).

The forecast variable is the temperature at 2 meter above ground (T2m) and the input
variables for the statistical models are T2m ensemble mean (m) and standard deviation (s)
of the 51 members linearly interpolated to the station locations. We use a lead time of 18
hours of an ensemble forecast initialized at 00 UTC. The period used is from 1 February 2010
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to 30 June 2015.

To calculate spatial climatologies, a digital elevation model with a spatial resolution of 90 m
from the Shuttle Radar Topography Mission (SRTM, Reuter, Nelson, and Jarvis 2007) is
used.

3. Method

3.1. Nonhomogeneous Gaussian regression

To post-process ensemble forecasts, Gneiting et al. (2005) introduced nonhomogeneous Gaus-
sian regression (NGR). In NGR, a variable y is assumed to follow a normal distribution with
mean µ and standard deviation �. However, � is no longer constant as in the seminal work
of Glahn and Lowry (1972) but depends on the ensemble spread:

y ⇠ N(µ,�), (1)

µ = b0 + b1m, (2)

log(�) = c0 + c1 log(s) (3)

with b0, b1, c0, c1 as regression coe�cients. In this case µ depends on the ensemble mean and
log(�) on the logarithm of the ensemble standard deviation. The logarithmic link function
in Equation 3 is used to ensure positive values for �. The coe�cients b0, b1, c0 and c1
are estimated with maximum likelihood estimation as implement in the R-package crch of
Messner, Mayr, and Zeileis (2015).

3.2. Standardized anomalies

Usually NGR has to be repeated at every station and season individually since di↵erent
measurement sites have di↵erent temperature ranges varying over the year, as shown in the
top panel of Figure 2. To overcome this problem we use standardized anomalies which remove
site- and season-specific characteristics. Additionally, to subtracting the climatological mean,
as in Scheuerer and Büermann (2014), we also divide by the climatological standard deviation
to account for di↵erences in the climatological variance:

ey =
y � µy

�y
(4)

where µy is the mean value of the observations ( in Figure 2) and �y is its standard deviation
(thin lines in Figure 2). Standardized anomalies of ensemble mean and ensemble standard
deviation are computed similarly with m and log(s) respectively (em = (m � µm)/�m and
log(es) = (log(s)� µlog(s))/�log(s)), instead of y.

The central idea behind these standardized anomalies is presented in the bottom panel of
Figure 2. The standardized anomalies have no annual cycle and are centered around 0 for
both stations which enables to forecasts several stations simultaneously.



4 Spatial Ensemble Post-Processing with Standardized Anomalies

−10

0

10

20

30

Bolzano

 

O
bs

er
va

tio
ns

 (°
C)

 (a)

Weissbrunn

 

 

 (b)

0 50 100 200 300

−3

−2

−1

0

1

2

3

Day of the year

St
an

da
rd

ize
d 

ob
s.

 a
no

m
al

ie
s

 (c)

0 50 100 200 300

Day of the year

 

 (d)

Figure 2: (a) Annual cycle of the observations for the valley station Bolzano (red circle in
Figure 1) with the climatology (mean, thick line) and the standard deviation of the clima-
tology (thin lines). (b) and for the mountain station Weissbrunn (red circle in Figure 1).
(c) Annual cycle of the standardized observation anomalies for the station Bolzano (d) and
for Weissbrunn.

3.3. Standardized anomaly model output statistics (SAMOS)

When NGR is reformulated with standardized anomalies site- and season-specific character-
istics are largely removed and only a single model needs to be fit for all stations and seasons
instead of fitting models for each location and date individually. We call this SAMOS. There-
fore y, m, and s in Equation 1–3 are replaced by ey, em and es.
To obtain temperature forecasts (µ̂) and the corresponding standard deviation (�̂), Equa-
tions 2 and 3 have to be restructured with Equation 4 to,

µ̂ = (b0 + b1 em) · �y + µy (5)

and
�̂ = exp(c0 + c1 log(es)) · �y. (6)

To produce forecasts for arbitrary locations where no observations are available only clima-
tologies (µy and �y) of the observations are needed because the coe�cients from Equation 1
(b0, b1, c0, c1), which are fitted on all stations simultaneously, are representative for the whole
region. Thus the spatial resolution of these forecasts only depends on the spatial resolution
of the climatology.

3.4. Climatology

There are several ways to calculate a spatial climatology. It could be produced at every
observation site and then distributed onto the grid with kriging (Aalto, Pirinen, Heikkinen,
and Venäläinen 2013), a climatology with non-Euclidean distances as in Frei (2014) could be
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computed, the 30 days mean at every station individually could be calculated as in Scheuerer
and Büermann (2014) or a spatial climatology for all stations could be fitted at once with a
generalized additive model (GAM, Aalto et al. 2013). The approach in this paper is to work
with an extension of the latter (generalized additive models for location, scale and shape
(GAMLSS), Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby 2007).

The advantage of a GAMLSS is that a climatological mean (µ) and a variable standard
deviation (�) can be fitted simultaneously very similar to NGR but with the possibility of
nonlinear e↵ects. With GAMLSS, the climatology and the standard deviation can be fitted
for all stations with

⇠ ⇠ N(µ⇠,�⇠), (7)

where ⇠ can be y, m or log(s). The nonlinear model for µ⇠ is then,

µ⇠ = �0 + �1alt + f1(lat, lon) + f2(yd) + f3(yd) · alt, (8)

with f1 as spatial smoothing functions of the horizontal coordinates and f2 and f3 as smooth,
cyclic functions over the day of the year (yd). The influence of the altitude (alt) on the
climatology is captured as linear e↵ect and in its interaction with the seasonality. Therefore,
it is possible that the altitude e↵ect can vary over the year and the seasonal e↵ect can vary
with altitude. A similar equation as for µ⇠ is also used for log(�⇠) with the same terms as in
Equation 8.

For the observation climatology, station observations are used as input data while the cli-
matologies of the ensemble forecasts uses past forecasts on the ECMWF forecast grid. Thin
plate splines are used as spatial smoothing function with a degree of freedom of 30 for y and
20 for m and log(s). For m and log(s) the degree of freedom is smaller due to the coarse
model grid of the ensemble forecasts (e.g. Figure 1). Analyses of climatologies showed that
the degree of freedom does not have a huge impact on the forecasts especially for stations
not contained in the training data as long as the degrees of freedom are not close to the
maximum possible, which is either the number of stations or number of grid points. There-
fore, the degrees of freedom are a tradeo↵ between forecast performance and computation
cost and approximately three-fourths of the maximum. The seasonal smooth functions have
harmonic terms at annual and bi-annual frequencies (i.e. four basis functions sin(2⇡ yd/365),
cos(2⇡ yd/365), sin(4⇡ yd/365) and cos(4⇡ yd/365)).

The di↵erent e↵ects for µy are illustrated in Figure 3. Where the seasonal e↵ect on the left
shows that µy has higher values in the summer than in the winter. Additionally, the di↵erent
colors illustrate that the seasonal e↵ect in valleys (brighter colors) has a higher amplitude
than at higher located stations (darker colors). The altitude e↵ect in the middle shows that
valley stations have a higher mean temperature than mountain stations. The lines indicate
that the di↵erence between stations in the valleys and on the mountains is smaller in the
winter (bright colors) than in spring (darker colors). On the right, the spatial e↵ect is plotted
where the mean temperature in the south-west is warmer than in the north-east. With all
these e↵ects, the climatology of any day and location inside the region of South Tyrol can be
provided. These three e↵ects are combined in Figure 4(b). The e↵ects for the ensemble mean
and ensemble standard deviation (not shown) are much smoother due to the smooth model
topography.
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Figure 3: (a) Seasonal e↵ect of µy with an interaction with altitude indicated by the colors.
The brighter the color, the lower the station. (b) Altitude e↵ect of µy with a seasonal in-
teraction. The colors indicate the seasonal e↵ect for 15 December, 15 January, 15 February,
15 March and 15 April (from bright to dark). (c) Spatial e↵ect for µy for the region of South
Tyrol. The sum of all these e↵ects is visualized in Figure 4(b).

3.5. Forecast example

Spatial forecasts can be produced with these climatologies and Equations 5 and 6. Figure 4
shows an example for 1 July 2015. The di↵erence between the climatologies of ensemble
mean and observations is large (top panel). Whereas the observation mean (µy) is strongly
influenced by the altitude, with mapped valleys and ridges, the model mean (µm) only shows
a smooth temperature gradient since there are no valleys in the ECMWF model topography.
The same result is shown by the climatological standard deviation (middle panel). Whereas �y
maps valleys with an additional slightly higher standard deviation in the north-east, �m only
illustrates a smooth increase of standard deviation from south to north. The bottom panel
in Figure 4 exemplifies that a raw ensemble forecast does not produce realistic temperature
forecasts in complex terrain whereas the SAMOS forecast captures spatial and altitude e↵ects.

4. Di↵erent models

To evaluate the performance of SAMOS, several models are compared. The features of the
di↵erent models are listed in Table 1. They di↵er in the treatment of anomalies, climatologies
and uncertainties. The climatologies can either be a mean value over the last 30 days at every
station individually, over the full time series with GAMLSS at every station individually,
or at all stations simultaneously. Furthermore, 2-step models to capture the local forecast
uncertainty (Scheuerer and Büermann 2014) are tested or the calculation of the NGR di↵ers
in the length of the training data and if the NGR is calculated at every station individually
or for all stations together simultaneously.

4.1. Ensemble model output statistics (EMOS)

As a reference model an NGR is calculated on the direct observations and ensemble forecasts
at every station individually which is known as ”ensemble model output statistics” (EMOS,
Gneiting et al. 2005). 30 days prior to the forecast day are used to fit the model. A forecast for
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Figure 4: 2-meter temperature climatology of (a) the NWP ensemble mean, (b) of the obser-
vations. Standard deviation (c) of the ensemble mean climatology and (d) of the observation
climatology (di↵erent coloring for both standard deviations). (e) Ensemble mean forecasts at
original grid resolution. (f) SAMOS mean forecast for the region of South Tyrol. All figures
are for 1 July 2015 and use topography from SRTM data (colors in �C).
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Table 1: Features of the di↵erent models.
Model Anomalies Climatology Uncertainty NGR

EMOS None — 1-step Individual
AMOS Di↵erences GAMLSS stationwise 1-step Simultaneous
AMOS 2-step Di↵erences GAMLSS stationwise 2-step Simultaneous
SAMOS 30days Standardized di↵. 30 days stationwise 1-step Simultaneous
SAMOS stationwise Standardized di↵. GAMLSS stationwise 1-step Individual
SAMOS stationwise-simultaneous Standardized di↵. GAMLSS stationwise 1-step Simultaneous
SAMOS stationwise-simultaneous 2-step Standardized di↵. GAMLSS stationwise 2-step Simultaneous
SAMOS Standardized di↵. GAMLSS spatial 1-step Simultaneous

the next day is then produced with the fitted coe�cients. Consequently, to get forecasts for
every day of the time series, a new model has to be fitted for each day. While this approach
requires high computational e↵ort it has the advantage that almost no historical data are
needed.

4.2. Ensemble model output statistics with anomalies (AMOS)

Next, di↵erence-anomalies (ey = y�µy) replace direct values in the NGR (AMOS). Therefore,
a GAMLSS climatology is calculated for every station individually similar to Equation 8 but
without spatial and altitude e↵ect (2nd, 3rd and 5th term). Di↵erent to EMOS all stations
are forecasted with one single model and local forecast uncertainties are not considered. To
capture di↵erent local forecast uncertainties a 2-step (AMOS 2-step) model approach is used.
Therefore, first an ordinary linear regression is fitted and the site-specific mean of the squared
residuals are used as additional predictor variable for � (i.e., add its logarithm to right side
of Equation 3). This 2-step model is similar to the 2-step model in Scheuerer and Büermann
(2014).

4.3. SAMOS 30days

SAMOS 30days has standardized anomalies and one NGR at all stations simultaneously but
with a climatology over the previous 30 days instead of the full time series. As climatology,
an average of the last 30 days preceding the forecast day for every station individually is
calculated. Afterwards one NGR is applied at all stations simultaneously with the last 30
days as training data. This model is similar to the method in Scheuerer and Büermann (2014)
but with standardized anomalies.

4.4. SAMOS stationwise

The second SAMOS uses a stationwise climatology as in AMOS but with standardized anoma-
lies. Additionally, separate NGR models are fitted for each station but with the full time series
as training data.

4.5. SAMOS stationwise-simultaneous

SAMOS stationwise-simultaneous has the same climatologies as SAMOS stationwise for every
station individually and the full time series but the NGR is calculated at all stations simul-
taneously. Additionally, a 2-step (SAMOS stationwise-simultaneous 2-step) model to capture
the local uncertainty is tested similar to Scheuerer and Büermann (2014). This model shows



Markus Dabernig, Georg J. Mayr, Jakob W. Messner, Achim Zeileis 9

if these standardized anomalies capture all the local uncertainty information that is captured
by a 2-step model in Scheuerer and Büermann (2014).

4.6. SAMOS

For this model the climatologies and the NGR are fitted on all stations simultaneously. Com-
pared to the stationwise models the advantage of this model is that in between station points
can be forecasted directly without any additional interpolation. Errors can be calculated at
station points (”same-station”) and in between (”new-station”). For the same-station error,
all available stations are used to fit the climatologies and the NGR. Afterwards forecasts for
the same stations are made with these fits. For the new-station forecasts a leave-one-out
error is calculated. The climatology and the NGR model are fitted on 39 stations and then
the forecast is made for the 40th station with these fits. This simulates forecasts for new
stations where no historical data are available or for points in between stations. To receive a
new-station error for all stations, each station has to be left out once and is then verified.

5. Results

The time series is separated into training and test data to evaluate the forecasts. Therefore,
10-fold cross-validation is applied to all models that use the full time series as training data.
For the methods with the 30 day training data, the previous 30 days are used for fitting the
model for the following day. As a result, all forecasts are tested on data not contained in the
training data.

To verify the performance of the proposed probabilistic forecasts the mean absolute error
(MAE) is computed as a deterministic measure and the continuous ranked probability score
(CRPS) as a probabilistic measure for each station and model. To see the relative change to
a reference model, a skill score (SS) for the MAE and the CRPS is produced:

SS = 1� score

scoreref
. (9)

5.1. Di↵erence- vs. standardized-di↵erence-anomalies

The first results evaluate the benefit of using standardized di↵erences instead of di↵erences
as anomalies. AMOS is the reference for the skill score.

Figure 5 demonstrates that the standardized anomalies improve the forecasts by about 4
percent compared to the simple di↵erences for both, the MAE and the CRPS. However, the
improvements of the forecasts is only observed for the anomalies with the full climatology. For
the method with the 30 days mean as climatology almost no di↵erences occur (not shown).
Both anomalies do not benefit from using a 2-step model for the uncertainty.

In review of these results, all following comparisons are for SAMOS variants with standardized
anomalies and without the 2-step model for the local uncertainty.

5.2. Di↵erent models

To compare the di↵erent methods from Table 1, the forecast error at every station is calcu-
lated. Figure 6 shows that SAMOS-stationwise performs best. It is on average about 4 percent
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Figure 5: Comparison of di↵erent anomalies and additional uncertainty information
with SAMOS stationwise-simultaneous method. Every box contains 40 points with one
MAE/CRPS per station. The AMOS forecasts are the reference for the skill score.

better than forecasts with a conventional EMOS. If all stations are fitted and forecasted simul-
taneously with SAMOS stationwise-simultaneously the results are not significantly di↵erent.

The SAMOS 30days performs similarly as EMOS. Using all available data and a full climatol-
ogy (SAMOS stationwise-simultaneously) instead of a 30 days mean (SAMOS 30days) does
not only save computation time but also clearly improves the forecasts.

The proposed SAMOS (same-stations) method performs on average slightly better than
EMOS but worse than SAMOS stationwise or SAMOS stationwise-simultaneously. The only
di↵erence between SAMOS stationwise-simultaneously and SAMOS is the climatology. Calcu-
lating a spatial climatology instead of separate station climatologies allows directly to forecast
in between stations at the expense of a somewhat reduced skill.

When SAMOS is tested on new stations the forecast performance only slightly decreases.
The outliers are all locations close to the borders of South Tyrol, a typical problem of spatial
methods.

6. Discussion and conclusion

To produce spatial forecasts, a statistical model is fitted on standardized anomalies, which
remove site- and season-specific characteristics of the data. These standardized anomalies
are the di↵erence to a climatological mean and then divided by the climatological standard
deviation for the observations and NWP forecasts, respectively.

Without the season-specific characteristics longer training data can be used and the fits do
not have to be updated every day as in Scheuerer and Büermann (2014) or Gneiting et al.
(2005). Using longer training data improves the forecasts significantly. A large practical
advantage is also that the coe�cients from the forecast model need not be recomputed every
day. The only time-consuming part is the calculation of the climatologies. However, since the



Markus Dabernig, Georg J. Mayr, Jakob W. Messner, Achim Zeileis 11

Figure 6: Skill score with EMOS as reference of forecasts computed with di↵erent methods
listed in Table 1. Each box contains 40 points with one MAE/CRPS per station.

climatology changes slowly it has to be updated only infrequently, e.g. annually.

Without site-specific characteristics all stations can be forecasted simultaneously. Further-
more, the fitted coe�cients are valid for the whole region and with a spatial climatology of the
observations even points in between stations can then be forecasted. Combining all stations
with SAMOS does not always improve the forecasts but the method provides forecasts even
where no observations are available. The spatial resolution of these forecasts is determined
by the spatial resolution of the climatology.

Spatial calibration such as ensemble copula coupling (Schefzik et al. 2013) or with Gaussian
random fields (Feldmann, Scheuerer, and Thorarinsdottir 2015) could be used to capture
dependency structures but have not been applied in this study. Further adjustment of the
climatology could also improve the forecast performance. Additionally, an advantage of the
proposed method is to use longer training data which would make it a suitable method to use
reforecasts (Hagedorn, Hamill, and Whitaker 2008).
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Abstract
To post-process ensemble predictions to a particular location, often statistical me-
thods are used, especially in complex terrain such as the Alps. When expanded to
several stations, the post-processing has to be repeated at every station individually
thus losing information about spatial coherence and increasing computational cost.
Therefore, we transform observations and predictions to standardized anomalies.
Site- and season-specific characteristics are eliminated by subtracting a climatolo-
gical mean and dividing by the climatological standard deviation from both ob-
servations and numerical forecasts. Then ensemble post-processing can be applied
simultaneously at multiple locations. Furthermore, this method allows to forecast
even at locations where no observations are available. The skill of these forecasts
is comparable to forecasts post-processed individually at every station, and even
better on average.
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