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Abstract

Measurement invariance is a fundamental assumption in item response theory models,
where the relationship between a latent construct (ability) and observed item responses
is of interest. Violation of this assumption would render the scale misinterpreted or
cause systematic bias against certain groups of people. While a number of methods
have been proposed to detect measurement invariance violations, they typically require
advance definition of problematic item parameters and respondent grouping information.
However, these pieces of information are typically unknown in practice. As an alternative,
this paper focuses on a family of recently-proposed tests based on stochastic processes
of casewise derivatives of the likelihood function (i.e., scores). These score-based tests
only require estimation of the null model (when measurement invariance is assumed to
hold), and they have been previously applied in factor-analytic, continuous data contexts
as well as in models of the Rasch family. In this paper, we aim to extend these tests
to two parameter item response models estimated via maximum likelihood. The tests’
theoretical background and implementation are detailed, and the tests’ abilities to identify
problematic item parameters are studied via simulation. An empirical example illustrating
the tests’ use in practice is also provided.

Keywords: measurement invariance, item response theory, factor analysis, 2PL model, di↵er-
ential item functioning.

1. Introduction

A major topic of study in educational and psychological testing is measurement invariance,
with violation of this assumption being called di↵erential item functioning (DIF) in the item
response literature (see, e.g., Millsap 2012, for a review). If a set of items violates measurement
invariance, then individuals with the same ability (“amount” of the latent variable) may
systematically receive di↵erent scale scores. This is problematic because researchers might
conclude group ability di↵erences when, in reality, the di↵erences arise from unfair items.

We can formally define measurement invariance in a general fashion via (Mellenbergh 1989):

f(y
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i

,⌘
i

) = f(y
i

|⌘
i

), (1)

where y

i

is a vector of observed variables for individual i, ⌘
i

is the latent variable vector
for individual i, which can be viewed as a random variable generated from a normal or
multivariate normal distribution with parameter ✓, v

i

2 V , where V is the auxiliary variable
such as age, gender, ethnicity, etc., against which we are testing measurement invariance, and
f(·) is an assumed parametric distribution.
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In applying the measurement invariance definition to a parametric item response theory (IRT)
framework, Equation (1) states that the relationship between the latent construct (ability)
⌘

i

and response y

i

(binary or ordinal) holds regardless of the value of V . Many previous
procedures have been proposed to assess measurement invariance/DIF in IRT models (e.g.,
Lord 1980; Holland and Thayer 1988; Thissen, Steinberg, and Wainer 1988; Swaminathan and
Rogers 1990; Rijmen, Tuerlinckx, Boeck, and Kuppens 2003; den Noortgate and Boeck 2005;
Magis, Béland, Tuerlinckx, and Boeck 2010; Magis and Facon 2012), and these methods focus
on generally detecting the presence or absence of DIF. When a measurement invariance vio-
lation is detected, however, researchers are typically interested in “locating” the measurement
invariance. As Millsap (2005) stated, locating the invariance violation is one of the major
outstanding problems in the field. This locating problem can be divided into two aspects.
One is to locate which item parameter violates the measurement invariance assumption. The
other is to locate the point/level of the auxiliary variable (V ) at which the violation occurs.
Unfortunately, this second aspect is often ignored because previous procedures require us to
pre-define the reference and focal groups (based on V ).

A novel family of score-based tests has been proposed recently to address those “locating”
issues in factor models for continuous data (Merkle and Zeileis 2013; Merkle, Fan, and Zeileis
2014; Wang, Merkle, and Zeileis 2014). Additionally, Strobl, Kopf, and Zeileis (2015) applied
related tests to Rasch models estimated via conditional ML in order to identify the violating
point along a categorical or continuous auxiliary variable. Moreover, Strobl et al. (2015)
applied the tests recursively to multiple auxiliary variables via a “Rasch trees” approach,
highlighting the fact that the groups tested for DIF need not be specified in advance and can
even be formed by interactions of several auxiliary variables. Unfortunately, the conditional
ML framework is only applicable to models of the Rasch family.

In this paper, we extend the tests to more general IRT models in a unified way and focus on
identifying violating item parameters without pre-specifying reference and focal groups. We
first describe the two-parameter IRT model and its relationship to factor analysis, along with
the score-based tests’ application to IRT. Next, we report on the results of two simulation
studies designed to examine the tests’ ability to locate problematic item parameters while
simultaneously handling the issue of person impact. Next, we apply the tests to real data,
studying the measurement invariance of a mathematics achievement test with respect to
socioeconomic status. Finally, we discuss test extensions and further IRT applications.

2. Model

In this study, we focus on binary data y
ij

, where i represents individuals (i 2 1, . . . , n) and
j represents items (j 2 1, . . . , p). There are two related approaches in the social science
literature for analyzing these data: IRT and factor analysis. A two-parameter IRT model can
be written as

y
ij

⇠ Bernoulli(p
ij

), (2)

logit(p
ij

) = ↵
j

⌘
i

+ �
j

, (3)

⌘
i

⇠ N(µ
i

,�2
i

), (4)

where Equation (2) states that each person’s response to each item (y
ij

) arises from a Bernoulli
distribution with parameter p

ij

. Then Equation (3) transforms p
ij

to logit(p
ij

) = log( pij

1�pij
),
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which is a linear function of the person’s ability ⌘
i

and the item parameters �
j

and ↵
j

. The
alternative parameterization, ↵

j

(⌘
i

� �
j

), could also be used here. Finally, person ability
⌘
i

is described by hyperparameters µ
i

and �2
i

, with these parameters commonly being fixed
to 0 and 1, respectively, for identification. Instead of using the logit as the link function
in Equation (3), we can alternatively use the inverse cumulative distribution function of the
standard normal distribution ��1() (the probit link function). In this case, Equation (3)
could be written as p

ij

= �(↵
j

⌘
i

+ �
j

).

Use of the probit link function in the above model is equivalent to placing a factor analysis
model on latent continuous variables y? (Takane and de Leeuw 1987). In particular,

y

?

i

= ⇤⌘
i

+ ✏, (5)

where ⇤ is p⇥ 1 factor loading vector, with components �1, . . . ,�p

; ⌘
i

⇠ N(0, 1); and ✏ is an
error term, which follows the distribution N(0, ). The matrix  is diagonal and defined as
I�diag(⇤⇤0). The continuous response vector y?

i

is composed by y?
ij

(j = 1, . . . , p), with the
observed binary data being obtained via

y
ij

=

(

1 y?
ij

� ⌧
j

0 y?
ij

< ⌧
j

.
(6)

Therefore, we can see that �
j

is similar to ↵
j

in Equation (3); they are both attached to
the ability variable ⌘

i

. The error term ✏ is related to the probit link function that could be
used in Equation (3). Finally, the threshold ⌧

j

corresponds to �
j

, which is related to item j’s
di�culty.

No matter which link function is used, however, estimation of the two-parameter IRT model is
not straightforward. The di�culty is caused by the person parameters ⌘

i

, which we generally
avoid estimating (either by conditioning on them or integrating them out). Estimation meth-
ods that address this di�culty include conditional maximum likelihood (CML) (e.g. Fischer
and Molenaar 2012; Ayala 2009), marginal maximum likelihood (MML) (Thissen 1982) and
pairwise maximum likelihood (Katsikatsou, Moustaki, Yang-Wallentin, and Jöreskog 2012).
We briefly describe each method below.

3. Estimation

3.1. CML

CML uses each person’s sum score as a su�cient statistic for the person parameters. This
allows us to condition on the sum score and avoid estimation of the person parameters.
However, this property only holds for IRT models with ↵

j

= 1, such as the Rasch model
(one-parameter model) and partial credit model. Since we aim to employ the two-parameter
IRT model in this paper, CML cannot be used.

3.2. MML

MML extends to the two-parameter IRT model by integrating out person parameters. Specif-
ically,

`(✓;y
i

) = log

Z 1

�1
f(y
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|⌘
i

,✓)g(⌘
i

)d⌘
i

, (7)
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where `(✓;y
i

) denotes the log-likelihood function for individual i under the model. The
vector ✓ contains the item parameters (throughout the paper, “parameter” refers to an item
parameter if not otherwise specified), g(⌘

i

) is a normal distribution, and f(y
i

|⌘
i

,✓) is binomial
for an IRT model with binary data. The integral in Equation (7) has no analytical solution
and is typically solved by quadrature. This makes it di�cult to manipulate the likelihood
functions and its derivatives.

3.3. PML

If we employ the factor analysis version of the model, the di�cult integration occurs in a
di↵erent place. Specifically, the log-likelihood function of individual i’s observed data y

i

,
given the parameter vector ✓ (including �, ⌧), is the integrals over y?

i

:

`(✓;y
i

) = log

Z

⌧
f(y?

i

|✓)dy?

i

(8)

where y

?

i

is described as Equation (5), the distribution of y

?

i

with ⌘
i

marginalized out is
denoted as f(y?

i

|✓) (p dimensional), which can be considered as a multivariate normal distri-
bution following N(0,⇤⇤T + ). The integration of the p-dimensional multivariate normal
distribution over support ⌧ is the di�cult part, which does not have a closed form. To deal
with this problem, commercial software generally relies on three-stage estimation methods
(details see Muthén 1984; Jöreskog 1990).

Jöreskog and Moustaki (2001) proposed that the likelihood function above can be changed
to:
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where
P

j<k

`(✓; (y
ij

, y
ik

)) is the log-likelihood associated with all pairs of items, which is a
series of 2-way contingency tables. The parameter a is a constant to be chosen for optimal
e�ciency, commonly being set to 0 (Katsikatsou et al. 2012).

Thus, Equation (9) is reduced to the composite pairwise log-likelihood p`(✓;y
i

) (Katsikatsou
et al. 2012), which can be expressed as
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, (11)

where ⇡
(cjck)
yijyik (✓) is the probability that individual i responds to item j and k with category

c
j

(c
j

= 1, 2) and c
k

(c
k

= 1, 2) under the model. Category 1, 2 represents response of “0”, “1”
respectively in Equation (6).

For the ease and generalization of notation, we change Equation (6) to the following form:

y
ij

= c
j

() ⌧
(cj�1)
j

< y?
ij

 ⌧
(cj)
j

, (12)
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where �1 = ⌧
(0)
j

< ⌧
(1)
j

< ⌧
(2)
j

= 1. We can see for binary data, only ⌧
(1)
j

needs to be
estimated, which is commonly referred as ⌧

j

in Equation (6).

Thus ⇡
(cjck)
yijyik (✓) can be expressed explicitly in the following form:
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where �2(a, b; ⇢) is the bivariate cumulative standard normal distribution with correlation ⇢
evaluated at the point (a, b). The correlation is obtained from the model parameters via

⇢
yijyik = �

j

�
k

, (15)

for j = 1, . . . , (p� 1) and k = (j + 1), . . . , p.

Comparing Equation (8) with Equation (10), we can see that the p-dimensional integral is
reduced to all possible pairwise (j < k) integrals, which are bivariate normal distribution
with closed form solution. This significantly reduces the computational complexity, which is
a major advantage of PML.

4. Maximizing the likelihood function

The model’s log-likelihood function can be written as the sum of individual log-likelihoods

`(✓;y1, . . . ,yn

) =
n

X

i=1

log f(y
i

|✓), (16)

where the length of the parameter vector ✓ is q.

Maximizing the model’s log-likelihood function is equivalent to solving the first order condi-
tions

n

X
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where
✓̂ = argmax

✓
`(✓;y1,y2, . . . ,yn
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)

@✓
q

◆
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For the two-parameter IRT model analyzed in this paper, the log-likelihood function and
consequently also the individual score function di↵ers depending on whether we are estimating
models via MML or via PML.
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4.1. MML likelihood and score functions

Marginal ML explicitly solves the integral from (7) using numerical methods. Assuming the
two-parameter IRT model described above, the score vector for each individual can be written
as:

s(✓;y
i

) =

✓

@`(✓; y
i1)

@↵1
, . . . ,

@`(✓; y
ip

)
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, (21)

where the likelihood function for each observation `(✓; y
ij

) can be expressed as
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)d⌘
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Plugging Equation (3) in to Equation (22), we obtain the following functional form:
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))} d⌘
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. (23)

Therefore, components of the score vector from (21) can be written as:
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These integrals are often approximated via Gauss-Hermite quadrature. If the dimension of
ability (⌘) increases (multidimensional trait), the quadrature procedure becomes infeasible.
To avoid this di�culty and to remove the need for quadrature, pairwise maximum likelihood
estimation (PML) can be used instead. This is described in the following section.

4.2. PML likelihood and score functions

Maximizing the log-likelihood function in Equation (10) over the parameter ✓, we obtain the
composite pairwise maximum likelihood estimator ✓̂PML. Again, this is equivalent to solving
for ✓ so that the sum of scores equals zero. The score vector of the pairwise likelihood for each
individual can be decomposed in two blocks: the first derivative with respect to the factor
loading ⇤ and the first derivative with respect to the thresholds ⌧ :

s(✓;y
i
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1

C

C

C

C

A

. (26)

The elements of the score matrix are analytical solutions, requiring no approximation via
quadrature. The derivatives are explicitly shown in Appendix A.

Comparing MML with PML, we can see that scores from PML are more easily obtained and
less computationally intensive. Thus, we focus on PML in the simulations and analyses below,
with similar results holding for MML as demonstrated in Appendix B. In the next section,
we describe the scores’ use in tests of measurement invariance.
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5. Measurement invariance hypothesis test

Measurement invariance is usually studied in a hypothesis testing framework. We can write
the hypothesis very generally by assuming a potential observation-specific parameter vector
✓

i

. The null hypothesis of measurement invariance can then be expressed as all observations
arising from a common set of population parameters ✓0

H0 : ✓i = ✓0 (i = 1, . . . , n), (27)

versus
H1 : ✓i = ✓(v

i

) (i = 1, . . . , n), (28)

where ✓(v
i

) is typically an unknown function w.r.t. v
i

. If the function is known, the alternative
hypothesis can be expressed more specifically. For example, one function of particular interest
involves V dividing individuals into two subgroups with di↵erent parameter vectors based on
the cut point v:

H1 : ✓i =

(

✓

(A) v
i

 v

✓

(B) v
i

> v.
(29)

For this hypothesis testing problem, the likelihood ratio test (LRT; Thissen et al. 1988) is
most popular. The LRT compares two models, a full model and a reduced model. The full
model is a multiple group model with parameters free to vary across group A and group B,
while the reduced model constrains some parameters to be equal across groups. The LRT
statistic for cut point v can be expressed as

LR(v) = �2[`(✓̂;y1, . . . ,yn

)� {`(✓̂(A);y1, . . . ,ym

) + `(✓̂(B);y
m+1, . . . ,yn

)}], (30)

where ` represents the log-likelihood function, ✓̂(A) is the MLE of ✓(A) based on {y1, . . . ,ym

},
for which v

i

 v and ✓̂

(B) is the MLE of ✓(B) based on {y
m+1, . . . ,yn

} for which v
i

> v. This
LRT statistic has an asymptotic �2 distribution with degrees of freedom equal to the number
of parameters in ✓.

However, when the grouping information is unknown, we can also compute LR(v) for each
possible value of V in some interval [v, v̄], obtaining a test statistic via:

max
v2[v,v̄]

LR(v). (31)

The asymptotic distribution of this maximum LR statistic is not �2; Andrews (1993) showed
that, under the null hypothesis in (27), the statistic converges in distribution to some stochas-
tic process. This result is also utilized in the score-based tests discussed below.

6. Score-based tests

In this section, we review the score-based tests’ theoretical background and describe a family
of test statistics that we can obtain via the theory. Related descriptions can be found in
Zeileis and Hornik (2007), Merkle et al. (2014), and Wang et al. (2014).

6.1. Theoretical background

The score-based tests described here can be viewed as a generalization of the Lagrange multi-
plier test (e.g., Satorra 1989). The tests utilize score functions such as those derived above for
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the PML and MML estimation methods, and they are based on theory showing that functions
of the scores follow a stochastic process along an auxiliary variable V .

We can build the following intuition for the tests. We examine individuals’ scores as we move
from the smallest value of V to the largest. If there are no measurement invariance violations,
the scores should fluctuate around zero. Conversely, the scores will systematically shift from
zero when measurement invariance is violated.

To obtain formal test statistics, we define a cumulative score as

B(t; ✓̂) = Î

�1/2n�1/2
bn·tc
X

i=1

s(✓̂;y(i)) (0  t  1), (32)

where y(i) represents the observed data vector for ith-largest observation, with ordering de-

termined by the auxiliary variable V . Î denotes some estimate of the covariance matrix of the
scores, which serves to decorrelate the fluctuation processes associated with individual model
parameters; bntc is the integer part of nt (i.e., a floor operator); and 0  t  1. In a sample of
size n, B(t; ✓̂) changes at 0, 1

n

, 2
n

, . . . , n
n

. For t = 1 the cumulative score vector always equals
0, as defined in Equation (17). We are specifically interested in how the cumulative score
fluctuates as we move from t = 0 to t = 1.

Along with the score vectors, we need an estimate of the score covariance matrix, which is
shown in Equation (32) as Î. For regular maximum likelihood estimation, the covariance
matrix is equal to the information matrix. However, this identity does not hold for PML
(Katsikatsou et al. 2012). Therefore, instead of the information matrix, we use an estimate
based on the outer product of scores Î = (1/n)

P

n

i=1 s(✓̂,x(i))s(✓̂,x(i))
T .

Hjort and Koning (2002) showed that, under the null hypothesis from (27), B(t; ✓̂) converges
in distribution to an independent Brownian bridge:

B(·; ✓̂) d! B

0(·), (33)

whereB0(·), is a q-dimensional Brownian bridge, and each column represents a unidimensional
Brownian bridge associated with a single parameter.

Empirically, the B(t;✓) process can be described by an n⇥ q matrix, with each column fol-
lowing an independent Brownian bridge. The matrix row represents the ordered observations’
cumulative score vector and the last row is zero as described by Equation (17). To obtain
scalar test statistics, we summarize the empirical behavior of Equation (32) and compare it
to the analogous scalar summary of the Brownian bridge. In the next section, we introduce
various summaries of Equation (32) that can serve as test statistics.

6.2. Test statistics

After summarizing or aggregating the empirical cumulative score process via a scalar, the
asymptotic distribution of the scalar can be obtained by applying the same summary to the
asymptotic Brownian bridge. This allows us to obtain critical values and p-values. Various
statistics have been proposed, with selection of a statistic being based on the plausible patterns
of potential measurement invariance violations.

The simplest aggregation strategy is to reject measurement invariance if the largest component
of the empirical cumulative score matrix is greater than a critical value. Based on the location
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of the detected component, we can easily locate the violating parameter and the value of V
at which the violation occurs. Because this statistic is searching for the maximum over the
parameters (columns of the empirical cumulative score matrix) and individuals (rows of the
empirical cumulative score matrix), this statistic is called the “double maximum” (DM).

DM = max
i=1,...,n

max
j=1,...,k

|B(✓̂)
ij

|. (34)

However, the DM statistic is sub-optimal if many of the parameters change and/or there
exist many changing points of V instead of one, because it “wastes” power by only taking the
maximum. In such cases, sums across parameters and individuals are more suitable. The
Cramèr-von Mises (CvM) statistic falls in this category,

CvM = n�1
X

i=1,...,n

X

j=1,...,k

B(✓̂)2
ij

. (35)

If we expect there is only one change point, but that change point a↵ects multiple parameters,
we can aggregate by summing over parameters, then taking the maximum over the individ-
ual interval (scaled by variance). This statistic is equivalent to obtaining the maximum of
Lagrange multiplier statistics, and it can be formally written as

maxLM = max
i=i,̄i

⇢

i

n

✓

1� i

n

◆��1
X

j=1,...,k

B(✓̂)2
ij

. (36)

Note that this statistic is asymptotically equivalent to the maxLR mentioned before, in
the same way that the traditional likelihood ratio test is asymptotically equivalent to the
traditional Lagrange multiplier test.

Across the above statistics, the auxiliary variable V is assumed to be continuous. Merkle
et al. (2014) introduced two modified statistics that could deal with ordinal V , which could
include school grades or income levels. For an ordinal auxiliary variable with m levels, the
modifications are based on t

l

(l = 1, . . . ,m� 1), which are the empirical, cumulative propor-
tions of individuals observed at the first m� 1 levels. The modified statistics are then given
by

WDM
o

= max
i2{i1,...,im�1}

⇢

i

n

✓

1� i

n

◆��1/2

max
j=1,...,k

|B(✓̂)
ij

|, (37)

maxLM
o

= max
i2{i1,...,im�1}

⇢

i

n

✓

1� i

n

◆��1
X

j=1,...,k

B(✓̂)2
ij

, (38)

where i
l

= bn · t
l

c (l = 1, . . . ,m� 1).

If the auxiliary variable V is only nominal/categorical, the empirical cumulative sums of scores
can be used to obtain a Lagrange multiplier statistic by first summing scores within each of
the m levels of the auxiliary variable, then summing the sums (Hjort and Koning 2002). This
test statistic can be formally written as

LM
uo

=
X

l=1,...,m

X

j=1,...,k

⇣

B(✓̂)
ilj �B(✓̂)

il�1j

⌘2
, (39)
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where B(✓̂)
i0j = 0 for all j. This statistic is asymptotically equivalent to the usual, likelihood

ratio statistic, and it is advantageous over the LRT from (30) because it requires the estimation
of only one model (the null model).

In the following sections, we apply these theoretical results to IRT models. We focus on the
two-parameter model where the ⌘

i

are assumed to arise from a normal distribution. We focus
on the PML estimation for its speed and present comparable MML results in Appendix B.

7. Simulation 1

In this study, we aim to examine the tests’ abilities to locate item parameters that violate
measurement invariance. Consider a hypothetical battery of five items administered to stu-
dents in several ordered groups (e.g. m = 8), with the item responses being described by a
traditional two-parameter model. Measurement invariance violations may occur in the item
intercept or the item slope parameters (related to di�culty and discrimination, respectively).
It is plausible that violations in an item’s slope parameter influences the item’s intercept pa-
rameter, or that one violating item influences the other items. Thus, the goal of Simulation 1
is to examine the extent to which the score-based tests attribute the measurement invariance
violation to the correct item parameters.

7.1. Method

Data were generated from a two-parameter model (with probit link function) for a test with 5
items. A violation occurred in one of two places: the item 3 slope parameter (↵3) or intercept
parameter (�3). The fitted models matched the data generating model, and parameter esti-
mates were obtained by PML. Measurement invariance violations were tested in eight subsets
of parameters: each item’s intercept parameter (or slope parameter, depending on the loca-
tion of the true violation), item 3’s non-violating parameter (�3 or ↵3), all items’ intercept
parameters, and all items’ slope parameters.

Power and type I error were examined across three sample sizes (n = 120, 480, 960), three
numbers of ordered groups (m = 4, 8, 12) and 17 magnitudes of invariance violations. The
measurement invariance violations occured at levelm/2+1 of V : Students with V < (m/2+1)
deviated from students with V � (m/2 + 1) by d times the parameters’ asymptotic standard
errors (scaled by

p
n), with d = 0, 0.25, 0.5, . . . , 4.

For each combination of sample size (n) ⇥ violation magnitude (d) ⇥ violating parameter
⇥ groups (m), 5,000 data sets were generated and tested. In all conditions, we maintained
equal sample sizes in each subgroup of the categories m. Statistics from Equations (37)
and (38) (both ordinal statistics) were examined, as was the statistic from (39) (categorical
statistic, ignoring the ordering information). As mentioned previously, the latter statistic
is asymptotically equivalent to the usual likelihood ratio test. Thus, this statistic provides
information about the relative performance of the ordinal statistics vs. the LRT.

7.2. Results

Full simulation results for PML are presented in Figures 1 to 4 (similar results for MML are
shown in Appendix B). Figures 1 and 2 compare di↵erent test statistics at a fixed value of n,
while Figures 3 and 4 display a single test statistic across all values of n. Because items 1, 2,
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Figure 1: Simulation 1. Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across
three levels of the ordinal variable m and measurement invariance violations of 0–4 standard
errors (scaled by

p
n), estimated by the PML two-parameter model. The parameter violating

measurement invariance is ↵3. n = 960. Panel labels denote the parameter(s) being tested
and the number of levels of the ordinal variable m.

4, and 5 display similar power curves in all conditions, we only show item 2’s results.

Figure 1 demonstrates power curves (of sample size 960) as a function of violation magnitude
in item 3’s slope parameter ↵3, with the tested parameters changing across rows, the number
of levels m of the ordinal variable V changing across columns, and lines reflecting di↵erent
test statistics. In each panel, the x-axis represents the violation magnitude and the y-axis
represents power. Figure 2 demonstrates similar power curves when the violating parameter
is item 3’s intercept parameter �3.

These two graphs show that the ordinal statistics exhibit similar results, with the maxLM
uo

statistic demonstrating lower power across all situations. This demonstrates the sensitivity of
the ordinal statistics to invariance violations that are monotonic with V . In situations where
only one parameter is tested, WDM

o

and maxLM
o

exhibit equivalent power curves. This
is because these two statistics are equivalent when only one parameter is tested (see Merkle
et al. 2014).
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Figure 2: Simulation 1. Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across
three levels of the ordinal variable m and measurement invariance violations of 0–4 standard
errors (scaled by

p
n), estimated by PML two-parameter model. The parameter violating

measurement invariance is �3. n = 960. Panel labels denote the parameter(s) being tested
and the number of levels of the ordinal variable m.

Figures 3 and 4 display similar power curves (of statistic WDM
o

), but the lines now reflect
di↵erent sample sizes. Figure 3 demonstrates results when the violating parameter is ↵3, and
Figure 4 displays the results when the violating parameter is �3.

From these figures, one generally observes that the tests isolate the parameter violating mea-
surement invariance. Comparing Figure 1 to Figure 2, we can see the tests have somewhat
higher power to detect measurement invariance violations in the intercept parameter as op-
posed to the slope parameter. This is because it is easier to detect violations in “main e↵ects”
(we can see it as intercept ⇥ 1) than in “interactions” (slope ⇥ person parameter ⌘

i

). Any
changes in an intercept parameter will influence every person equally whereas any changes in
a slope parameter’s influence is moderated by each person’s ability ⌘

i

. Meanwhile, comparing
Figure 3 and Figure 4, we can see that sample size has a much larger influence on power to
detect violations in the slope parameter, as compared to the intercept parameter. This is
related to the fact that the violation magnitudes were scaled by the square root of n, and the
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Figure 3: Simulation 1. Simulated power curves for observation 120, 480 and 960 of test
statistic WDM

o

, across three levels of the ordinal variable m and measurement invariance
violations of 0–4 standard errors (scaled by

p
n), estimated by PML two-parameter model.

The parameter violating measurement invariance is ↵3. Panel labels denote the parameter(s)
being tested and the number of levels of the ordinal variable m

slope parameter is attached to the person parameter ⌘
i

which follows a distribution instead
of a constant.

Finally, simultaneous tests of all slope parameters or of all intercept parameters resulted in
decreased power, as compared to the situation where only the violating parameter is tested.
This “dampening” phenomenon is more apparent for maxLM

o

statistic, because it involves a
sum across all tested parameters (see Equation (38)) whereasWDM

o

only takes the maximum
over parameters (see Equation (37)). However, the relative power advantage of using maxLM

o

and WDM
o

when testing multiple parameters depends on the number of parameters that
actually violate invariance (Merkle et al. 2014). In practice, we often test multiple parameters
in the exploratory stage and, when we have no information about which parameter(s) might
be problematic, maxLM

o

has more power than WDM
o

(Merkle et al. 2014; Wang et al. 2014).

In summary, we found that the proposed tests can attribute measurement invariance viola-
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Figure 4: Simulation 1. Simulated power curves for observation 120, 480 and 960 of test
statistic WDM

o

, across three levels of the ordinal variable m and measurement invariance
violations of 0–4 standard errors (scaled by

p
n), estimated by PML two-parameter item

response model. The parameter violating measurement invariance is �3. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal variable m

tions to the correct parameter of a two-parameter item response model. While this can give
practitioners some confidence in the tests, we did not examine the situation where person abil-
ities di↵er across groups, which is often called “impact” in item response literature (Fischer
1995b). We consider this situation in Simulation 2.

8. Simulation 2

In Simulation 1, the ability distributions were assumed to be the same for all persons. This
ignored the fact that person hyperparameters (mean ability, variance of ability) could change
across groups along with the item parameters. Changes in person hyperparameters do not
count as measurement invariance violations, but ignoring these changes may lead us to in-
correctly conclude an invariance violation (Woods 2009; Stark, Chernyshenko, and Drasgow
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2006; Wang and Yeh 2003; Fischer 1995a; Kopf, Zeileis, and Strobl 2015).

Formally, in a regular two-parameter model, we assume that the person parameters follow a
standard normal distribution across all groups: ⌘

i

⇠ N(0, 1). There is the potential that the
hyperdistribution is group specific, however, with ⌘?

i

⇠ N(µ
vi ,�

2
vi
), where v

i

is in 1, . . . ,m. If
the hyperparameters change from group to group, then our model can be written as:

��1(p
ij

) = �
j

+ ↵
j

⌘?
i

, (40)

= �
j

+ ↵
j

(µ
vi + �

vi⌘i), (41)

= (�
j

+ ↵
j

µ
vi) + �

vi↵j

⌘
i

. (42)

This shows that, when �
vi di↵ers across values of vi, it will look like there are measurement

invariance violations in ↵
j

(for all j). Similarly, when µ
vi di↵ers across values of v

i

, it will
look like there are measurement invariance violations in �

j

(for all j). Further, because µ
vi

is no longer 0, changes in ↵
j

will also make it look like there are measurement invariance
violations in the �

j

(through the term ↵
j

µ
vi). Therefore, the proposed tests’ good properties

from Simulation 1 are lost when the person hyperparameters change across groups.

To avoid this problem, we should estimate the person hyperparameters µ
vi and �2

vi
, when there

is uncertainty about person abilities. Estimation of these extra parameters will decrease the
proposed tests’ power, but the extent of decrease is unclear. The extent of power decrease
in the proposed test statistics, as compared to traditional statistics, is also unclear. In this
section, we conduct two simulations that address these issues.

8.1. Method

To examine the decrease in power when we estimate person hyperparameters with or without
a “true” person hyperparameter change, we organize Simulation 2 into two subsections. In
Simulation 2.1, the data generation model is the same as Simulation 1, with abilities of
students generated from ⌘

i

⇠ N(0, 1) whereas, in Simulation 2.2, the abilities of students
were manipulated. Specifically, abilities of students with V = 1, 2, 3, or 4 were generated
from ⌘

i

⇠ N(0, 1), while the abilities of students with V = 5, 6, 7, or 8 were generated from
⌘
i

⇠ N(�1, 2).

The estimated model for both Simulations 2.1 and 2.2 is the multiple group two-parameter
model, which can be described as: free parameters for each level’s µ

vi (with level 1 fixed to
zero for identification), �2

vi
(with level 1 fixed to 1 for identification) and the 5 items’ slope

and intercept parameters (as in Simulation 1), with estimates again being obtained by PML.

Because the multiple group two-parameter model has more parameters to be estimated (7
mean parameters µ

vi and 7 variance parameters �2
vi
), the sample sizes were increased to

n = 1200, 4800, and 9600. Measurement invariance violations still occurred in the same places
(either ↵3 or �3), and the subsets of tested parameters were the same as in Simulation 1.

Power and type I error were examined across three sample sizes and 17 magnitudes of in-
variance violations (manipulated in the same way as Simulation 1). For each combination
of sample size (n) ⇥ violation magnitude (d), 5000 data sets were generated and tested. In
all conditions, we still maintained equal sample sizes in each level of V . We examined the
statistics from Equations (37), (38) and (39).
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Figure 5: Simulation 2.1. Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across
measurement invariance violations of 0–4 standard errors (scaled by

p
n), estimated by PML

(fitting multiple group two-parameter model, without person abilities change in the generation
model). The parameter violating measurement invariance is ↵3. The number of categories is
m = 8. Panel labels denote the parameter(s) being tested and sample size.

8.2. Results

In the sections below, we first discuss results when the data generation model had person
hyperparameters that were the same across groups (Simulation 2.1). We then discuss results
when the data generation model had person hyperparameters that di↵ered across groups
(Simulation 2.2).

Simulation 2.1

Simulation 2.1 results are presented in Figures 5 and 6. Figure 5 demonstrates power curves
as a function of violation magnitude in item 3’s slope parameter ↵3, with the parameters being
tested changing across rows, the sample sizes n changing across columns, and lines reflecting
di↵erent test statistics. Figure 6 demonstrates similar power curves when the violating pa-
rameter is item 3’s intercept parameter �3. In both figures, tests of item 2’s parameters are



Ting Wang, Carolin Strobl, Achim Zeileis, Edgar C. Merkle 17

Violation Magnitude (γ3)

Po
we

r

0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ● ●

n=1200
α3

0 1 2 3 4

● ● ● ● ●

n=4800
α3

● ● ● ● ●

n=9600
α3

● ● ● ● ●

n=1200
γ2

● ● ● ●
●

n=4800
γ2

0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ●
●

n=9600
γ2

0.0
0.2
0.4
0.6
0.8
1.0

●
●

●

●
●

n=1200
γ3

●
●

●

●
●

n=4800
γ3

●
●

●

●
●

n=9600
γ3

● ● ● ● ●

n=1200
α1, …, α5

● ● ● ● ●

n=4800
α1, …, α5

0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ● ●

n=9600
α1, …, α5

0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4

● ●

●

●

●

n=1200
γ1, …, γ5

● ●

●

●

●

n=4800
γ1, …, γ5

0 1 2 3 4

● ●

●

●

●

n=9600
γ1, …, γ5

maxLM_o
WDM_o
LM_uo

●

Figure 6: Simulation 2.1. Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across
measurement invariance violations of 0–4 standard errors (scaled by

p
n), estimated by PML

(fitting multiple group two-parameter model, without person abilities change in the generation
model). The parameter violating measurement invariance is �3. The number of categories is
m = 8. Panel labels denote the parameter(s) being tested and sample size.

representative of all invariant items.

From these two figures, one generally observes that the tests isolate the parameter violating
measurement invariance in the multiple group two-parameter model (across rows), and power
increases with n (across columns). The impact of n is more substantial when the slope
parameter, as opposed to the intercept parameter, violates invariance. We need sample size
as large as 9600 to obtain power near .8 for detecting DIF in the slope parameter (with
increasing violation magnitude), whereas there is no large di↵erence across columns when the
intercept parameter violates invariance.

Within each panel of Figures 5 and 6, the three lines reflect the three test statistics. It is seen
that the two ordinal statistics still exhibit similar results, with maxLM

uo

demonstrating lower
power across all situations. Therefore, the sensitivity of the ordinal statistics is preserved in
the multiple group two-parameter model.
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Figure 7: Simulation 2.2. Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across
measurement invariance violations of 0–4 standard errors (scaled by

p
n), estimated by PML

(fitting multiple group two-parameter model, with person abilities change in the generation
model). The parameter violating measurement invariance is ↵3. The number of categories is
m = 8. Panel labels denote the parameter(s) being tested and sample size.

Comparing Figure 5 and Figure 6 in general, we can see the tests still have somewhat higher
power to detect measurement invariance violations in the intercept parameter as opposed to
the slope parameter. Moreover, power is lower when we test the full set of slope (or intercept)
parameters, as opposed to only the problematic parameter.

Simulation 2.2

Simulation 2.2 results are presented in Figures 7 and 8, with the same figure and panel
arrangements as Simulation 2.1. The results demonstrate the same pattern as Simulation 2.1.
We can observe that the power decrease is related to the number of parameters in the estimated
model, regardless of the data generation model.

In summary, we found that the proposed tests can attribute measurement invariance viola-
tions to the correct multiple group model parameter when impact is exhibited. Although the



Ting Wang, Carolin Strobl, Achim Zeileis, Edgar C. Merkle 19

Violation Magnitude (γ3)

Po
we

r

0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ● ●

n=1200
α3

0 1 2 3 4

● ● ● ● ●

n=4800
α3

● ● ● ● ●

n=9600
α3

● ● ● ● ●

n=1200
γ2

● ● ● ●
●

n=4800
γ2

0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ●
●

n=9600
γ2

0.0
0.2
0.4
0.6
0.8
1.0

●
●

●

●
●

n=1200
γ3

●
●

●

●
●

n=4800
γ3

●
●

●

●
●

n=9600
γ3

● ● ● ● ●

n=1200
α1, …, α5

● ● ● ● ●

n=4800
α1, …, α5

0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ● ●

n=9600
α1, …, α5

0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4

● ●

●

●

●

n=1200
γ1, …, γ5

● ●

●

●

●

n=4800
γ1, …, γ5

0 1 2 3 4

● ●

●

●

●

n=9600
γ1, …, γ5

maxLM_o
WDM_o
LM_uo

●

Figure 8: Simulation 2.2. Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across
measurement invariance violations of 0–4 standard errors (scaled by

p
n), estimated by PML

(fitting multiple group two-parameter model, with person abilities change in the generation
model). The parameter violating measurement invariance is �3. The number of categories is
m = 8. Panel labels denote the parameter(s) being tested and sample size.

multiple group model requires a much larger sample size to obtain reasonable power, this type
of model is very necessary in practice when there is uncertainty about changes in person hy-
perparameters. Otherwise, there will be a serious “false alarm” as illustrated by Equations 40
to 42. It seems that the sample size issue can often be addressed, as IRT researchers often
have thousands of students completing their tests. In the following section, we demonstrate
the tests’ use in a practical situation.

9. Application

We illustrate the tests’ application using 20 dichotomously scored mathematics items from
the graduation examination developed by the Netherlands National Institute for Educational
Measurement (Doolaard 1999; Fox 2010).
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9.1. Method

In the data set, 2156 eighth grade students completed the test, with a socioeconomic status
(SES) variable also being measured on each student. The SES scores were based on four
indicators, which were the education and occupation levels of both parents (if present). In
this sample, there are 40 unique SES values ranging from �3.23 to 2.8, with higher values
indicating higher SES. For the purposes of demonstration, we treat SES as a 6-category
ordinal variable here and maintain equal sample sizes at each level.

The correlation between SES and mathematics achievement (sum of the 20 items) equals
0.49. Of course, this relationship could be explained in two di↵erent manners: either people
of di↵erent SES exhibit di↵erent abilities, or the items are unfair to people of certain SES
levels. We use the score-based tests to distinguish between these di↵erent explanations.

From the simulations, we saw that accounting for changes in person hyperparameters is cru-
cial to avoid “false alarms;” however, increasing the number of person hyperparameters will
decrease power. Therefore, we start with a 2-parameter item response model where the per-
son hyperparameters µ1 and �2

1 (for level 1) are fixed to 0 and 1, while the hyperparameters
in other levels are freely estimated but constrained to be equal. We can then test whether
the hyperparameters are equal across levels and, if not, we can use the test results to freely
estimate hyperparameters across levels.

9.2. Results

We describe the results in two sections, one for the initial examination of fluctuations in the
hyperparameters, and one for a second model that frees certain hyperparameters.

Testing the hyperparameters

Results representing the statistics’ fluctuations across SES level are shown in Figure 9. The
first column displays the fluctuation process associated with LM

o

for testing the 18 items’
slopes (first row), the 18 items’ intercept (second row), the person mean parameter (third row),
and the person variance parameter (fourth row). The second column displays the fluctuation
process associated with WDM

o

for the same sets of parameters. In other words, these panels
show the value of Equations (38) and (37) for each SES level, with the dashed horizontal line
being the 5% critical value. If the solid line crosses the critical value, then it is evidence that
the corresponding parameter fluctuates across levels of SES. Because the final level’s statistics
always equal zero (see Equation (17)), the final level (level 6 here) is not displayed.

It is observed that the person mean parameter (third row) fluctuates across all levels, while the
person variance parameter (fourth row) fluctuates between the middle levels and level 5 (note
that person hyperparameter change is not DIF). As shown in Simulation 2, this will cause the
slope (first row) and intercept (second row) parameters to exhibit DIF regardless of whether
they actually exhibit DIF. Therefore, we need to examine a second model where person
hyperparameters are free across specific levels of SES. Based on the statistics’ fluctuation
process, the second model should estimate a separate person mean parameter for each SES
level and should estimate a separate person variance parameter for the middle levels (level 2
– level 4) and for the extreme levels (at and after level 5). The result for testing parameters
in this freed-hyperparameters model is described in the next section.
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Figure 9: Empirical fluctuation processes of the maxLM
o

statistic (first column) and WDM
o

(second column) for slope parameters (first row), intercept parameters (second row), per-
son mean parameter (third row) and person variance parameter (fourth row), using testing-
hyperparameters model

Freed hyperparameters

In estimating a separate µ
vi for each of the six SES groups (with first level being fixed to 0

for identification) and two separate �2s for the middle level and extreme levels, we obtain the
results shown in Figure 10. The panel arrangements are the same as Figure 9.

Figure 10 implies that no sets of item parameters exhibit DIF, according to either statistic.
This is the opposite result of what we found in the previous section. Further, the estimated
µ
vi increase monotonically with SES, with the lowest SES level having a fixed mean of 0,

followed by 0.54, 1.01, 1.26, 1.58, and 2.25. Meanwhile, �2 for the middle SES levels (level
2–level 4) and extreme SES levels (level 5–level 6) are 1.14 and 1.37, with the lowest SES
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hyperparameter model

level having a fixed variance of 1.

In summary, we found that the positive correlation between SES and math achievement is
due to the fact that students’ ability means and variances increase with SES. All parameters
appear to fulfill the measurement invariance assumption after we take account of changes in
person ability at corresponding SES level. The score-based tests allowed us to systematically
study these issues without estimating an excessive number of models. If desired, we could
also test each item’s parameters individually (as opposed to the set of intercepts and the set
of slopes) without fitting any new models. This illustrates the inherent flexibility of the tests.
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10. General discussion

In this paper, we extended a recently proposed family of score-based tests to item response
models, focusing on multiple-group, two-parameter models. The tests’ power levels are compa-
rable to traditional statistics, and the tests can isolate specific parameters violating invariance
so long as we account for changes in person ability across groups.

The test statistics examined here, along with estimation by PML, provides a more general
and flexible framework to detect DIF in IRT research. Traditionally, we pre-define two groups
of individuals and compare them via a multiple group model. In using score-based tests, we
do not need to pre-define the groups and can test many groups simultaneously. Additionally,
person hyperparameters can be estimated conveniently in a multiple group null model (that
assumes measurement invariance holds) without re-fitting multiple alternative models as is
required by the LRT or Wald test (see also Glas 1998). This enhances our ability to detect
DIF in large datasets with many groups.

In the sections below, we consider the tests’ applications in related models and in complex
scenarios.

Multiple category responses

The PML framework generally allows us to use the score-based tests in situations when
the responses have multiple categories, where a graded response model (Samejima 1969) or
partial credit model (Muraki 1992) may be used. These models become increasingly di�cult to
estimate when we have many groups and when items have many categories. In these situations,
the score-based tests become increasingly attractive because they require estimation of only
a null model (assuming that invariance holds).

Multidimensional IRT

Multidimensionality is one possible cause of DIF (Millsap 2012). However, it is di�cult to test
this hypothesis in IRT models. The challenge is caused by the integration described in the
Estimation section. In employing the factor-analytic framework described here with PML,
we can more easily estimate models with multiple dimensions. This can further help us study
invariance in larger datasets.

Full structural equation modeling approach to linking/equating problem

In practice, we often need to transform person parameters so that ability estimates are equiva-
lent across di↵erent scales. This is called equating (see Kolen and Brennan 2004, for a review).
For example, we may need to equate test takers’ abilities across multiple versions of the SAT.

The existence of DIF complicates equating. Suppose that Form A of the SAT exhibits DIF
with respect to country/grade/age, but Form B does not exhibit DIF. We must then decide
whether we should equate each level of V separately, as opposed to equating simultaneously
across the whole sample. Dorans (2004) dealt with this question by introducing new statistics
that utilized the test characteristic curve. Alternatively, we can frame the question in a
full structural equation modeling (SEM) and employ the score-based test to examine the
corresponding coe�cients’ stability against V . In this way, no new statistics need to be
introduced.



24 Score-Based DIF Tests of in the 2PL Model

10.1. Further development

Multiple violating slope parameters

In this paper, we studied the tests’ applications to two-parameter and multiple group two-
parameter models when only one parameter violated invariance. When there are multiple
violating intercept parameters, the current tests can still be applied. However, when there
are multiple violating slope parameters, we need to use the tests in a recursive way. This
would proceed as follows (see Glas 1998, for a related approach): (1) fit the null model with
person hyperparameters, (2) test for DIF in each item parameter, (3) free the parameter with
the largest statistic and refit the model with person hyperparameters, (4) repeat steps (2)–
(3) until there is no further DIF detected. This procedure is similar to the LRT algorithm
described by Magis et al. (2010) (also known as “purification”), which is implemented in R
packages mirt (Chalmers 2012) and difR (Magis, Beland, and Raiche 2015). The score-based
tests are advantageous here because no anchor items are needed (see Woods 2009, for a
review of procedures involving anchor items). This is because we only need to estimate the
null model, where all parameters are already assumed to be invariant across groups.

Nonlinear parameter constraints

In this paper, we constrained the first group mean and variance to 0 and 1 to identify the
model. This is appropriate when the auxiliary variable is ordinal because it allows us to
observe group ability/variance change along the ordinal auxiliary variable. However, it may
be better to use“sum”constraints when the auxiliary variable is categorical because we do not
need any pre-defined order for group ability or anchor items. Verhagen, Levy, Millsap, and
Fox (2015) constrained the sum of all intercept parameters to be zero (in a one parameter IRT
model) to avoid the need for defining anchor items or assuming group ability (i.e. fixing one
group ability parameter). We can extend these constraints to the slopes of a two-parameter
model, requiring that the squared slope parameters sum to 1. We are currently studying use
of these nonlinear parameter constraints in tandem with score tests.

Application in multilevel models

In educational research settings, students’ responses to items are often nested in classes,
schools, or states. Therefore, multilevel models are generally applied in this area. Score-
based tests only rely on the derivative of each individual’s likelihood function so that, as long
as the individual derivative (analytical or approximation) can be specified, score-based tests
can be applied. Scores for generalized linear mixed models will be more di�cult to obtain
than scores for linear mixed models, in the same way that scores for continuous-data factor
analysis are easier to obtain than scores for IRT models.

10.2. Summary

In this paper, we generalized the score-based tests to IRT models estimated by MML and
PML. This extension has advantages over traditional DIF detection methods in locating
the violating parameter without pre-specifying grouping information and in accounting for
the ordinal information of the auxiliary variable V . Besides, implementation of these tests
is simpler, requiring only estimation of a null model that assumes measurement invariance.
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Applied researchers in psychology and education could use these tests to conveniently examine
measurement invariance in their own data sets.

Computational details

All results were obtained using the R system for statistical computing (R Core Team 2013),
version 3.3.0, employing the add-on package lavaan 0.5-17 (Rosseel 2012) for fitting of the
factor analysis models and strucchange 1.5-2 (Zeileis, Leisch, Hornik, and Kleiber 2002; Zeileis
2006) for evaluating the parameter instability tests. R and both packages are freely available
under the General Public License from the Comprehensive R Archive Network at https://
CRAN.R-project.org/. R code for replication of our results is available at http://semtools.
R-Forge.R-project.org/.
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A. Model scores

This appendix contains information about how to derive the score vectors’ components in
Equation (26). It is organized by deriving the score sub-vector w.r.t. ⌧ and w.r.t. ⇤. Details
are adapted from Katsikatsou et al. (2012).

A.1. Score sub-vector w.r.t. ⌧
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@

(
P
j<k

`(✓;(yij ,yik))

)

@⌧ are the first derivatives with respect to

thresholds
@

(
P
j<k

`(✓;(yij ,yik))

)

@⌧

(cj)

j

and are given as below:

@

(

P

j<k

`(✓; (y
ij

, y
ik

))

)

@⌧
(cj)
j

=
2
X

cj=1

 

1

⇡
(cjck)
yijyik

� 1

⇡
((cj�1)ck)
yijyik

!

@⇡
(cjck)
yijyik

@⌧
cj

j

, (43)

where

@⇡
(cjck)
yijyik

@⌧
(cj)
j

= �1(⌧
(cj)
j

)

2

4�1

0

@

⌧
(ck)
k

� ⇢
yijyik⌧

(cj)
j

q

1� ⇢2
yijyik

1

A� �1

0

@

⌧
(ck�1)
k

� ⇢
yijyik⌧

(cj)
j

q

1� ⇢2
yijyik

1

A

3

5 , (44)

where �1 and �1 are the standard univariate normal density and cumulative distribution,
respectively.

A.2. Score sub-vector w.r.t. ⇤

The scores with respect to ⇤ are obtained via chain rules.
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where �2 is the standard bivariate normal density.

The partial derivative of ⇢
yijyik with respect to ⇤ can be obtained from a chain rule. The

final form of the derivatives is:

@⇢
yijyik

@⇤
= �

k

@�
j

@⇤
+ �

j

@�
k

@⇤
, (49)

where @⇤j

@⇤ , @�k
@⇤ are matrices of zeros and ones. The dimensions are determined by ⇤. The

person hyperparameters’ score derivation is presented in Liu (2007), Appendix 9.3.

B. MML results from Simulation 1

This appendix demonstrates Simulation 1 results when we fit models via MML, instead of
PML. The figures are arranged in the same way as those in the Simulation 1 results section.
Figures 11 and 12 display power di↵erences among statistics. Figures 13 and 14 display power
di↵erences among sample sizes. Results are similar to those observed for PML.
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Figure 11: Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across three levels of the
ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled byp
n), estimated by MML. The parameter violating measurement invariance is ↵3. n = 960.

Panel labels denote the parameter(s) being tested and the number of levels of the ordinal
variable m.
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Figure 12: Simulated power curves for maxLM
o

, WDM
o

, and LM
uo

across three levels of
the ordinal variable m and measurement invariance violations of 0–4 standard errors (scaled
by

p
n), estimated by MML. The parameter violating measurement invariance is �3. n = 960.

Panel labels denote the parameter(s) being tested and the number of levels of the ordinal
variable m.
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Figure 13: Simulated power curves for observation 120, 480 and 960 of test statistic WDM
o

,
across three levels of the ordinal variable m and measurement invariance violations of 0–4
standard errors (scaled by

p
n), estimated by MML. The parameter violating measurement

invariance is ↵3. Panel labels denote the parameter(s) being tested and the number of levels
of the ordinal variable m.
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Figure 14: Simulated power curves for observation 120, 480 and 960 of test statistic WDM
o

,
across three levels of the ordinal variable m and measurement invariance violations of 0–4
standard errors (scaled by

p
n), estimated by MML. The parameter violating measurement

invariance is �3. Panel labels denote the parameter(s) being tested and the number of levels
of the ordinal variable m.
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