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Abstract

Non-homogeneous regression is often used to statistically post-process ensemble fore-
casts. Usually only ensemble forecasts of the predictand variable are used as input but
other potentially useful information sources are ignored. Although it is straightforward
to add further input variables, overfitting can easily deteriorate the forecast performance
for increasing numbers of input variables. This paper proposes a boosting algorithm to
estimate the regression coe�cients while automatically selecting the most relevant input
variables by restricting the coe�cients of less important variables to zero. A case study
with ensemble forecasts from the European Centre for Medium-Range Weather Forecasts
(ECMWF) shows that this approach e↵ectively selects important input variables to clearly
improve minimum and maximum temperature predictions at 5 central European stations.

Keywords: non-homogeneous regression, variable selection, boosting, statistical ensemble post-
processing.

1. Introduction

Over the past decades ensemble forecasts have become an important tool for estimating
the uncertainty of numerical weather prediction models. To account for initial condition
and model errors, numerical models are integrated several times with slightly di↵erent initial
conditions and sometimes di↵erent parameterization schemes. However, because of insu�cient
representation of these errors such ensembles of predictions are often biased and do not fully
represent the forecast uncertainty. Therefore ensemble forecasts are often statistically post-
processed to obtain unbiased and calibrated probabilistic forecasts.

Over the past years a variety of di↵erent ensemble post-processing methods have been pro-
posed. Aside from e.g., ensemble dressing (Roulston and Smith 2003), Bayesian model aver-
aging (Raftery, Gneiting, Balabdaoui, and Polakowski 2005), or (extended) logistic regression
(Hamill, Whitaker, and Wei 2004; Wilks 2009; Messner, Zeileis, Mayr, and Wilks 2014b),
non-homogeneous regression (Gneiting, Raftery, Westveld, and Goldman 2005) is particu-
larly popular. It assumes a parametric predictive distribution and models the distribution
parameters as linear functions of predictor variables such as the ensemble mean and ensemble
standard deviation. In recent years it has been used for several di↵erent forecast variables
(e.g., Thorarinsdottir and Gneiting 2010; Scheuerer 2014; Scheuerer and Hamill 2015) and
has been extended to account for covariance structures (Pinson 2012; Schuhen, Thorarinsdot-
tir, and Gneiting 2012; Schefzik, Thorarinsdottir, and Gneiting 2013; Feldmann, Scheuerer,
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and Thorarinsdottir 2015) or to predict full spatial fields (Scheuerer and Büermann 2014;
Feldmann et al. 2015). In most publications only the ensemble forecast of the predictand
variable was used as input for the non-homogeneous regression model. However, Scheuerer
(2014) and Scheuerer and Hamill (2015) showed that additional input variables can be easily
incorporated and can clearly improve the forecast performance. The set of potentially useful
input variables is huge and includes, among others, ensemble forecasts for other variables
or locations, deterministic forecasts, current observations, transformations and interactions
of all of these. Since using too many input variables can deteriorate the forecast accuracy
through overfitting, the input variables should be selected carefully. Doing this by hand can
be a cumbersome task that requires expert knowledge and should be done separately for each
forecast variable, station and lead time.

For post-processing of deterministic predictions, stepwise regression has commonly been used
to automatically select the most important input variables (e.g., Glahn and Lowry 1972;
Wilson and Vallé 2002). However, to our knowledge, automatic variable selection has not
yet been used for ensemble post-processing with non-homogeneous regression. In this paper
we propose a boosting algorithm to automatically select the most relevant predictor vari-
ables in non-homogeneous regression. Boosting has originally been proposed for classification
problems (Freund and Schapire 1997) but has also been extended and used for regression
(Friedman, Hastie, and Tibshirani 2000; Bühlmann and Yu 2003; Bühlmann and Hothorn
2007; Hastie, Tibshirani, and Friedman 2013). Like other optimization algorithms boosting
finds the minimum of the loss function iteratively but in each step it only updates the coe�-
cient that improves the current fit most. Thus, if it is stopped before convergence, only the
most important predictor variables have non-zero coe�cients so that less relevant variables
are ignored.

To investigate this novel boosting approach and to compare its performance against ordi-
nary non-homogeneous regression we use maximum and minimum temperature forecasts at
five stations in central Europe. As potential input variables we use ensemble forecasts for
di↵erent weather variables from the European Centre for Medium-Range Weather Forecasts
(ECMWF).

The remainder of this paper is structured as follows: The following section describes the
non-homogeneous regression approach and introduces the boosting algorithm to estimate the
regression coe�cients. Subsequently Section 3 describes the data that is used to compute the
results that are presented in Section 4. Finally, Section 5 provides a summary and conclusion.

2. Methods

This section first describes the non-homogeneous regression approach of Gneiting et al. (2005)
and subsequently presents a boosting algorithm to automatically select the most relevant input
variables.

2.1. Non-homogeneous regression

Non-homogeneous regression, sometimes also called ensemble model output statistics, was first
proposed by Gneiting et al. (2005) for normally distributed predictands such as temperature
and sea level pressure. Later publications extended this method to variables described by
non-normal distributions, e.g., wind (truncated normal: Thorarinsdottir and Gneiting 2010),
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or precipitation (generalized extreme value: Scheuerer 2014, censored logistic: Messner, Mayr,
Wilks, and Zeileis 2014a, or censored gamma: Scheuerer and Hamill 2015). In the following,
we only regard non-homogeneous Gaussian regression (NGR), but all concepts can easily be
transferred to other distributions as well.

NGR assumes the observations y to follow a normal distribution N with mean µ (location)
and variance �

2 (squared scale):
y ⇠ N (µ,�2) (1)

where the location µ and the logarithm of the scale � are expressed as

location: µ = x

>
� (2)

log-scale: log(�) = z

>
� (3)

with x = (1, x1, x2, . . .)> and z = (1, x1, x2, . . .)> being vectors of predictor variables, and
� = (�0,�1,�2, . . .)> and � = (�0, �1, �2, . . .)> the corresponding coe�cient vectors. Note
that y, x, z, µ, and � are event specific but indices were omitted to enhance the readability.
The logarithmic link function in Equation 3 (log(�)) is used to assure positive values for �.
Alternatively, often also �

2 is modeled where all coe�cients in � are restricted to be positive
(e.g., Gneiting et al. 2005).

The coe�cients � and � are estimated by minimizing a loss function such as the negative
log-likelihood or the continuous ranked probability score (CRPS). In the following, we use the
negative log-likelihood, but all concepts can be easily transfered to any other di↵erentiable
loss function as well. The negative log-likelihood (L) for a single event is given by:

L(µ,�) = � log

✓
1

�

�

✓
y � µ

�

◆◆
(4)

where �() is the probability density function of the normal distribution. The full negative
log-likelihood, that is used to estimate � and �, is derived by taking the sum of L(µ,�) over
the training data. We perform this optimization with the Broyden-Fletcher–Goldfarb-Shanno
(BFGS) algorithm as implemented in R (R Core Team 2015), similar to e.g., Gneiting et al.

(2005); Thorarinsdottir and Gneiting (2010); Scheuerer (2014). For an increased e�ciency of
this optimization we also use analytical gradients and Hessian matrices of the log-likelihood
(Messner, Mayr, and Zeileis 2016). In most studies, x is a vector including di↵erent ensemble
member forecasts or the ensemble mean forecast while z usually contains the ensemble vari-
ance or standard deviation. Scheuerer (2014) and Scheuerer and Hamill (2015) also included
further input variables, however, typically only ensemble forecasts of the predictand variable
have been used (e.g., only ensemble predictions of temperature are included in x and z for
temperature forecasts).

Clearly, many more information sources could be used as inputs, e.g., di↵erent ensemble fore-
cast variables, current observations, deterministic forecasts, or transformations or interactions
of all of these. However, adding too many variables can easily result in overfitting so that the
input variables must be selected carefully. Considering the huge set of candidate variables it
is clear that selecting them by hand can be very cumbersome, especially if forecasts for many
di↵erent predictands, stations, and lead times are required.

Thus, algorithms to automatically select the most important variables are highly desirable.
The following subsection introduces a boosting algorithm that can be employed for this pur-
pose.
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2.2. Non-homogeneous boosting

This subsection introduces an alternative algorithm to the BFGS optimization to estimate
the coe�cients � and �. This algorithm is based on boosting and can automatically select the
most important predictor variables. Like other optimization algorithms, boosting finds the
minimum of the loss function (e.g., the negative log-likelihood; Equation 4) iteratively but in
each step it only updates the coe�cient of the variable that improves the current fit most.
Thus, if it is stopped early and not run until convergence only the most important variables
have non-zero coe�cients.

In the following we assume the predictand (y) and each predictor variables (xj , zk) to have
zero mean and unit variance. We use standardized anomalies (see following section for details)
to achieve this. Alternatively, one could subtract the mean and divide the standard deviation
of each variable. Then the non-homogeneous boosting algorithm can be described by:

1. Initialize coe�cients:
� = 0, � = 0 (5)

2. Iterate mstop times:

(a) Compute negative partial derivatives of L(µ,�) with respect to µ = x

>
� and

� = z

>
�:

r = �@L(µ,�)

@µ

s = �@L(µ,�)

@�

(6)

(b) Find the predictor variable xj with the highest correlation to r, and zk with the
highest correlation to s:

j

⇤ = argmax
j

⇢(xj , r) k

⇤ = argmax
k

⇢(zk, s) (7)

(c) tentatively update coe�cients:

�

⇤ = � �

⇤ = � (8)

�

⇤
j⇤ = �

⇤
j⇤ + ⌫⇢(xj⇤ , r) �

⇤
k⇤ = �

⇤
k⇤ + ⌫⇢(zk⇤ , s) (9)

(d) really update the coe�cient that improves the current fit most:

if L(x>
�

⇤
,�) < L(µ, z>�⇤) set � = �

⇤ else set � = �

⇤ (10)

where 0 are vectors of zeros, mstop is a predefined number of boosting iterations, ⇢(xj , rm)
is the sum over the training data of xj ⇥ r, and ⌫ is a predefined step size between 0 and 1.
Schmid and Hothorn (2008) showed that the choice of the step size is only of minor importance
and we follow their suggestion of ⌫ = 0.1.

If mstop is selected to be very large, the estimated coe�cients � and � approximate the max-
imum likelihood estimates from the model in the previous subsection. However, by choosing
a smaller mstop, overfitting can be prevented with unimportant variables having zero co-
e�cients. In order to get the best predictive performance an appropriate mstop has to be
found. This is achieved by optimizing the cross-validated log-likelihood. The data is split in
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e.g., 10 parts and for each part, predictions are computed from non-homogeneous boosting
models that were fitted on the remaining 9 parts. This is done for di↵erent mstop from 1
to a rather high mstop

max

resulting in mstop

max

di↵erent predictions for each event in the
data set. mstop is then set to the mstop with the smallest negative log-likelihood sum over
all events.

In addition to automatically selecting the most important input variables, boosting also regu-
larizes the non-zero coe�cients, i.e., the coe�cients are shrunk compared to their maximum-
likelihood values. Hastie et al. (2013) showed that this regularization is similar to that of the
absolute shrinkage and selection operator (LASSO; Tibshirani 1994) and also helps to reduce
overfitting, especially for highly correlated input variables.

In the following we investigate non-homogeneous Gaussian boosting (NGB) in a case study
and compare its performance with that of NGR with only the ensemble forecast of the pre-
dictand variable as input. To assess the influence of the regularization in boosting, we also
compare a further NGR model with the subset of input variables that were selected by boost-
ing.

3. Data

This section describes the data that is used for the case study in the following section. We
considered minimum and maximum temperatures at the five central European SYNOP sta-
tions Wien Schwechat (48.110N, 16.570E), Innsbruck Airport (47.260N, 11.357E), Berlin Tegel
(52.566N, 13.311E), Leipzig Halle (51.436N, 12.241E), and Zürich Kloten (47.480N, 8.536E).
Minimum temperatures are for periods between 18UTC and 06UTC, and maximum temper-
atures between 06UTC and 18UTC.

As numerical predictions we employed the 51 member ensemble predictions from the ECMWF.
In addition to the direct forecast of minimum and maximum temperatures we used various
predictions for di↵erent parameters (e.g., temperatures, wind, precipitation) from the surface
level and pressure levels at 1000, 850, 700, and 500 hPa. The regarded 12 hour time windows
(18–06UTC or 06–18UTC) span several (3-hourly) time steps of the ECMWF model. For
accumulated quantities (e.g., precipitation) we simply employed the accumulated values over
the regarded 12 hour time window. For other quantities (e.g., temperatures) we computed
means, maxima, and minima over the regarded time windows for each parameter and member
respectively.

Subsequently ensemble means and log-standard deviations were derived. The logarithm of
the ensemble standard deviations is used to be consistent with the log-scale that is modeled
in Equation 3. Zero standard deviations sometimes occur for variables with a limited range
such as precipitation. These variables are almost never selected by our models but to avoid
infinite numbers we set zero standard deviations to a very small value (0.0001).

For each accumulated parameter this results in two variables (ensemble mean and log-
standard deviation) and for each other parameter in six variables (ensemble means and log-
standard deviations for 12-hourly means, minima, and maxima). In the following, these
variables are labeled according to following rule: parameter aggregation ensemble-statistic,
e.g., t2m dmax mean is the ensemble mean of daily (12 hourly) maximum temperature
ensemble forecasts at 2m above ground.

In addition to the ensemble predictions from the numerical weather forecasting model, the last
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observed minimum or maximum temperature is used as potential predictor variable. Overall
335 input variables are available to the NGB model.

We regarded lead times from 1 to 5 days (30 to 138 hours) and use data from January 2011
to January 2016 (approx. 1700 days).

Clearly, many variables such as temperatures, have strongly pronounced seasonal patterns
that probably a↵ect the statistical properties of forecasts and observations. To only use
training data that is representative for the current season, many studies use moving training
windows of a certain number of days preceding the forecast date (e.g., Gneiting et al. 2005;
Thorarinsdottir and Gneiting 2010; Scheuerer and Büermann 2014). While this approach
allows the model to adapt quickly to seasonal changes it disregards large parts of available
data.

To allow larger training data sets, we used standardized anomalies to remove seasonal pat-
terns. For these standardized anomalies, first seasonally varying climatological means and
standard deviations were derived for the predictand and all input variables. Therefore a non-
homogeneous regression model (Equations 1 to 3) was fitted with y the respective parameter
(predictand or input variable) and x = z = (1, sin(2⇡d/365), cos(2⇡d/365))>. Standardized
anomalies are then easily derived for parameter a by:

a�ma

sa
(11)

where ma and sa are the climatological mean (location) and standard deviation (scale) de-
rived from the non-homogeneous regression model. As an example, Figure 1 shows that the
standardized anomalies of maximum temperatures in Wien Schwechat have no pronounced
seasonal cycle anymore so that the entire dataset can be used for training.

Note that when anomalies are employed, location predictions µ̂ have to be transformed back
by:

my + µ̂sy (12)

and scale predictions �̂ by:
�̂sy (13)

4. Results

This section assesses the boosting algorithm on the data described in the previous section. To
illustrates the boosting optimization, Figure 2 shows a typical evolution of coe�cients. Since
the input variables all have unit variance their coe�cient values can be directly compared
and indicate their relevance. After all coe�cients being zero in the beginning, the daily mean
maximum temperature ensemble mean (tmax2m dmean mean) is the first variable that gets a
non-zero coe�cients which indicates that it explains the observations best. With an increasing
value of the corresponding coe�cient, more and more of the variance in the observations is
explained so that the intercept for the log-scale decreases. After approximately 20 iterations
the ensemble standard deviation of daily maximum evaporation (ske dmax sd) enters with
a negative coe�cient for the log-scale. Few steps later the daily maximum 2m temperature
ensemble mean (t2m dmax mean) is added to the equation for the location. Further selected
variables are the daily minimum soil temperature ensemble mean (stl1 dmin mean) and the
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Figure 1: Left: Observed maximum temperatures (gray circles) in Wien Schwechat, fitted
climatological mean (solid line), and climatological mean ± one climatological standard de-
viation (dashed lines). Right: Corresponding standardized anomalies.

700 hPa daily mean vorticity ensemble standard deviation (not labeled) for the log-scale
and the daily minimum 1000 hPa temperature ensemble mean (not labeled) for the location.
Further variables enter the regression equations later, but are not considered because the
optimum cross validation stopping iteration is already found at 31.

Figure 3 shows the boosting coe�cients from the cross validation stopping iteration at di↵erent
lead times for maximum temperature forecasts in Wien Schwechat. Additionally, dashed lines
show the NGR coe�cients. As already indicated in Figure 2, the daily maximum maximum
temperature ensemble forecast, that would be the direct predictor, is neither important for
the location nor for the log-scale. However, it is highly correlated (correlation coe�cients
> 0.9) to e.g., the daily mean maximum temperature, the daily maximum 2m temperature or
temperatures at 1000 hPa, so that these variables are virtually exchangeable without loosing
much information. For the log-scale (Figure 3 bottom), ensemble standard deviations of
various variables are selected but also ensemble mean forecasts (e.g., of 1000 hPa divergence
d1000 dmax mean) seem to contain forecast uncertainty information. Interestingly, the NGR
coe�cient of the ensemble standard deviation in the scale equation is negative for short lead
times indicating a negative spread-skill relationship (Wilks 2011).

Figure 4 shows coe�cients similar to Figure 3 but for minimum temperatures. The direct
predictor, the daily minimum minimum temperature ensemble mean, is clearly the most
relevant variable over all lead times unlike for maximum temperatures. However, various
other variables seem to be more relevant for the log-scale equation, many also with negative
coe�cients. Note that for Wien Schwechat (Figures 3 and 4) boosting selects relatively few
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Figure 2: Paths of boosting coe�cients for a +66 hours maximum temperature forecasts at
Wien Schwechat. Coe�cient paths for the location are shown as black lines and for the log-
scale as red lines. The optimum stopping iteration according to cross validation (cv) is shown
as dashed vertical line. The most important coe�cients are labeled (see text).

variables. Many more variables are selected for some of the other stations (not shown).

Figures 2 to 4 show that boosting selects a meteorologically reasonable set of variables. In the
following, we investigate how the increased number of input variables improves the forecast
performance. To obtain independent training and test data, 10-fold cross validation is used
again: For each station and lead time the data is split into 10 parts and for each part
performance measures (squared errors, CRPS or PITs) are computed for models that were
trained on the 9 remaining parts. The e↵ective training data length is thus 9/10 of the full
data set length (approximately 1550 days). To estimate the sampling distribution of average
squared errors and CRPS we computed means of 250 bootstrap samples.

Figure 5 shows the root mean squared error (RMSE) of the location forecasts (µ in Equation 2)
of NGB, NGR, and the subset NGR, which is an NGR with the non-zero coe�cients from
boosting as input. For the two stations, Wien Schwechat and Innsbruck Airport, the RMSE
of the minimum temperature forecast is always smaller for boosting than for NGR. As already
indicated in Figure 4, NGR and boosting di↵er only slightly for Wien minimum temperature
forecasts. In contrast the di↵erences are much larger for Innsbruck. In addition to selecting
the most important variables, boosting also regularizes or shrinks the coe�cients. The subset
model uses the same variables as boosting but does not regularize their coe�cients which
results in very similar RMSE. The RMSE of the other stations and maximum temperatures



Jakob W. Messner, Georg J. Mayr, Achim Zeileis 9

location

Lead time [h]

st
an

da
rd

ize
d 

co
ef

fic
ie

nt
s

0.
0

0.
4

0.
8

42 66 90 114 138

tmax2m_dmean_mean
t1000_dmean_mean
t2m_dmax_mean
ske_dmin_mean
tmax2m_dmax_mean

log−scale

Lead time [h]

st
an

da
rd

ize
d 

co
ef

fic
ie

nt
s

−0
.1

0.
1

0.
3

42 66 90 114 138

t2m_dmax_sd
stl1_dmax_sd
d1000_dmax_mean
stl1_dmin_mean
tmax2m_dmax_sd

Figure 3: Standardized coe�cients from non-homogeneous boosting for Wien Schwechat max-
imum temperature for the location (top) and the log-scale deviation (bottom) and di↵erent
lead times. The intercepts are not shown and the most important coe�cients are shown in
colors. The optimum stopping iteration was found by cross validation.

look very similar to that of Wien Schwechat and Innsbruck Airport minimum temperatures
and are therefore not shown.

While the RMSE shows the deterministic performance, we employ the continuous ranked
probability score (CRPS; Hersbach 2000) to measure the probabilistic quality of the forecasts.
Gneiting et al. (2005) provides a closed form for normal predicitve distributions

CRPS = �

⇢
y � µ̂

�̂


2�

✓
y � µ̂

�̂

◆
� 1

�
+ 2�

✓
y � µ̂

�̂

◆
� 1p

⇡

�
(14)

where �() and �() are the normal cumulative distribution function and probability density
function respectively, y is the observation and µ̂ and �̂ are the predicted location and scale.
Since we are mainly interested in improvements of boosting over NGR, Figure 6 shows the
continuous ranked probability skill score (CRPSS) relative to NGR

CRPSS = 1� CRPS

CRPS

NGR

(15)
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Figure 4: Same as Figure 3 but for Wien Schwechat minimum temperature.

where CRPS is the respective average CRPS and CRPS

NGR

is the average CRPS of NGR.
For both, minimum and maximum temperature forecasts, NGB performs clearly better than
NGR over all lead times where for longer lead times this advantage is less pronounced. Dif-
ferent to the RMSE the regularization in boosting slightly improves the forecast performance
compared to the subset model.

To assess the reliability of the forecasts, Figure 7 shows probability integral transform (PIT)
histograms (Wilks 2011) of NGB and NGR. Both forecast methods seem to produce predictive
distributions with too light left and too heavy right tails, indicating that actually a non-
symmetric distribution would better fit the data. However, the flatter PIT histogram of NGB
indicates that using more variables partly compensates for this problem and increases the
reliability.

Finally, Figure 8 shows the CRPSS for di↵erent training data lengths. For shorter training
data lengths the number of selected input variables decreases but is still proportionally high
compared to the training data length. In the subset model this leads to overfitting that clearly
deteriorates the predictive performance. In contrast, NGB regularizes the coe�cients to
largely prevent overfitting so that, except for very short training data lengths, it outperforms
NGR.
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Figure 5: Root mean squared error for Wien Schwechat (top) and Innsbruck Airport (bottom)
minimum temperature forecasts for di↵erent lead times and models. The solid circles mark the
medians and the boxes the interquartile range of the 250 RMSE values from bootstrapping.
The whiskers show the most extreme values that are less than 1.5 times the length of the box
away from the box, and empty circles are plotted for values that are outside the whiskers.

5. Summary and conclusion

Non-homogeneous regression can easily be extended to use further predictor variables in
addition to ensemble forecasts of the predictand variable. However, to avoid overfitting that
can deteriorate the predictive performance, predictor variables have to be selected carefully.

In this paper we presented a boosting algorithm to estimate the regression coe�cients that
can be used for automatic variable selection. In addition to variable selection this algorithm
also regularizes or shrinks the regression coe�cients to further prevent overfitting. A case
study for minimum and maximum temperatures at five central European statios showed
clear improvements in the predictive performance compared to a non-homogeneous regression
model with only ensemble mean and standard deviation of the predictand variable as input.

In our case study we employed a large set of di↵erent ensemble predictions from ECMWF
(approx. 100) at surface and several pressure levels. We aggregated these predictions over
the regarded time windows and computed ensemble means and log-standard deviations. Ad-
ditionally, we also used the last available observations as potential predictor variable. Clearly
there are many more potential input variables that we have not included; e.g., current obser-
vations of other variables or from neighboring weather stations, deterministic predictions or
ensemble predictions from other centers, transformations of all of these variables (e.g., log-
arithm, roots, or powers), etc. Including some of these would probably further improve the
forecasts.
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Figure 6: Continuous ranked probability skill score (CRPSS) relative to NGR of maximum
(top) and minimum (bottom) temperature forecasts aggregated over 5 stations. Circles, boxes
and whiskers have the same meaning as in Figure 5.

In this paper we assumed minimum and maximum temperatures to follow normal distribu-
tions. However, the PIT histograms indicate that the conditional distribution of maximum
and minimum temperatures given the ensemble forecast is not perfectly symmetric so that
using a di↵erent asymmetric distribution could improve the forecast performance. Other dis-
tributions might also be required for predictions of other non-normally distributed variables
such as precipitation or wind speed. Although we presented boosting for normal distributed
predictive distributions, all concepts can be easily transfered to other distributions as well.
Similarly, also other di↵erentiable loss functions, such as the CRPS, could be employed instead
of the negative log-likelihood.

Variable selection is clearly not new in the statistical post-processing literature. Glahn and
Lowry (1972) already recognized the importance of variable selection for deterministic model
output statistics and proposed to use stepwise selection. However, except Broecker (2010)
who proposed lasso regularization for logistic regression and Wahl (2015) who used lasso
penalization for quantile regression, automatic variable selection has not been used in the
ensemble post-processing literature so far.

Non-homogeneous boosting is an easy to implement extension of the popular non-homogeneous
regression to automatically select the most relevant input variables of possibly very large sets
of candidates. To facilitate the implementation and adaption to other problems we provide
all our algorithms in the software package crch (Messner et al. 2016) for the open source
software R (R Core Team 2015).
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(right). Perfect PIT uniformity is indicated by horizontal dashed lines.
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maximum temperature forecasts and di↵erent training data lengths aggregated over 5 stations.
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Wilson LJ, Vallé M (2002). “The Canadian Updateable Model Output Statistics (UMOS)
System: Design and Development Tests.” Weather and Forecasting, 17(2), 206–222. doi:
10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2.

A�liation:

Jakob W. Messner, Achim Zeileis
Department of Statistics
Faculty of Economics and Statistics
Universität Innsbruck
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Abstract
Non-homogeneous regression is often used to statistically post-process ensemble fore-
casts. Usually only ensemble forecasts of the predictand variable are used as input
but other potentially useful information sources are ignored. Although it is straight-
forward to add further input variables, overfitting can easily deteriorate the forecast
performance for increasing numbers of input variables. This paper proposes a boos-
ting algorithm to estimate the regression coe�cients while automatically selecting
the most relevant input variables by restricting the coe�cients of less important
variables to zero. A case study with ensemble forecasts from the European Centre
for Medium-Range Weather Forecasts (ECMWF) shows that this approach e↵ec-
tively selects important input variables to clearly improve minimum and maximum
temperature predictions at 5 central European stations.
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