Appendix to "Vickrey Auction vs
 BDM: Difference in bidding behaviour and the impact of other-regarding motives"

Niall Flynn, Christopher Kah, Rudolf Kerschbamer

Working Papers in Economics and Statistics
2015-16

University of Innsbruck
http://eeecon.uibk.ac.at/

University of Innsbruck

Working Papers in Economics and Statistics

The series is jointly edited and published by

- Department of Banking and Finance
- Department of Economics
- Department of Public Finance
- Department of Statistics

Contact address of the editor:
Research platform "Empirical and Experimental Economics"
University of Innsbruck
Universitaetsstrasse 15
A-6020 Innsbruck
Austria
Tel: $\quad+435125077171$
Fax: + 435125072970
E-mail: eeecon@uibk.ac.at
The most recent version of all working papers can be downloaded at http://eeecon.uibk.ac.at/wopec/

For a list of recent papers see the backpages of this paper.

A Appendix: Proofs and Technicalities

In this appendix, we provide a proof of Proposition 1 which gives the theoretical predictions we make about treatment differences. The proof will be organised in a sequence of lemmata.

Lemma 1. In the BDM treatment, the unique admissible bid b_{i}^{*} is implicitly defined by

$$
\begin{equation*}
\frac{1}{2} f_{i}\left(e+w-b_{i}^{*}\right)+\frac{1}{2} f_{i}\left(e-b_{i}^{*}\right)=f_{i}(e) . \tag{A.1}
\end{equation*}
$$

Proof. Trivial, hence omitted.
Recall that $\left(x_{i}, x_{j}\right), j \neq i$, denotes an allocation of money. For selfish subjects the payoff is of the form $U_{i}^{\text {self }}\left(x_{i}, x_{j}\right)=f\left(x_{i}\right)$. Given the experimental design, the functional specification takes the form

$$
\begin{align*}
U_{i}^{\text {self }}(\cdot, \cdot) & =\left[\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)\right] \cdot \mathrm{I}_{b_{i}>b_{j}} \tag{A.2}\\
& +\left[f_{i}(e)\right] \cdot \mathrm{I}_{b_{i}<b_{j}} \\
& +\left[\frac{1}{2}\left(\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)\right)+\frac{1}{2} f_{i}(e)\right] \cdot \mathrm{I}_{b_{i}=b_{j}}
\end{align*}
$$

where b_{j} is the bid of player $j \neq i$, and $\mathrm{I}_{(\cdot)}$ is the indicator function taking values 0 and 1 , respectively, depending on i winning, losing or entering the tie-break in the auction.

Lemma 2. Consider the treatment VA. Here, $b_{i}^{\text {self }}=b_{i}^{*}$ as defined in Eq. (A.1) is the unique admissible bid.

Proof. Trivial, hence omitted.
For the next two lemmata, we need an additional assumption. For two strictly increasing functions f_{i} and g_{i}, say that f is more concave than g, written $f_{i} \succ_{\text {conc }} g_{i}$, if and only if $g_{i}^{-1}(f)$ is a concave function. As outlined in Section 2 in the paper, we shall maintain the following assumption:

Assumption 1. Let f_{i} and g_{i} be strictly increasing functions where f_{i} evaluates lotteries with consequences affecting monetary payoffs for i, and g_{i} evaluates lotteries with consequences affecting monetary payoffs for $j \neq i$. Then $f_{i} \succ_{\text {conc }} g_{i}$.

Assumption 1 guarantees that the certainty equivalent for a lottery evaluated with function $f_{i}(\cdot)$ is weakly lower than the certainty equivalent under $g_{i}(\cdot)$ and rules out "altruistic overbidding".

Lemma 3. Consider the VA treatment and suppose that Assumption 1 holds. For altruistic subjects b_{i}^{*} as defined in Eq. (A.1) weakly dominates any strategy $b_{i}^{\prime}>b_{i}^{*}$.

Proof. Recall that an altruistic subject's payoff function is of the form $U_{i}^{\text {altr }}\left(x_{i}, x_{j}\right)=$ $f_{i}\left(x_{i}\right)+g_{i}\left(x_{j}\right)$, where $g_{i}(\cdot)$ is a strictly increasing function. Given the experimental design, the functional specification takes the form

$$
\begin{align*}
U_{i}^{\operatorname{altr}}(\cdot, \cdot) & =\left[\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)+g_{i}(e)\right] \cdot \mathrm{I}_{b_{i}>b_{j}} \tag{A.3}\\
& +\left[f_{i}(e)+\left(\frac{1}{2} g_{i}\left(e+w-b_{j}\right)+\frac{1}{2} g_{i}\left(e-b_{j}\right)\right)\right] \cdot \mathrm{I}_{b_{i}<b_{j}} \\
& +\left[\frac{1}{2}\left(\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)+g_{i}(e)\right)\right. \\
& \left.+\frac{1}{2}\left(f_{i}(e)+\left(\frac{1}{2} g_{i}\left(e+w-b_{j}\right)+\frac{1}{2} g_{i}\left(e-b_{j}\right)\right)\right)\right] \cdot \mathrm{I}_{b_{i}=b_{j}} .
\end{align*}
$$

First note that for a bid $b_{i}^{\prime}>b_{i}^{*}$ that results in losing the auction ($b_{j} \geq b_{i}^{\prime}$), an altruistic type could always strictly increase her utility by lowering her bid to b_{i}^{*}, thereby making j pay a lower price. Hence, it is sufficient to show that altruist i never (weakly) prefers winning the auction at a bid $b_{i}^{\prime}>b_{i}^{*}$ (and paying $b_{j}>b_{i}^{*}$) to losing at b_{i}^{*}. For the sake of exposition, we omit the case of entering the tie-break at some $b_{i}^{\prime}>b_{i}^{*}$, for which an analogous argument can be established along the very same lines.
Now to the contrary suppose that the following holds:

$$
\begin{equation*}
\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)+g_{i}(e) \geq \frac{1}{2} g_{i}\left(e+w-b_{i}^{*}\right)+\frac{1}{2} g_{i}\left(e-b_{i}^{*}\right)+f_{i}(e) . \tag{A.4}
\end{equation*}
$$

Straightforward algebraic manipulation of inequality (A.4) yields

$$
\begin{equation*}
g_{i}(e)-\frac{1}{2} g_{i}\left(e+w-b_{i}^{*}\right)-\frac{1}{2} g_{i}\left(e-b_{i}^{*}\right) \geq f_{i}(e)-\frac{1}{2} f_{i}\left(e+w-b_{j}\right)-\frac{1}{2} f_{i}\left(e-b_{j}\right) . \tag{A.5}
\end{equation*}
$$

If $f_{i}=g_{i}$, the r.h.s. in (A.5) is strictly positive, whereas the l.h.s. is zero - a contradiction. Consider now the case $f_{i} \neq g_{i}$. Note that the expression on the l.h.s. of inequality (A.5) is strictly negative: By Assumption 1, we have $\hat{b}>b_{i}^{*}$ for the \hat{b} solving the expression $\frac{1}{2} g_{i}(e+w-\hat{b})+\frac{1}{2} g_{i}(e-\hat{b})=g_{i}(e)$. Rearranging inequality (A.5) gives

$$
\begin{equation*}
1 \leq \frac{f_{i}(e)-\frac{1}{2} f_{i}\left(e+w-b_{j}\right)-\frac{1}{2} f_{i}\left(e-b_{j}\right)}{g_{i}(e)-\frac{1}{2} g_{i}\left(e+w-b_{i}^{*}\right)-\frac{1}{2} g_{i}\left(e-b_{i}^{*}\right)} . \tag{A.6}
\end{equation*}
$$

If $f_{i} \neq g_{i}$ the numerator of this expression is strictly positive by the definition of b_{i}^{*} in Eq. (A.1) and $b_{j}>b_{i}^{*}$, while the denominator is strictly negative. Thus, the r.h.s. of inequality (A.6) is strictly negative, which establishes the desired contradiction.

Lemma 4. Consider the VA treatment and suppose that Assumption 1 holds. For spiteful subjects b_{i}^{*} as defined in Eq. (A.1) weakly dominates any strategy $b_{i}^{\prime}<b_{i}^{*}$.

Proof. Recall that a spiteful subject's payoff function is of the form $U_{i}^{\text {spite }}\left(x_{i}, x_{j}\right)=$ $f_{i}\left(x_{i}\right)-g_{i}\left(x_{j}\right)$. Given the experimental design, the functional specification takes the form

$$
\begin{align*}
U_{i}^{\text {spite }}(\cdot, \cdot) & =\left[\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)-g_{i}(e)\right] \cdot \mathrm{I}_{b_{i}>b_{j}} \tag{A.7}\\
& +\left[f_{i}(e)-\left(\frac{1}{2} g_{i}\left(e+w-b_{j}\right)+\frac{1}{2} g_{i}\left(e-b_{j}\right)\right)\right] \cdot \mathrm{I}_{b_{i}<b_{j}} \\
& +\left[\frac{1}{2}\left(\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)-g_{i}(e)\right)\right. \\
& \left.+\frac{1}{2}\left(f_{i}(e)-\left(\frac{1}{2} g_{i}\left(e+w-b_{j}\right)+\frac{1}{2} g_{i}\left(e-b_{j}\right)\right)\right)\right] \cdot \mathrm{I}_{b_{i}=b_{j}} .
\end{align*}
$$

The argument we use in the proof is analogous to the the argument in the proof of Lemma 3. Now we need to show that spiteful i never (weakly) prefers to lose the auction at a bid $b_{i}^{\prime}<b_{i}^{*}$ to winning at b_{i}^{*}. It is sufficient to consider that case because when a spiteful i wins at $b_{i}^{\prime}<b_{i}^{*}$, she can increase her bid to b_{i}^{*} without any change in utility. Again, we omit the case of entering the tie-break at some $b_{i}^{\prime}<b_{i}^{*}$ for which the result can be shown along the same lines. For the sake of contradiction, suppose the following holds:

$$
\begin{equation*}
f_{i}(e)-\left(\frac{1}{2} g_{i}\left(e+w-b_{i}^{\prime}\right)+\frac{1}{2} g_{i}\left(e-b_{i}^{\prime}\right)\right) \geq \frac{1}{2} f_{i}\left(e+w-b_{i}^{\prime}\right)+\frac{1}{2} f_{i}\left(e-b_{i}^{\prime}\right)-g_{i}(e) . \tag{A.8}
\end{equation*}
$$

Straightforward algebraic manipulation of inequality (A.8) yields

$$
\begin{equation*}
g_{i}(e)-\frac{1}{2}\left(g_{i}\left(e+w-b_{i}^{\prime}\right)+g_{i}\left(e-b_{i}^{\prime}\right)\right) \geq \frac{1}{2}\left(f_{i}\left(e+w-b_{j}\right)+f_{i}\left(e-b_{j}\right)\right)-f_{i}(e) . \tag{A.9}
\end{equation*}
$$

If $f_{i}=g_{i}$, the r.h.s. in (A.5) is strictly positive, whereas the l.h.s. is strictly negative - a contradiction. To see this, note that by Assumption 1, we have $\hat{b}>b_{i}^{*}$ for the \hat{b} solving the expression $\frac{1}{2} g_{i}(e+w-\hat{b})+\frac{1}{2} g_{i}(e-\hat{b})=g_{i}(e)$, and when setting up inequality (A.8), we stipulated that i loses at $b_{i}^{*}>b_{j}>b_{i}^{\prime}$. Consider now the case $f_{i} \neq g_{i}$. Note that by the same reasoning, the expression on the l.h.s. of inequality (A.9) is strictly negative: Rearranging inequality (A.5) gives

$$
\begin{equation*}
1 \leq \frac{\frac{1}{2} f_{i}\left(e+w-b_{j}\right)+\frac{1}{2} f_{i}\left(e-b_{j}\right)-f_{i}(e)}{g_{i}(e)-\frac{1}{2}\left(g_{i}\left(e+w-b_{i}^{\prime}\right)+g_{i}\left(e-b_{i}^{\prime}\right)\right)} \tag{A.10}
\end{equation*}
$$

The numerator of this expression is strictly positive by the definition of b_{i}^{*} and $b_{j}<b_{i}^{*}$, while the denominator is strictly negative as $b_{i}^{\prime}<b_{i}^{*}$. Thus, the r.h.s. of inequality (A.10) is strictly negative, which establishes the desired contradiction.

Proposition 1. In the VA,
(i) selfish subjects never have an incentive to deviate from b_{i}^{*};
(ii) altruistic subjects never have an incentive to overbid relative to b_{i}^{*}, and might have an incentive to underbid;
(iii) spiteful subjects never have an incentive to underbid relative to b_{i}^{*}, and might have an incentive to overbid.

Proof. Proposition 1 follows from Lemmata 1-4 combined with the following observation. Let $\mu_{i} \in \Delta\left(B_{j}\right)$ be a belief (i.e., a probability distribution) of i about j 's behaviour. If $\mu_{i}\left(b_{j}^{\prime}\right)$ is sufficiently large for some $b_{j}^{\prime}>b_{i}^{*}$, then an altruistic bidder i can increase her utility by submitting a bid $b_{i}^{\prime}<b_{i}^{*}$, while a spiteful bidder i can increase her utility by submitting a bid $b_{i}^{\prime}>b_{i}^{*}$

B Appendix: Instructions

In this appendix, we present the translations of the instructions, control questions, and decision sheets. For the two treatments, the instructions only differ in the section "The other bidder" in part 2 of the experiment. The original documents (in German) are available upon request.

Instructions:

Welcome to the experiment and thank you for agreeing to participate. This experiment is run by the Department of Economics and is funded by the Austrian Science Foundation. In a moment I will outline the decisions you'll face but first I have some preliminary announcements.

Please can you switch off your mobile phone. Throughout the duration of the experiment you are not allowed to use you mobile phone or to read any other material except that which is provided by the experiment. Please do not talk or attempt to communicate with any other participants. If, at any point, you have any questions regarding the experiment, raise your hand and someone will assist you. Failure to adhere by these rules will result in you being asked to leave and you will not be paid.

Any data collected from you will be used for research purposes only. Any reporting of this research makes no reference to your individual identity. In the data set created from this experiment you will exist solely as an I.D. number and not by name.

You will be paid at the end of the experiment in cash. The level of this payment depends on a combination of the decisions that you and others make.

This experiment consists of two parts: part A and part B. Part A involves answering a number of survey questions, and making a series of decisions about distributing money between yourself and another person. Part B involves bidding for a lottery in an auction. It is important to note that all of you will only be paid for one part of the experiment - either part A or part B. Which part will be paid for real will be determined randomly at the end of the experiment once all decisions have been made.

At the end of the experiment we will flip a coin. If it is heads, then you will all be paid for the decisions made in part A , but not for the decisions made in part B . If it is tails, then you will all be paid for the decisions made in part B , but not for the decisions made in part A . Hence, only one part of the experiment is ever paid for real.

Part Ai:

From this point onwards we will refer to this room as "Room 1" and the other room as "Room 2". The individuals in Room 2 are given the same instructions and face exactly the same decisions as all of you do in Room 1. This part of the experiment involves decisions made about the allocation of money between two individuals. These two individuals are referred to as pairs. Every pair always contains one person from Room 1 and one person from Room 2. Every pair contains one active person, who makes binding decisions, and one passive person, who makes no decisions.

You are a member of two different pairs.

- Pair 1: In the first pair you are a member of you are an active person. You are required to make a series of ten decisions about the allocation of money between yourself and the passive person of this pair, who is situated in Room 2 - this person is referred to as your passive person.
- Pair 2: In the second pair you are a member of you are a passive person. Here, the active person of this pair, who is situated in Room 2 and is referred to as your active person, is required to make the same ten decisions that you made in Pair 1 about the allocation of money between themselves and you.

Your active person and your passive person are two separate individuals who have both been chosen randomly. At no point will you ever discover their identities. Similarly, they will never discover your identity.

Your choices as an active person:

As an active person in Pair 1 your task is to make 10 separate decisions. Each decision is a choice between two options: left or right. Each option specifies an amount of money for you and an amount of money for your passive person in Room 2. The option right always pays $€ 6.00$ to you and $€ 6.00$ to your passive person in Room 2. The option left pays different amounts in each of the 10 decisions.

Consider the following example. Here you have the choice between option right which pays you €6 and your passive person $€ 6$, or option left which pays you $€ 5$ and your passive person $€ 1$. Such a choice is illustrated below. If you wish to choose option left then you would be required to place an X in the left circle. If you wish to choose option right then you would be required to place an X in the right circle.

Option: Left		Your Choice		Option: Right	
You receive	Your passive person receives	Please choose either left or right	You receive	Your passive person receives	
$€ 5.00$	$€ 1.00$	left $\quad \bigcirc$	\bigcirc right	$€ 6.00$	$€ 6.00$

The table below outlines the ten decisions that you have to take.

	Option: Left		Your Choice		Option: Right	
Decision Number	You receive	Your passive person receives	Please cho left or	ose either right	$\begin{aligned} & \text { You } \\ & \text { receive } \end{aligned}$	Your passive person receives
1	€5.00	€11.00	left \bigcirc	\bigcirc right	€6.00	€6.00
2	$€ 5.50$	€11.00	left \bigcirc	\bigcirc right	€6.00	$€ 6.00$
3	$€ 6.00$	€11.00	left \bigcirc	right	$€ 6.00$	$€ 6.00$
4	$€ 6.50$	$€ 11.00$	left	right	$€ 6.00$	$€ 6.00$
5	$€ 7.00$	€11.00	left \bigcirc	\bigcirc right	€6.00	$€ 6.00$

6	$€ 5.00$	$€ 1.00$
7	$€ 5.50$	$€ 1.00$
8	$€ 6.00$	$€ 1.00$
9	$€ 6.50$	$€ 1.00$
10	$€ 7.00$	$€ 1.00$

left	\bigcirc
left	\bigcirc

$|$| |
| :--- |
| |

$€ 6.00$	$€ 6.00$
$€ 6.00$	$€ 6.00$
$€ 6.00$	$€ 6.00$
$€ 6.00$	$€ 6.00$
$€ 6.00$	$€ 6.00$

Your payment:

You will receive two separate payments from this part of the experiment: one as an active person and one as a passive person.

- Payment as an active person: of the ten decisions you make as an active person, one of them will be chosen at random. For this single randomly chosen decision you will be paid the corresponding amount determined by your decision, as will your passive person in Room 2.
- Payment as a passive person: of the ten decisions your active person in Room 2 makes, one of them will be chosen at random. For this single randomly chosen decision you will be paid the corresponding amount determined by their decision, as will your active person in Room 2.

The two paid decisions are chosen independently. They are randomly drawn from a uniform distribution. This means as an active person each decision number has the same 10% chance of being paid for real. Similarly, as a passive person each of the ten decision numbers have the same 10% chance of being paid for real.

Questions:

In order to check your understanding of these instructions, please answer the following questions. You will not be able to proceed with the decision task until you have answered all the questions correctly. If there is any part of the instructions that need clarification then please raise your hand and someone will assist you.

Question 1:

Imagine that you chose right for decision number 4 and that this decision is the one randomly chosen to be paid.
How much will you receive as an active person from this situation? \qquad

How much will your passive person receive from this situation? \qquad

Question 2:

Imagine that you chose left for decision number 7 and that this decision is the one randomly chosen to be paid.
How much will you receive as an active person from this situation? \qquad

How much will your passive person receive from this situation? \qquad

Question 3:
Imagine that as an active person you chose left for decision number 1 and that this decision is the one randomly chosen to be paid. Imagine that as a passive person your active person chose left for decision number 10 and that this is the decision randomly chosen to be paid How much will you receive as an active person from this situation? \qquad

How much will you receive as a passive person from this situation? \qquad

How much will your total payment be? \qquad

Part Ai: Decision Sheet

Please write your experimental ID number here: \qquad

If your experimental ID number is missing or wrong then we will not be able to calculate your payment.

The following table outlines the 10 decisions you are required to make. For each row of the table please indicate with an X whether you prefer option left or option right. Please consider your answers and take your time. You have 5 minutes within which to make all ten decisions.

Option: Left		Your Choice		Option: Right	
You receive	Your passive person receives	Please ch left	ose either right	You receive	Your passive person receives
€5.00	€1.00	left \bigcirc	\bigcirc right	€6.00	€6.00
€5.50	€1.00	left \bigcirc	\bigcirc right	€6.00	€6.00
$€ 6.00$	€1.00	left \bigcirc	\bigcirc right	€6.00	€6.00
€6.50	€1.00	left \bigcirc	\bigcirc right	€6.00	€6.00
€7.00	€1.00	left \bigcirc	\bigcirc right	€6.00	€6.00

| $€ 5.00$ | $€ 11.00$ | left | \bigcirc | \bigcirc | right | $€ 6.00$ | $€ 6.00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $€ 6.50$ | $€ 11.00$ | left | \bigcirc | \bigcirc | right | $€ 6.00$ | $€ 6.00$ |
| $€ 6.00$ | $€ 11.00$ | left | \bigcirc | \bigcirc | right | $€ 6.00$ | $€ 6.00$ |
| $€ 6.50$ | $€ 11.00$ | left | \bigcirc | \bigcirc | right | $€ 6.00$ | $€ 6.00$ |
| $€ 7.00$ | $€ 11.00$ | left | \bigcirc | \bigcirc | right | $€ 6.00$ | $€ 6.00$ |

Once you have made all ten choices, please place this decision sheet in the envelope provided.

Part Aii:

For Part Aii of the experiment you are required to answer 15 survey questions. Some of these questions ask for objective information about you (e.g. age, gender, etc.), some ask about your opinions and beliefs, and a third set of questions are factual questions, in that they have a specific correct answer.
The factual questions are paid, meaning that if you provide the correct answer, or if you are close enough to the correct answer, then you can earn some additional money. Any money earnt from providing correct answers to the factual questions in the survey will be added to the money you are paid from Part Ai of the experiment. The sum of these two amounts (i.e. Part Ai +Part Aii) will be the total payment for Part A of the experiment.

Please consider you answers and take your time. You have 10 minutes within which to answer the 15 questions.

Please write your experimental ID number here: \qquad

If your experimental ID number is missing or wrong then we will not be able to calculate your payment.

Question 1:

How old are you? \qquad

Question 2:

Are you male or female? \qquad

Question 3:

How many brothers and sisters do you have? \qquad

Question 4:

Are you left or right handed? \qquad

Question 5:

What is your nationality? \qquad

Question 6:

Do you currently have a part-time job: Please circle your answer: YES / NO
If YES, then in an average week how many hours do you spend in paid employment?

Question 7:

Over the last year, what has been you average monthly income. Include income from all sources (e.g. government grant, government loan, wages from employment, money from parents, etc). Please state your answer to the nearest one hundred euros.
$€$ \qquad

Question 8:

In Austria, do you think that poor people currently pay: a) too much tax, b) about the right amount of tax, or c) too little tax? Please circle your answer.
a)
c)

The poor pay
The poor pay
too much tax
b)
The poor pay about the right amount of
too little tax

Question 9:

In Austria, do you think that rich people currently pay: a) too much tax, b) about the right amount of tax, or c) too little tax? Please circle your answer.
a)
b)
c)

The rich pay too much tax

The rich pay about the right amount of tax

The rich pay too little tax

Question 10: (paid)

A recent study involved a number of wallets being left in various different urban locations throughout Austria. Each wallet contained $€ 50$ and the name and address of the owner. What percentage of these wallets do you think were returned to their owner intact?
\qquad
\%
** if your answer is within plus or minus 10% of the correct answer then you will earn $€ 1$ **

Question 11:

Some people think that the government should do everything possible to improve the standard of living of all poor Austrians (they are at point 6). Other people think it's not the government's responsibility and that each person should take care of themself (they are at point 1). Where are you placing yourself in this scale? Please circle one of the following six options:

1
2
3
4
5
6

People should
take care of themselves

Government should do everything possible

Question 12:

Some people say that people get ahead by their own hard work, other people say that lucky breaks or help from other people are more important - which do you think is most important? Please circle your answer.

1

Hard Work
Luck

Question 13:

When you graduate from university, what do you expect your net (i.e. after tax) annual salary to be for your first fulltime job? We are asking for annual salary not monthly salary.
$€$ \qquad

Question 14:

Imagine a ladder with 10 rungs. There are approximately 5 million Austrians of working age - that is aged between 16 and 65. These 5 million Austrians are uniformly distributed across the ladder. This means that there are 500,000 people on each rung of the ladder. They are arranged on the ladder by annual income, starting with the poorest. This means that on the first rung are the poorest 500,000 people - i.e. those with the lowest annual income. On the $10^{\text {th }}$ rung stand the richest 500,000 people - i.e. those with the highest annual income.

1	2	3	4	5	6	7	8	9	10

```
Poorest Richest
500,000
Austrians of
working age
Austrians of

\section*{Question 14a: (paid)}

What is the net (i.e. after tax) annual income of the median person? The median person is the individual that stands exactly in the middle of the ladder, in between rungs 5 and 6 . They have 2.5 million people richer than them and 2.5 million people poorer than them. (Remember, we are asking for annual income (after tax), not monthly income)
\(€\)
** if your answer is within plus or minus \(10 \%\) of the correct answer then you will earn \(€ 1 * *\)

\section*{Question 14b:}

What rung are you currently on? Please circle your answer.
\begin{tabular}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}
```

Poorest Richest
500,000 500,000
Austrians of Austrians of
working age

Question 14c:

In ten years time what rung do you expect to be on? Please circle your answer.

1	2	3	4	5	6	7	8	9	10

Poorest	Richest
500,000	500,000
Austrians of	Austrians of
working age	working age

Question 15: (paid)
Please place an X in any one, but only one, of the following three circles.

** if you do this successfully you will earn $€ 0.50$ **

Once you have answered all of the questions, please place this survey in the envelope provided.

Part B:

For part B of the experiment you are all required to make just one decision. That decision is to decide how much you would like to bid for a Lottery in an auction. As in Part A, all participants in both Room 1 and Room 2 are given the same instructions and face exactly the same decision.
The type of auction we will use is called a two-bidder second-price auction. The important point of this type of auction is that: the highest bidder wins, but they only have to pay a price equal to the lowest bid. - hence the name second-price auction.

The exact setup is as follows:

You each begin this part of the experiment by being given $€ 10$. This $€ 10$ is referred to as your endowment.
The decision you have to make is to decide how much you would like to bid in order to win the chance to play a Lottery. Permissible bids cover the full range of your endowment in increments of $€ 0.10$. This means that there are 101 possible bids that you can make, ranging from the lowest possible bid of $€ 0.00$ to the highest possible bid of $€ 10.00$ - i.e. the following bids are possible: $€ 0.00 ; € 0.10 ; € 0.20 ; € 0.30 ; ; € 9.70 ; € 9.80 ; € 9.90 ; € 10.00$.

The Lottery:

What you are bidding for is the opportunity to play a Lottery. The Lottery pays one of two possible prizes, a green prize or a yellow prize. Each prize has the same 50% probability of occurrence. The green prize pays $€ 15.00$ and occurs with probability one half. The yellow prize pays $€ 0.00$, and occurs with probability one half.
The way the Lottery is played in practice is as follows:
There is a bag containing two balls: one green ball and one yellow ball. If you have won the auction, then you will be asked to place your hand inside the bag and pull out one of the balls. If this ball is green then you have won $€ 15$, if this ball is yellow then you have won $€ 0$.
This draw will be conducted separately for each person that wins the auction. All draws are conducted in private.

The Auction:

Every auction consists of two bidders. Both you and the other bidder submit a bid in the range of $€ 0$ to $€ 10$. The rules of the auction are as follows:

- A winning bid is the highest of the two bids.
- A losing bid is the lowest of the two bids.
- A winning bidder buys the right to play the Lottery.
- The price a winning bidder pays in order to play the Lottery is not their own bid. The winning bidder pays a price equal to the losing bid - i.e. the lower of the two bids.
- The losing bidder does not get to play the Lottery and keeps all of their endowment.

Hence, the bid you make defines the maximum you will ever have to pay for the right to play the

Lottery.

What happens if both bids are the same? If both bids are identical then the winning bidder will be determined by a coin toss. Hence, if both bids are identical then you have a 50% chance of being a winning bidder and a 50% chance of being a losing bidder.

The Other Bidder:

The other bidder is not an actual person, it is just a random number. The random number is drawn from a uniform distribution over the range $€ 0$ to $€ 10$, in increments of $€ 0.10$. This means that the random number can take any one of 101 possible values and that each of the 101 possible values are equally likely to occur - each value occurs with approximately 1% chance.
The way the random number is generated in practice is as follows:
After you have submitted your bid, you will be asked to choose two cards: one white card and one yellow card. The cards all have numbers on them. There are ten white cards which have numbers of euros printed on them of: $€ 0 ; € 1 ; € 2 ; € 3 ; € 4 ; € 5 ; € 6 ; € 7 ; € 8$; and $€ 9$. There are eleven yellow cards which have numbers of cents printed on them of: 0c; 10c; 20c; $30 \mathrm{c} ; 40 \mathrm{c} ; 50 \mathrm{c} ; 60 \mathrm{c} ; 70 \mathrm{c} ; 80 \mathrm{c} ; 90 \mathrm{c}$ and 100 c . The cards are placed face down so you cannot see the numbers. The sum of the white card you pick plus the yellow card you pick is the random number, which determines the value of the bid of the other bidder.

The Other Bidder:
The other bidder is an individual situated in Room 2. The other bidder has been given the same endowment and the same instructions as you and they face exactly the same decision. They have been chosen randomly from a uniform distribution. This means every individual in Room 2 has the same probability of being paired with you for the auction. At no point will you ever discover their identity. Similarly, they will never discover your identity.

Your Payment:

If you lose the auction you keep all of your endowment. Therefore, you are paid $€ 10$.
If you win the auction, then you keep your endowment, minus the losing bid, plus the outcome of the Lottery.
Lose Auction $=€ 10$
Win Auction $=€ 10-($ losing bid $)+($ outcome of the Lottery $)$

Questions:

In order to check your understanding of these instructions, please answer the following questions. You will not be able to proceed with the decision task until you have answered all the questions correctly. If there is any part of the instructions that need clarification then please raise your hand and someone will assist you.

Question 1:

Person A bids $€ 5.00$ in the auction.

What is the most Person A will ever have to pay for the Lottery? \qquad

What is the least Person A will ever have to pay for the Lottery? \qquad

What is the most amount of money Person A can earn in Part B? \qquad

What is the least amount of money Person A can earn in Part B? \qquad

Question 2:

Person A bids $€ 2.30$, the random number is $€ 4.70$, the result of the Lottery is green.

Does person A win the opportunity to play the Lottery (yes/non) ? \qquad

If yes, how much do they Pay? \qquad

What is the total payment from Part B for Person A?

Question 3:

Person A bids $€ 9.80$, the random number is $€ 9.10$, the result of the Lottery is yellow.

Does person A win the opportunity to play the Lottery (yes/non) ? \qquad

If yes, how much do they Pay? \qquad

What is the total payment from Part B for Person A? \qquad

Question 4:

Person A bids $€ 9.80$, the random number is $€ 0.00$, the result of the Lottery is green.

Does person A win the opportunity to play the Lottery (yes/non) ?

If yes, how much do they Pay? \qquad

What is the total payment from Part B for Person A?

Questions:

In order to check your understanding of these instructions, please answer the following questions. You will not be able to proceed with the decision task until you have answered all the questions correctly. If there is any part of the instructions that need clarification then please raise your hand and someone will assist you.

Question 1:

Person A bids $€ 5.00$ in the auction.

What is the most Person A will ever have to pay for the Lottery? \qquad

What is the least Person A will ever have to pay for the Lottery? \qquad

What is the most amount of money Person A can earn in Part B? \qquad

What is the least amount of money Person A can earn in Part B? \qquad

Question 2:

Person A bids $€ 2.30$, Person B bids $€ 4.70$, the result of the Lottery is green.

Who wins the auction? \qquad

What price do they pay to play the Lottery? \qquad

What is the total payment from Part B for Person A? \qquad

What is the total payment from Part B for Person B? \qquad

Question 3:

Person A bids $€ 9.80$, Person B bids $€ 9.10$, the result of the Lottery is green.

Who wins the auction? \qquad

What price do they pay to play the Lottery? \qquad

What is the total payment from Part B for Person A? \qquad

What is the total payment from Part B for Person B? \qquad

Question 4:
Person A bids $€ 9.80$, Person B bids $€ 0.00$, the result of the Lottery is green.

Who wins the auction?

What price do they pay to play the Lottery?

What is the total payment from Part B for Person A?

What is the total payment from Part B for Person B?

Part B: Decision Sheet

Please write your experimental ID number here: \qquad

If your experimental ID number is missing or wrong then we will not be able to calculate your payment.

Please enter your bid in the space provided below. Permissible bids range from a minimum of $€ 0.00$ to a maximum of $€ 10.00$, in increments of $€ 0.10$. Please consider your decision and take your time. You have 5 minutes within which to your decision.

I would like to bid:

\qquad

Once you have made your decision, please place this decision sheet in the envelope provided.

University of Innsbruck - Working Papers in Economics and Statistics
Recent Papers can be accessed on the following webpage:
http://eeecon.uibk.ac.at/wopec/

2015-16 Niall Flynn, Christopher Kah, Rudolf Kerschbamer: Vickrey Auction vs BDM: Difference in bidding behaviour and the impact of other-regarding motives

2015-15 Christopher Kah, Markus Walzl: Stochastic stability in a learning dynamic with best response to noisy play

2015-14 Matthias Siller, Christoph Hauser, Janette Walde, Gottfried Tappeiner: Measuring regional innovation in one dimension: More lost than gained?

2015-13 Christoph Hauser, Gottfried Tappeiner, Janette Walde: The roots of regional trust

2015-12 Christoph Hauser: Effects of employee social capital on wage satisfaction, job satisfaction and organizational commitment

2015-11 Thomas Stöckl: Dishonest or professional behavior? Can we tell? A comment on: Cohn et al. 2014, Nature 516, 86-89, "Business culture and dishonesty in the banking industry"

2015-10 Marjolein Fokkema, Niels Smits, Achim Zeileis, Torsten Hothorn, Henk Kelderman: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees

2015-09 Martin Halla, Gerald Pruckner, Thomas Schober: The cost-effectiveness of developmental screenings: Evidence from a nationwide programme

2015-08 Lorenz B. Fischer, Michael Pfaffermayr: The more the merrier? Migration and convergence among European regions

2015-07 Silvia Angerer, Daniela Glätzle-Rützler, Philipp Lergetporer, Matthias Sutter: Cooperation and discrimination within and across language borders: Evidence from children in a bilingual city

2015-07 Silvia Angerer, Daniela Glätzle-Rützler, Philipp Lergetporer, Matthias Sutter: Cooperation and discrimination within and across language borders: Evidence from children in a bilingual city

2015-06 Martin Geiger, Wolfgang Luhan, Johann Scharler: When do Fiscal Consolidations Lead to Consumption Booms? Lessons from a Laboratory Experiment

2015-05 Alice Sanwald, Engelbert Theurl: Out-of-pocket payments in the Austrian healthcare system - a distributional analysis

2015-04 Rudolf Kerschbamer, Matthias Sutter, Uwe Dulleck: How social preferences shape incentives in (experimental) markets for credence goods forthcoming in Economic Journal

2015-03 Kenneth Harttgen, Stefan Lang, Judith Santer: Multilevel modelling of child mortality in Africa

2015-02 Helene Roth, Stefan Lang, Helga Wagner: Random intercept selection in structured additive regression models

2015-01 Alice Sanwald, Engelbert Theurl: Out-of-pocket expenditures for pharmaceuticals: Lessons from the Austrian household budget survey

2014-32 Esther Blanco, Tobias Haller, James M. Walker: Externalities in appropriation: Responses to probabilistic losses

2014-31 Michael Kirchler, Stefan Palan: Friendliness pays off! Monetary and immaterial gifts in consumer-salesperson interactions

2014-30 Alice Sanwald, Engelbert Theurl: Out-of-pocket expenditures of private households for dental services - Empirical evidence from Austria

2014-29 Stefan Borsky, Esther Blanco: Setting one voluntary standard in a heterogeneous Europe - EMAS, corruption and stringency of environmental regulations

2014-28 Eberhard Feess, Christian Grund, Markus Walzl, Ansgar Wohlschlegel: Competing trade mechanisms and monotone mechanism choice

2014-27 Esther Blanco, E. Glenn Dutcher, Tobias Haller: To mitigate or to adapt? Collective action under asymmetries in vulnerability to losses

2014-26 Alice Sanwald, Thomas Schober: Follow your heart: Survival chances and costs after heart attacks - An instrumental variable approach

2014-25 Eric Mayer, Sebastian Rüth, Johann Scharler: Total factor productivity and the propagation of shocks; Empirical evidence and implications for the business cycle

2014-24 Susanne Berger, Herbert Stocker, Achim Zeileis: Innovation and institutional ownership revisited: An empirical investigation with count data models

2014-23 James C. Cox, Rudolf Kerschbamer, Daniel Neururer: What is trustworthiness and what drives it?

2014-22 Michael Kirchler, Caroline Bonn, Jürgen Huber, Michael Razen: The "Inflow-Effect" - Trader inflow and bubble formation in asset markets forthcoming in European Economic Review

2014-21 Silvia Angerer, Daniela Glätzle-Rützler, Philipp Lergetporer, Matthias Sutter: Donations, risk attitudes and time preferences: A study on altruism in primary school children forthcoming in Journal of Economic Behavior and Organization

2014-20 Christian Kleiber, Achim Zeileis: Visualizing count data regressions using rootograms

2014-19 Matthias Siller, Christoph Hauser, Janette Walde, Gottfried Tappeiner: The multiple facets of regional innovation

2014-18 Carmen Arguedas, Esther Blanco: On fraud and certification of corporate social responsibility

2014-17 Achim Zeileis, Christoph Leitner, Kurt Hornik: Home victory for Brazil in the 2014 FIFA World Cup

2014-16 Andreas Exenberger, Andreas Pondorfer, Maik H. Wolters: Estimating the impact of climate change on agricultural production: accounting for technology heterogeneity across countries

2014-15 Alice Sanwald, Engelbert Theurl: Atypical employment and health: A meta-analysis

2014-14 Gary Charness, Francesco Feri, Miguel A. Meléndez-Jiménez, Matthias Sutter: Experimental games on networks: Underpinnings of behavior and equilibrium selection slightly revised version forthcoming in Econometrica

2014-13 Uwe Dulleck, Rudolf Kerschbamer, Alexander Konovalov: Too much or too little? Price-discrimination in a market for credence goods

2014-12 Alexander Razen, Wolgang Brunauer, Nadja Klein, Thomas Kneib, Stefan Lang, Nikolaus Umlauf: Statistical risk analysis for real estate collateral valuation using Bayesian distributional and quantile regression

2014-11 Dennis Dlugosch, Kristian Horn, Mei Wang: Behavioral determinants of home bias - theory and experiment

2014-10 Torsten Hothorn, Achim Zeileis: partykit: A modular toolkit for recursive partytioning in R

2014-09 Rudi Stracke, Wolfgang Höchtl, Rudolf Kerschbamer, Uwe Sunde: Incentives and selection in promotion contests: Is it possible to kill two birds with one stone? forthcoming in Managerial and Decision Economics

2014-08 Rudi Stracke, Wolfgang Höchtl, Rudolf Kerschbamer, Uwe Sunde: Optimal prizes in dynamic elimination contests: Theory and experimental evidence forthcoming in Journal of Economic Behavior and Organization

2014-07 Nikolaos Antonakakis, Max Breitenlechner, Johann Scharler: How strongly are business cycles and financial cycles linked in the G7 countries?

2014-06 Burkhard Raunig, Johann Scharler, Friedrich Sindermann: Do banks lend less in uncertain times?

2014-05 Julia Auckenthaler, Alexander Kupfer, Rupert Sendlhofer: The impact of liquidity on inflation-linked bonds: A hypothetical indexed bonds approach published in North American Journal of Economics and Finance

2014-04 Alice Sanwald, Engelbert Theurl: What drives out-of pocket health expenditures of private households? - Empirical evidence from the Austrian household budget survey

2014-03 Tanja Hörtnagl, Rudolf Kerschbamer: How the value of information shapes the value of commitment or: Why the value of commitment does not vanish

2014-02 Adrian Beck, Rudolf Kerschbamer, Jianying Qiu, Matthias Sutter: Car mechanics in the lab - Investigating the behavior of real experts on experimental markets for credence goods forthcoming in Journal of Economic Behavior and Organization

2014-01 Loukas Balafoutas, Adrian Beck, Rudolf Kerschbamer, Matthias Sutter: The hidden costs of tax evasion - Collaborative tax evasion in markets for expert services forthcoming in Journal of Public Economics

University of Innsbruck

Working Papers in Economics and Statistics

2015-16
Niall Flynn, Christopher Kah, Rudolf Kerschbamer
Vickrey Auction vs BDM: Difference in bidding behaviour and the impact of otherregarding motives

Abstract

In an experiment we first elicit the distributional preferences of subjects and then let them bid for a lottery, either in a Becker-DeGroot-Marschak (BDM) mechanism or a Vickrey auction (VA). Standard theory predicts that altruistic subjects underbid in the VA - compared to the BDM - while spiteful subjects overbid in the VA. The data do not confirm those predictions. While we observe aggregate underbidding in the VA, the result is not driven by the choices of altruistic subjects.

ISSN 1993-4378 (Print)
ISSN 1993-6885 (Online)

