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Stochastic Stability in a Learning Dynamic with

Best Response to Noisy Play

Christopher Kah∗ Markus Walzl⋆

Abstract

We propose a learning dynamic with agents using samples of past play to

estimate the distribution of other players’ strategy choices and best respond-

ing to this estimate. To account for noisy play, estimated distributions over

other players’ strategy choices have full support in the other players’ strat-

egy sets for positive levels of noise and converge to the sampled distribution

in the limit of vanishing noise. Recurrent classes of the dynamic process only

contain admissible strategies and can be characterised by minimal CURB sets

based on best responses to noisy play whenever the set of sampled distribu-

tions is sufficiently rich. In this case, the dynamic process will always end up

in a set of strategies that contains the support of a (trembling hand) perfect

equilibrium. If the perfect equilibrium is unique and in pure strategies, the

equilibrium resembles the unique recurrent class of the dynamic process. We

apply the dynamic process to learning in matching markets and sequential

two player games with perfect information.

JEL-Classification: C72; C73; D83.

Keywords: Best-response learning; equilibrium selection; stochastic stability;

trembling hand perfection; CURB sets.

1 Introduction and Motivation

Learning processes have been utilised to address convergence to equilibrium and

equilibrium selection in games with multiple equilibria (see, e.g., Ellison, 1993;

Kandori et al., 1993; Young, 1993; Samuelson, 1994; Ellison, 2000; Peski, 2010). In

these models, agents observe a limited sample of past play and choose a strategy

that is optimal against the relative frequencies of other players’ strategies in the

∗Department of Economics, Innsbruck University.
⋆Department of Economics, Innsbruck University and METEOR, Maastricht University.
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sample.1 That is, agents are not cautious – they take the sample frequencies as

the probability distribution over other players’ strategy choices for the next pe-

riod of the process and ignore that players may choose strategies in the future

that have not been observed in the past. We propose a learning model with best

response to noisy play that introduces an element of caution into standard learn-

ing dynamics. In this model, players not just best respond to samples of past play

but to distributions that have full support in the other players’ set of strategies

and converge – in the limit of vanishing “noise” – to the actually observed sample.

For example, players may assume that other players occasionally make a “typo”

and choose an arbitrary strategy or use the observed sample to estimate a logit

choice distribution of the other players’ strategy choices.

We formulate a Markov process based on best responses to noisy play and

analyse its recurrent classes (i.e., strategies that will be played in the long run).

As long as players best respond to distributions of other players’ strategies that

have full support, only admissible strategies (i.e., strategies that are not (weakly)

dominated) will be played in the long run. Whenever players can sample a suffi-

ciently rich set of probability distributions over the other players strategies, the

recurrent classes coincide with minimal CURB sets (see Basu and Weibull, 1991)

based on best response to noisy play. In the limit of vanishing noise, we will refer

to these sets as perfectly CURB sets.

Introducing such an anticipation of trembles or mistakes as an element of

caution to a learning dynamic solves some notorious problems of best response

learning. First, as already pointed out by Samuelson (1994) with the following

example, players may not be able to learn the inferiority of weakly dominated

strategies.

l r
U 1,1 1,0
D 1,1 0,0

Figure 1: A game with alternative best replies.

Example 1. In the game depicted in Figure 1, player 1 has two different best

replies to l, while only U is an “always best response” (U weakly dominates D).2

Note that starting from a state where only (U, l) is played, D is an alternative best

response for player 1. Hence, there is no “evolutionary” pressure that prevents

play moving out of the state where only admissible strategies are played. But as

soon as player 1 expects player 2 to play r with a small probability ϵ, U is the

1 In learning dynamics based on logit choice (see, e.g., Blume, 1993 or Alós-Ferrer and Netzer,
2010), agents are not assumed to best respond to sample frequencies but choose strategies
according to a logit distribution over relative payoffs based on sample frequencies.

2 We refer to the row player as player 1 and to the column player as player 2.
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unique best response of player 1 against any observed sample of player 2’s play

such that (U, l) forms the unique recurrent class of the learning dynamics.3 △

Second, the lack of caution in standard best response learning is also an ob-

stacle for the learning of subgame perfect strategies in extensive form games.

Whenever two players move sequentially in a generic two-stage extensive form

game with perfect information (i.e., a game with no ties between any two terminal

histories), the second mover has a weakly dominant strategy to pick the unique

subgame perfect action at every node. This strategy becomes strictly dominant

as soon as she best responds to noisy play. As a consequence, the unique sub-

game perfect strategy profile is a singleton recurrent class in a dynamic with best

response to noisy play but not for a standard learning process.

Third, equilibria with alternative best replies (not only in weakly dominated

strategies) are in general rather fragile in standard best response learning. If a

player faces alternative best replies against the particular sample of past play

that she observed, she plays it with a positive probability (or is likely to experi-

ment with the alternative best response) and if other players have new best replies

against this alternative best response, the corresponding equilibrium can be de-

learned rather easily. But this fragility seems to be at odds with data on actual

play. For example, Charness and Jackson (2007) conducted a laboratory experi-

ment where group members voted on play in a stag hunt game with varying quotas

and demonstrate that players learn to coordinate on the equilibrium with alterna-

tive best replies (i.e., an equilibrium where only one out of two players has to vote

for a certain strategy in order to implement it) rather than a strict equilibrium (i.e.,

an equilibrium where it needs the consent of both players to implement a certain

strategy). This is also the unique prediction of a learning dynamic with best re-

sponse to noisy play.4 This suggests that dynamics with best response to noisy

play provide a better learning framework compared to standard best response

learning in games with alternative best replies (e.g., in group decision making or

voting). We provide an example of a centralised one-to-many matching market

where participants can coordinate on truthful preference revelation or manipula-

tion to illustrate the relevance for market design.

Conceptually, best responses to noisy play share the idea of a robustness of

strategy choices against small noise in other players’ strategy choices with the

concept of trembling hand perfection (see Selten, 1975). But this conceptual sim-

ilarity does not yield a close relationship between trembling hand perfect equi-

librium strategies and strategies in recurrent classes of the learning process for

3 As demonstrated in Example 1, weakly dominated strategies are not necessarily eliminated by
best-response learning with a fixed population. For a detailed discussion of the necessity and
sufficiency of an infinite population size for the elimination of weakly dominated strategies see
Kuzmics (2011).

4 Charness and Jackson (2007) offer an equilibrium concept (robust belief equilibrium) that is also
based on tremble anticipation to explain their findings.
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arbitrary games. As it can be shown that perfectly CURB sets always contain the

support of a trembling hand perfect equilibrium, the learning process will always

visit trembling hand perfect equilibrium strategies in the long run for sufficiently

rich sampling. However, we also show that non-equilibrium strategies can be ele-

ments of a recurrent class and trembling hand perfect equilibrium strategies can

be outside any recurrent class of a learning process with best response to noisy

play. Only if we restrict attention to trembling hand perfect equilibria in pure

strategies, a closer relationship can be established. While a given trembling hand

perfect equilibrium in pure strategies need not to be in a recurrent class of a given

learning process with best response to noisy play, there is always a specification

of noise such that this equilibrium resembles a singleton recurrent class of the

learning process. And if the trembling hand perfect equilibrium in pure strate-

gies is the unique perfect equilibrium of the game, it also constitutes the unique

recurrent class of any learning process with best response to noisy play.

A learning dynamic with best response to noisy play introduces the concept

of cautious best response (as defined in Pearce, 1984) to best response learning

processes as in Young (1993). Our results also indicate a close relation between

recurrent classes of a dynamic with best response to noisy play and rationalis-

able strategies in the presence of payoff uncertainties as discussed in Dekel and

Fudenberg (1990): Only strategies that survive the procedure in Dekel and Fuden-

berg (1990) that first eliminates weakly dominated strategies and then (iteratively)

eliminates strictly dominated strategies can be elements of recurrent classes.

Our findings contribute to a small literature on caution in learning dynamics

that recently attracted renewed attention. A first approach to model caution in

learning dynamics has been proposed by Hurkens (1995). In a variant of Young

(1993)’s learning process where agents can sample arbitrary probability distribu-

tions over strategies in the observed sample, Hurkens (1995) establishes a one-

to-one relation between recurrent classes and CURB sets. In particular, Hurkens

(1995) analyses a version of this learning dynamic where agents do not best re-

spond to the sampled probability distribution but exhibit caution by choosing a

semi-robust best response (see Balkenborg, 1992), i.e., a best response against an

open neighbourhood of the other players’ profile. For a given learning process,

a best response to noisy play is always a semi-robust best response but not vice

versa. As a consequence, the recurrent classes of a dynamic with best response

to noisy play are a non-empty subset of the recurrent classes in this version of

Hurkens (1995)’s learning process (and thereby persistent retracts as introduced

in Kalai and Samet, 1984). A complementary approach to integrate caution into

decision making in games has recently been proposed by Myerson and Weibull

(2015) who consider best replies against open neighbourhoods of equilibrium

strategy profiles. The corresponding equilibria (so-called settled equilibria) are

a selection of persistent equilibria. Another recent discussion of the relation be-
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tween learning dynamics and different equilibrium notions has been offered by

Balkenborg, Hofbauer, and Kuzmics (2013, 2014). They propose refined best re-

sponses (on the set of semi-robust best replies) and associated learning dynamics

that make most Nash equilibria (and only the Nash equilibria) asymptotically sta-

ble. While the refined best response correspondence shares several properties

such as convex-valuedness and upper hemi-continuity with a best response to

noisy play, fixed points of the two correspondences may differ. In particular, no

clear-cut relation to perfect equilibria can be established for dynamics based on

refined best responses as a fixed point of the refined best response correspon-

dence does not need to resemble a perfect equilibrium (see Balkenborg, Hofbauer,

and Kuzmics, 2014) – in contrast to perfection of fixed points of a best response

to noisy play correspondence.

The remainder of this paper is organised as follows: Section 2 introduces the

learning dynamics, Section 3 discusses its recurrent classes and the relation to

CURB sets. Section 4 focuses on the relation between recurrent classes and perfect

equilibria and Section 5 extends the analysis to stochastic stability. In Section 6

we conclude with some remarks on applications and related solution concepts.

Proofs and some auxiliary results are relegated to Appendix A.

2 Set-up

Let Γ = (N, (Si)i∈N , (ui)i∈N) denote an N-player strategic form game with a finite

set of players N, a finite set of pure strategies for player i ∈ N, Si, and payoffs

ui. Let S =
∏
j∈N Sj be the Cartesian product of players’ pure strategy sets and let

Θi := ∆ (Si) be the set of probability distributions over Si such that the mixed

extension of Γ is given by (N, (Θi)i∈N , (Ui)i∈N) with player i’s von Neumann-

Morgenstern utility Ui. Further, denote Θ :=
∏
i∈N Θi and let Θ−M :=

∏
j∈N\M Θj ,

with M ⊊ N. σi (si) denotes the probability mass that some mixed strategy

σi ∈ Θi assigns to pure strategy si ∈ Si of player i ∈ N. We call a strategy

σi ∈ int (Θi) (i.e., σi (si) > 0 for each si ∈ Si) fully mixed.5 A Nash equilib-

rium is a strategy profile σ∗ ∈ Θ such that for all i ∈ N and σi ∈ Θi \
{
σ∗i
}
:

Ui
(
σ∗i ,σ

∗
−i

)
≥ Ui

(
σi,σ

∗
−i

)
. A Nash equilibrium σ∗ ∈ Θ is strict if for all i ∈ N the

former inequality holds strictly. We denote the best response correspondence by

β :=
∏
i∈N βi with βi : Θ−i ⇒ Θi for each i ∈ N, i.e., σ ′i ∈ βi (σ−i) implies σ ′i ∈

arg maxσi∈Θi Ui (σi,σ−i). Further, let Bi (σ−i) :=
⋃
σi∈β(σ−i) suppσi denote the set

of player i’s pure strategy best replies against σ−i and set B (σ ) :=
∏
i∈N Bi (σ−i).

A (possibly pure) strategy σi ∈ Θi is strictly dominated whenever there is σ ′i ∈ Θi

such that Ui
(
σ ′i ,σ−i

)
> Ui (σi,σ−i) for all σ−i ∈ Θ−i. σi is undominated whenever

it is not strictly dominated. A (possibly pure) strategy σi ∈ Θi is weakly dominated

5 Strictly speaking, we refer to the relative interior of a convex set (relative to its affine hull).
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whenever the preceding inequality holds weakly for each σ−i ∈ Θ−i, and strictly

for at least one such σ−i. σi is admissible whenever it is not weakly dominated.

2.1 Sampling and estimation

We consider a learning process where, in each period, agents taken from a large,

finite set assume the role of each player i ∈ N, observe a sample of past play,

estimate the distribution of strategy choices by other players from this sample,

and best respond to the estimated distribution. Formally, agents observe a sample

of k < m observations of play as occurred in the most recent m periods. Let h :=

(s (t −m) , . . . , s (t − 1)) denote the history of past play (at date t), and for each

j ∈ N, let πj (h) :=
{
sj (t −m), . . . , sj (t − 1)

}
be the projection of h on Sj . Hence,

πj (h) lists all pure strategy choices made by player j in history h. A sampled

distribution of player i regarding the strategy choice of player j after history h is

a mapping qij(h) : Sj → ∆
(
Sj
)

that assigns to each strategy sj ∈ Sj its observed

relative frequency in the sample drawn from history h; specifically, qij(h)
(
sj
)
= 0

for all sj ∈ Sj \
{
πj(h)

}
. For example, for m = 3 and k = 2 in the game in

Figure 1, the sample (l, l) out of history (l, l, r) that player 1 observes regarding

choices of player 2 induces a sampled distribution that assigns probability 1 to

l and probability 0 to r . Based on the sampled distribution qij , agent i forms

an estimate ψij : ∆(Sj) → ∆(Sj) regarding the distribution of player j’s strategy

choices.6 Denote player i’s estimates by ψi :=
∏
j≠iψij . We will refer to ψ =

(ψi)i=1,...,N as an estimation procedure.

Procedure 1. Learning as in Young (1993): In the learning framework as intro-

duced in Young (1993), each agent i considers the sampled probability distribu-

tion over past play as the actual (estimated) probability distribution over play in

the relevant period (and best responds to this distribution), i.e., ψij(qij) = qij for

all i, j.

In the sequel, we will be interested in estimates ψij(qij, ϵ) that are noisy in the

sense that the estimated probability distribution of player i regarding the choice

of player j has full support in Sj for positive levels of noise ϵ > 0 and converges

against the sampled distribution in the limit of vanishing noise ϵ → 0.

Definition 1. An estimation procedure ψ is called noisy, if for all i, j ∈ N and

σj ∈ ∆(Sj) (i) supp
(
ψij(σj, ϵ)

)
= Sj for ϵ > 0 and ψij(σj, ϵ) = σj for ϵ = 0, and

(ii) ψij(σj, ϵ) is jointly continuous in σj and ϵ.

The following two estimation procedures are noisy.

6 Asψij maps sampled distributions into estimated distributions, its pre-image for a given history
h is∆(πj(h)). But as we will address the continuity of the estimation process in ∆(Sj) and derive
results for rich sampling – i.e., when an arbitrary probability distribution can be a sampled
distribution – we formally define ψij on ∆(Sj).
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Procedure 2. Anticipation of typos: Suppose player i samples the distribution

σj ∈ ∆(Sj) and expects player j to choose pure strategy sj according to σj with

probability (1 − ϵ) and to play according to a uniformly mixed strategy τj with

probability ϵ > 0. Observe that the linearity in ϵ guarantees continuity in ϵ and

σj.

Procedure 3. Logit choice: Suppose player i samples the distribution σj ∈ ∆(Sj)

and expects player j to choose a strategy sj according to σj with probability (1−ϵ)

and to tremble according to a logit distribution τj with probability ϵ > 0. I.e., if

player j trembles, sj ∈ Sj is chosen with probability τj(sj) =
e
λuj(sj ,σ−j )

∑
s∈Sj

e
λuj(s,σ−j)

where

σ−j is the sampled distribution of play for all players k ≠ j as observed by player

i. λ is a standard logit parameter. Observe that τj has full support in Sj for any

finite λ, and that (1− ϵ)σj + ϵτj is continuous in ϵ and σj.

2.2 Best response to noisy play

A strategy si ∈ Si is a best response to noisy play against σ−i ∈ S−i if si is a best

response to the estimated distribution ψ(σ−i, ϵ).

Definition 2. For i ∈ N and σ−i ∈ Θ−i, β
ϵ
i : Θ−i ⇒ Θi with βϵ(σ−i) = β(ψ(σ−i, ϵ))

is a best response to noisy play correspondence.

As ψ(σ−i, ϵ) is continuous in σ−i ∈ Θ−i and the best response correspondence

β is upper hemi-continuous (u.h.c.), non-empty, and convex-valued, the best re-

sponse to noisy play correspondence is also u.h.c., non-empty, and convex-valued

(see, e.g., Aliprantis and Border, 2006, Theorem 17.23).

Lemma 1. A best response to noisy play correspondence is u.h.c., non-empty, and

convex valued.

In Procedure 2, for instance, any set T−i ∈ P (N \ {i}) is a possible set of

trembling players according to player i’s expectations.7 The probability that a

given set T−i of players tremble when each player trembles with probability ϵ

therefore reads

P (T−i, ϵ) = ϵ |
T−i| (1− ϵ)|N\{i}|−|T−i| . (2.1)

Now let τ (T−i) ∈ int
(∏

j∈T−i Θj

)
be uniformly mixed for every player j ≠ i. Then,

a strategy σi is a best response to noisy play, i.e., σi ∈ β
ϵ
i (σ−i), if σi solves

max
σ ′i∈Θi

⎛
⎝1−

∑

T−i

P (T−i, ϵ)

⎞
⎠Ui

(
σ ′i ,σ−i

)
+
∑

T−i

P (T−i, ϵ)Ui
(
σ ′i ,σ−{{i}∪T−i},τ (T−i)

)
.

(2.2)

For a given ϵ ≥ 0, the linearity of Ui in σ ′i enures that the best response to noisy

play correspondence is u.h.c., non-empty, and convex valued.

7 Let |X| denote the cardinality of some set X and let P (X) := 2X \ {∅}.
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2.3 Markov process

For a given noise level ϵ, a memory length m, and sample length k, playing best

response to noisy play establishes a finite time-homogeneous Markov chain Mϵ :=

M
(
Ω, [P (ω,ω′)]ω,ω′∈Ω

)
. The state space Ω is the set of histories (of length m),

i.e. a generic state ω(t) ∈ Ω at date t is a list ω ≡ (s (t −m) , . . . , s (t − 1)). The

transition matrix [P (ω,ω′)]ω,ω′∈Ω gives the transition probabilities P (ω,ω′) be-

tween any two (not necessarily distinct)ω,ω′ ∈ Ω. A stateω′ is called a successor

of a state ω whenever P (ω,ω′) > 0. ω′ is thereby obtained from ω by deleting

the leftmost element and adding a new rightmost element. For future reference,

denote the leftmost element of some ω ∈ Ω as l (ω) and the rightmost element

ofω as r (ω). In what follows, we will analyse this Markov process in a standard

way and start with a characterisation of its recurrent classes.

3 Recurrent classes

For a dynamic process M , a (possibly singleton) set of states A ⊆ Ω is a recurrent

class (or absorbing) set whenever A is a minimal non-empty set of states that once

entered is never left by the process. If ω ∈ A for some absorbing set A, then ω

is called recurrent, otherwise it is called transient. We call a strategy profile s ∈ S

recurrent whenever there exists a recurrent class A such that s ∈
⋃
ω∈A r (ω). For

further reference, let us denote the collection of recurrent classes of process Mϵ

by Aϵ.

3.1 Admissibility

If agents best respond to a probability distribution over the other players’ strate-

gies, only undominated (or rationalisable) strategies can be elements of a recur-

rent class. However, as already discussed in Samuelson (1994), a weakly domi-

nated strategy can well be an element of a recurrent class if estimated distribu-

tions of play do not have full support (see, e.g., Procedure 1 applied to Example 1).

But as soon as the estimated distribution of play has full support (as for noisy es-

timation procedures), a recurrent strategy has to be admissible.

Proposition 1. Consider a dynamic with best response to noisy play Mϵ with a set

of recurrent classes Aϵ. Then, for all i ∈ N and ω ∈Aϵ, si ∈ πi(ω) is admissible.

Proof. Observe that si ∈ Si with si ∈ βi(σ−i) for some σ−i ∈ Θ−i implies that si

is admissible whenever σ−i has full support in S−i. Hence, in Mϵ there is only a

transition fromω intoω′ ifω′ has admissible strategies as its rightmost elements

and non-admissible strategies can never be recurrent. !
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By Proposition 1, admissibility of a strategy is a necessary condition for being

recurrent. But admissibility or being in the support of a Nash equilibrium in

admissible strategies is not sufficient to be an element of a recurrent class.

First, as long as the sampling is incomplete in the sense that only a restricted

set of probability distributions over other players’ play can be observed, recurrent

classes may consist of non-equilibrium strategies (even vis-à-vis a unique strict

Nash equilibrium in pure strategies) as demonstrated in the following example.

l m1 m2 r
U 0,0 0,1 0,0 15,15
M 0,10 0,10 10,0 0,8
D 1,0 10,0 0,10 0,8

Figure 2: Non-equilibrium strategies in a recurrent class due to limited sampling.

Example 2. Consider the game Γ2 depicted in Figure 2 and a best response to

noisy play dynamic induced by Procedure 2 with m = 2 and k = 1. For ϵ suf-

ficiently small, the state ω∗ = ((U, r) , (U, r)) where the strict and unique Nash

equilibrium (U, r) is played for ever is recurrent. But asm1 = β
ϵ
2(M),m2 = β

ϵ
2(D),

M = βϵ1(m2), and D = βϵ1(m1) also a cycle withm1,m2,M , and D is recurrent. △

If the sampling is sufficiently rich in the sense that a sufficiently large set of

probability distributions can be sampled, non-equilibrium cycles as in Figure 2

cease to be recurrent. For instance, the cycle in Figure 2 is only recurrent if

player 2 has a sample of size one that either displays M (with unique best re-

sponse to noisy play m1) or D (with unique best response m2). As soon as the

sample (M,D) can be observed, playing r becomes superior.

But also the richness of the set of sampled distributions can be a reason for

non-equilibrium strategies to be part of a recurrent class as discussed in the fol-

lowing example.

l m r
U 3,−5 1,2 −1,4
M 0,−5 1,0 0,1
D −5,−5 0,1 1,0

Figure 3: Non-equilibrium strategies in a recurrent class due to alternative best replies.

Example 3. Consider the game Γ3 depicted in Figure 3 and a best response to noisy

play dynamic as in Procedure 2. In Γ3 there is a unique Nash equilibrium σ∗ with

σ∗1 =
(

1
2
M + 1

2
D
)

and σ∗2 =
(

1
2
m+ 1

2
r
)
. But the non-equilibrium strategy profiles

(U,m) and (U, r) are played with positive probability in the only absorbing set:

When player 1 sufficiently often samples the play of m by player 2, her optimal

choice is U (recall that Procedure 2 considers uniform trembles), while player 2 in

turn will choose r if she samples sufficiently many observations of U . △
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The fact that non-equilibrium strategies can be best responses against specific

samples of equilibrium strategies has already been acknowledged by Basu and

Weibull (1991) and led them to the introduction of CURB sets, i.e., sets of strate-

gies that are closed under rational behaviour. These CURB sets have been utilised

by Hurkens (1995) to characterise absorbing sets of a standard best response

dynamic as in Procedure 1 where players best respond to arbitrary probability

distributions over the sampled strategies. In the following section, we will adapt

this characterisation to a learning process with best response to noisy play.

3.2 Perfectly CURB sets

For each i ∈ N and Yi ⊆ Si (with Y :=
∏
i∈N Yi), let Υi := ∆(Yi). Further, we

denote the image of βϵi restricted to Υ−i by βϵi (Υ−i) :=
⋃
σ−i∈Υ−i β

ϵ
i (σ−i) and let

βϵ (Υ) :=
∏
i∈N β

ϵ
i (Υ−i).

Definition 3. A set of pure strategy profiles Y ⊆ S is βϵ-CURB if βϵ (Υ) ⊆ Υ .

It is a minimal βϵ-CURB set if there does not exist some Y ′ ⊊ Y such that Y ′

satisfies βϵ (Υ ′) ⊆ Υ ′. For a minimal βϵ-CURB set Y ⊆ S, a strategy profile y ∈ Y

is called a βϵ CURB strategy profile. If Y ⊆ S is βϵ-CURB for ϵ → 0, it is called

a perfectly CURB set and strategy profiles are referred to as perfectly CURB

strategy profiles.

According to Definition 3, a (minimal) βϵ-CURB set Y ⊆ S is a (minimal) set

of pure strategy profiles that contains, for all i ∈ N, the support of all the best

replies according to βϵi to any probability distribution over Y−i, i.e., B
ϵ (Υ) ⊆ Y .

Hence, the dynamic process will never return to strategies outside Y once the

history only contains strategy profiles in Y . For further reference, we summarise

this observation in the following lemma.

Lemma 2. LetMϵ be a dynamic process with best response to noisy play. Then, any

βϵ-CURB set Y ⊆ S owns a recurrent class of Mϵ.

But a recurrent class does not necessarily overlap with any minimal βϵ-CURB

set as long as agents can only estimate a limited set of probability distributions

over strategies of other players. This is illustrated by Example 2 where the cycle

with player 1 playing M and D and player 2 playing m1 and m2 was recurrent for

m = 2 and k = 1. As r is the unique best response to the probability distribution

that assignsm1 andm2 probability one-half, the cycle strategies cannot constitute

a minimal βϵ-CURB set. In fact, it is easy to check that only the unique Nash

equilibrium (U, r) resembles a βϵ-CURB set in the example. Hence, for k = 1 and

m = 2, we have a recurrent class that does not overlap with any minimal βϵ-CURB

set. In contrast, only the unique minimal βϵ-CURB set based on (U, r) is recurrent

for k = 2 and m = 3. In the next section, we will discuss in how far a sufficiently
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rich set of sampled distributions always allows for a characterization of recurrent

classes by minimal βϵ-CURB sets.

3.3 Rich sampling

For Procedure 1, Hurkens (1995) demonstrates that CURB sets and recurrent

classes of a learning process coincide if players estimate any probability distribu-

tion over sampled strategies with a positive probability. But as already pointed out

in Young (1998, p. 167), Hurkens (1995)’s assumption that any probability distri-

bution will be estimated with a positive probability is somewhat indispensable if

one wants to establish the result for all games (see also the discussion in Hurkens,

1995, p. 311). Specifically, Young (1998) provides an example where CURB sets

and recurrent classes only coincide if agents estimate a probability distribution

over other players’ strategies that (partially) assigns irrational probability masses

– which is impossible in Procedure 1, as the relative frequencies of strategies in

the sample are rational by construction. Young (1998) discusses a generic class

of games that are non-degenerate in best replies for which CURB sets and recur-

rent classes coincide if the sample size and the sample to memory ratio is such

that a sufficiently rich set of probability distributions can be sampled. A game

is non-degenerate in best replies if β−1
i (si) is either empty or open in the relative

topology of
∏
j≠iΘj . Intuitively, whenever the pre-image of βi for si ∈ Si is empty

or open, si is a best response to a distribution over S−i that can be sampled. To

provide conditions for the coincidence of βϵ-CURB sets and recurrent classes of a

dynamic with best response to noisy play, we adapt the definition of games that

are non-degenerate in best replies to the following weaker requirement.

Definition 4. A game is weakly non-degenerate in best replies if for every i and

si ∈ Si, (β
ϵ
i )
−1(si) is either empty or the projection of (βϵi )

−1(si) to Θj is, for all

j ≠ i, either open in Θj or a pure strategy.

In contrast to the definition in Young (1998, p. 165), we do not exclude games

where a certain strategy of player i is only a best response against a certain pure

strategy profile of other players, e.g., a situation where player i has a weakly

dominated strategy.

Strategies that are best replies to an open subset of strategy profiles (i.e., ro-

bust best replies as defined in Balkenborg, 1992) have also been discussed in

Balkenborg, Hofbauer, and Kuzmics (2013). The following definition is taken

from Kalai and Samet (1984).

Definition 5. Two strategies σi and σ ′i are own-payoff equivalent if Ui(σi,σ−i) =

Ui(σ
′
i ,σ−i) for all σ−i ∈ Θ−i.

Balkenborg, Hofbauer, and Kuzmics (2013) demonstrate that in games without

own-payoff equivalent strategies, a strategy is a best reply to an open subset of

11



strategy profiles if and only if it is not weakly inferior. A weakly inferior strategy

is never the only best reply and in two-player games a strategy is weakly inferior

if and only if the strategy is either weakly dominated of equivalent to a proper

mixture of pure strategies.

Whenever a game is weakly non-degenerate in best replies and the sample and

memory size allows to elicit a sufficiently rich set of probability distributions over

strategies, recurrent classes of a dynamic process with best response to noisy play

and the corresponding βϵ-CURB sets coincide.

Lemma 3. Consider a game that is weakly non-degenerate in best replies and let

Mϵ be a dynamic process with best response to noisy play. Then, there are k̃ and

m̃ such that recurrent strategies and minimal βϵ-CURB strategies coincide for any

k ≥ k̃ and m ≥ m̃.

Proof. See Appendix A. !

Definition 6. A dynamic process Mϵ with sample and memory sizes that satisfy

k ≥ k̃ and m ≥ m̃ as in Lemma 3 is referred to as a dynamic process with rich

sampling.

4 Relation to trembling hand perfection

4.1 Trembling hand perfection

Conceptually, a noisy estimation procedure is closely related to (trembling hand)

perfection, i.e., the robustness of equilibrium strategies against small (anticipated)

trembles.

Definition 7. In a game Γ , σp ∈ Θ is a perfect equilibrium if and only if there is

some sequence
{
σℓ
}∞
ℓ=1

⊆ int (Θ), with
{
σℓ
}∞
ℓ=1

→ σp, such that for each ℓ and

each i ∈ N, σpi ∈ βi
(
σℓ−i

)
.

The following game taken from van Damme (1991) illustrates how (trembling

hand) perfection and a dynamic process with best response to noisy play select

strategy profiles based on the same reasoning.

l r
U 1,1,1 1,0,1
D 1,1,1 0,0,1

M1

l r
U 1,1,0 0,0,0
D 0,1,0 1,0,0

M2

Figure 4: A 3-player game with two equilibria in admissible strategies. Player 1 chooses,
rows, player 2 chooses columns, and player 3 chooses matrices.
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Example 4. Consider the 3-player game Γ4 depicted in Figure 4.8 Both s∗ =

(U, l,M1) and s′ = (D, l,M1) are pure strategy Nash equilibria in admissible strate-

gies but only s∗ is (trembling hand) perfect as U is a best response against fully

mixed strategies of players 2 and 3 that converge to l and M1, respectively, while

D is not. Likewise the stateω′ = (s′, . . . , s′) will be transient andω∗ = (s∗, . . . , s∗)

will be the unique absorbing state in a dynamic process of best response to noisy

play as in Procedure 2. To the contrary, play according to conventional best re-

sponse as depicted in Procedure 1 does not converge to a singleton absorbing set

as starting from ω∗ there is a positive probability that the process moves on to

ω′′ with r (ω′′) = s′. △

4.2 Recurrent classes and perfect pure strategy equilibria

By construction of the learning dynamic, a strategy profile that constitutes a sin-

gleton recurrent class of a dynamic process with best response to noisy play in

the limit of vanishing noise is also a trembling hand perfect equilibrium in pure

strategies. But looking at Definition 7 also reveals that the selection of trembling

hand perfect equilibria by the dynamic process in Example 4 will hardly gener-

alise to arbitrary games – just note that Selten’s definition puts no restriction on

the relative trembling probabilities, while the dynamic process works with a fixed

specification. As a consequence, the support of a trembling hand perfect equilib-

rium (even in pure strategies) may not be in any recurrent class as the following

example demonstrates.

l m1 m2 r
U 5,2 3,0 0,3 6,4
D 5,4 0,3 2,−1 6,−10

Figure 5: A game with two trembling hand perfect equilibria in pure strategies. Only one

equilibrium constitutes the unique singleton recurrent class of the dynamics Mϵ.

Example 5. For the game Γ5 depicted in Figure 5 the pure strategy profiles (D, l)

and (U, r) are perfect Nash equilibria. To illustrate, consider Procedure 2 and fix

m = 2 and k = 1. Then, U is the unique best response to noisy play of player 1 to

all samples except {m2} and the only recurrent state is

ωp =

⎛
⎝U U

r r

⎞
⎠

△

But for the example it is also easy to find a dynamic process with best re-

sponse to noisy play such that the other trembling hand perfect equilibrium in

8 Van Damme (1991) uses this example to show that trembling hand perfection might reject ad-
missible strategies in games with more than two players.
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pure strategies constitutes the unique singleton recurrent class of the process.

Just consider a slightly modified specification of Procedure 2 where with proba-

bility ϵ player 1 expects player 2 to play a fully mixed strategy where r andm2 are

played with probability 1/3 each and m1 and l with probability 1/6 each. Then,

m2 is twice as likely as m1 for a given ϵ > 0 and D is the unique best response to

noisy play of player 1 except for the sample {m1}. As a consequence, (D, l) is the

unique (singleton) recurrent class in this case.

As the following result indicates, this observation generalises to arbitrary

games as long as no player has own-payoff equivalent strategies.

Proposition 2. Let Γ be a game with a perfect equilibrium sp in pure strategies,

and suppose there is no player i with a strategy s′i that is own-payoff equivalent

to spi . Then, there exists a dynamic process with best response to noisy play Mϵ

such that ω = (sp, . . . , sp) constitutes a singleton recurrent class whenever ϵ > 0 is

sufficiently small.

Proof. See Appendix A. !

Whenever there is a player i with an own-payoff equivalent strategy to s
p
i , it is

impossible to find a process such that sp constitutes a singleton recurrent class

(as no expectations about opponents’ play ever prevent that an equivalent strategy

is a best response (to noisy play) whenever the original strategy is). Moreover, as

long as there is another player whose best response depends on which of the

equivalent strategies is used by player i, sp may become transient. But as long

as we exclude strategies that are own-payoff equivalent to sp for any player, we

can always translate the sequence of fully mixed strategies that sp best responds

to (see Definition 7) into a dynamic process where sp is a best response to noisy

play. If potential alternative best replies are not own-payoff equivalent strategies,

we can always augment the dynamic process with additional small noise such that

sp is the unique best response to noisy play against itself. As a consequence, sp

constitutes a singleton recurrent class.

For trembling hand perfect equilibria in mixed strategies, however, no such

general relation between the support of an equilibrium and recurrent strategies

can be established. First, the support of a trembling hand perfect mixed strat-

egy equilibrium may not establish a minimal (perfectly) CURB set (and thereby a

recurrent class for sufficiently rich sampling). This is straightforward to see in a

game with a trembling hand perfect equilibrium in mixed strategies that contains

a strict Nash equilibrium in its support (consider, for instance, the Battle-of-Sexes).

Such a mixed strategy equilibrium will never be minimally (perfectly) CURB (and

thereby fail to resemble a recurrent class for sufficiently rich sampling as indi-

cated by Lemma 3). Second, a minimally (perfectly) CURB set may exceed the sup-

port of a trembling hand perfect equilibrium as illustrated by Example 3. Here,
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the unique minimal (perfectly) CURB set Y is given by Y = {{U,M,D} , {m,r}}

and contains non-equilibrium strategies.

4.3 Path to trembling hand perfection

As discussed in the previous section, a strategy being in the support of a trem-

bling hand perfect equilibrium (in pure strategies or not) is neither necessary nor

sufficient for this strategy to be in a recurrent class – there may be off-equilibrium

strategies that are recurrent and trembling hand perfect equilibrium strategies

that fail to be recurrent. But we can build on the facts that CURB sets charac-

terise recurrent classes (for sufficiently rich sampling) and that CURB sets contain

the support of a Nash equilibrium (see Basu and Weibull, 1991) to demonstrate

that minimally perfectly CURB sets (and thereby – for rich sampling – recurrent

classes) contain the support of a trembling hand perfect equilibrium.

Proposition 3. Let Γ be a game and Y ⊆ S a minimally perfectly CURB set. Then,

there exists a perfect equilibrium σp of Γ with supp (σp) ⊆ Y .

Proof. See Appendix A. !

The idea of the proof is first to show that fixed points of βϵ induce perfect

equilibria as ϵ → 0. We then consider a convergent sequence of fixed points of βϵ

with supports in βϵ-CURB sets and show that the limit is a perfect equilibrium, i.e.,

a perfectly CURB set owns the support of a perfect equilibrium. As a consequence,

a dynamic process with best response to noisy play (that only visits perfectly

CURB strategies in the long run and for small noise) will visit strategies in the

support of a trembling hand perfect equilibrium – not necessarily exclusively but

with a strictly positive probability. In this sense, we get a path to trembling hand

perfection.

Corollary 1. Let Γ be a game that is weakly non-degenerate in best replies and Mϵ

be a dynamic process with best response to noisy play and rich sampling. Then,

any recurrent class of Mϵ owns the support of a perfect equilibrium if ϵ > 0 is

sufficiently small.

4.4 Unique perfect equilibria in pure strategies

As perfect equilibria in pure strategies may not constitute recurrent classes in the

presence of other perfect equilibria (see Example 5) and CURB sets may exceed the

support of unique perfect mixed strategy equilibria (see Example 3), we are left

with games that exhibit a unique perfect equilibrium in pure strategies. In this

case, we can establish the following one-to-one relation between recurrent classes

and perfect equilibria.
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Proposition 4. Let Γ be a game with a unique perfect equilibrium sp ∈ S that is in

pure strategies. Then, for ϵ > 0 sufficiently small,

(i) sp constitutes a singleton recurrent class ωp = (sp, . . . , sp) of a learning dy-

namic with best response to noisy play Mϵ;

(ii) if Γ is weakly non-degenerate in best replies and Mϵ a process with rich sam-

pling, Aϵ = {ωp}, i.e., sp is the unique recurrent strategy profile.

Proof. See Appendix A. !

The proof is based on the fact that a unique perfect equilibrium is strictly

perfect.9 Strict perfection together with the uniqueness of sp then implies that

B
ϵ (sp) is singleton-valued – even if there are own-payoff equivalent strategies.

Were B
ϵ (sp) not singleton-valued, we could construct additional perfect equilib-

ria. But if sp constitutes a singleton recurrent class, it is also a a minimal (per-

fectly) CURB set whenever the sampling is rich. But as (by Proposition 3) any

perfectly CURB set contains the support of a trembling hand perfect equilibrium,

equilibrium uniqueness then also implies that the recurrent class with sp played

for ever is the only recurrent class of the process.

Proposition 4 is related to Hurkens (1995, Corollary 2) where it is shown that

a conventional best response dynamic converges to the unique strict equilibrium

of a game in the case of rich sampling. Anticipating noise in the process allows

play to converge to a unique perfect equilibrium in pure strategies that is not

necessarily strict.

5 Stochastic stability

In learning dynamics with multiple recurrent classes it is customary to analyse

the stochastic stability of these recurrent classes, i.e., the recurrent classes vul-

nerability to small mistakes or exogenous shocks. For example, in Young (1993)

a player randomly chooses a strategy with probability ϵ in any given period and

a recurrent class is stochastically stable if it is at least as robust against these

random choices as any other recurrent class. A straightforward way to implement

shocks or mistakes in a dynamic process with best response to noisy play is to

assume that anticipated noise actually occurs. Consider, e.g., Procedure 2 and

assume that players indeed commit the anticipated typos. The resulting Markov

chain M̃ϵ is irreducible and aperiodic for any ϵ > 0 and therefore exhibits a unique

invariant distribution. An invariant distribution µ ∈ ∆ (Ω) is a probability distri-

bution over states that is not altered by the processes’ transition matrix (i.e. a

9 A strictly perfect equilibrium consists of best replies against arbitrary sequences of small trem-
bles. For a formal treatment, see Okada (1981) or Definition A4 in the Appendix.
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vector of dimension |Ω| such that µ = µ · [Pϵ (ω,ω′)]ω,ω′∈Ω). For irreducible and

aperiodic Markov chains the component of µ corresponding to someω ∈ Ω gives

the probability to be in ω as t →∞.

We are now interested in the case ϵ → 0, i.e., the limit of small perceived

and actual noise. The corresponding invariant distribution is the limit invariant

distribution µ∗ = limϵ→0 µ and its support is the set of stochastically stable states.

Definition 8. Let M̃ϵ be an irreducible and aperiodic Markov chain.

(i) ω ∈ Ω is stochastically stable whenever µ∗ (ω) > 0. Define Ω∗ :=
{
ω ∈ Ω :ω ∈ supp (µ∗)

}
.

(ii) A pure strategy si ∈ Si is stochastically stable whenever there is a state

ω ∈ Ω∗ with si ∈ πi(ω).

Typically, the identification of the set Ω∗ relies on graph-theoretic techniques

as put forward by Freidlin and Wentzell (1984). The key insight is that ω ∈ Ω∗ if

and only if ω ∈ arg minω′∈Ω γ (ω
′), where γ (·) denotes the stochastic potential.

The stochastic potential of a state ω is the minimum number of mistakes it takes

to construct a spanning tree in Ω rooted in ω with edges between two states

ω′,ω′′ ∈ Ω only if Pϵ(ω′,ω′′) > 0. Intuitively, the stochastic potential of a state

ω is the smaller the easier it is to reachω from all other states via processMϵ and

the more difficult it is to exit ω. 10 As already recognised in Theorem 4 of Young

(1993), only absorbing sets of the “unperturbed” process Mϵ are candidates for

stochastically stable states and absorbing states of Mϵ are stochastically stable

states if and only if they have minimal stochastic potential.

Lemma 4. LetAϵ be the collection of absorbing sets of a dynamic process with best

response to noisy play Mϵ. Then:

(i) Ω∗ ⊆Aϵ.

(ii) ω ∈ Ω∗ if and only if ω has minimal stochastic potential in M̃ϵ.

A direct implication of Lemma 4 is that (i) stochastically stable strategies are

admissible (see Proposition 1), (i) the support of the limit invariant distribution

contains the support of a perfect equilibrium (under the conditions of Proposi-

tion 3), and a unique perfect equilibrium in pure strategies is the unique stochas-

tically stable strategy profile (under the conditions of Proposition 4).

Note, however, that stochastic stability for a dynamic with best response to

noisy play does not “refine” stochastic stability for conventional best response

learning (as in Procedure 1). To see this consider the following example.

10See Vega-Redondo (2003, Ch. 12) for a textbook treatment of these techniques.
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l m r
U 10,10 2,2 1,1
M 10,1 0,2 0,1
D 0,0 3,0 4,4

Figure 6: A game with different stochastically stable strategies for Mϵ and conventional

best response learning.

Example 6. Consider the game Γ6 depicted in Figure 6. The strategy profiles (U, l)

and (D, r) are perfect equilibria in pure strategies. Consider firstm = 2 and k = 1

with states

ωp =

⎛
⎝U U

l l

⎞
⎠ and ωp′ =

⎛
⎝D D

r r

⎞
⎠ .

Under conventional best response learning we get
{
ωp′

}
as the unique recurrent

class because M is an alternative best reply to l. But for a best response to noisy

play dynamicMϵ, U becomes a unique best response such that the set of recurrent

classes is
{
ωp,ωp′

}
. By Lemma 4,

{
ωp′

}
is then also the unique stochastically

stable strategy profile for conventional best reply learning, while it is easy to check

that both recurrent classes are stochastically stable for Mϵ. For conventional best

reply, this result does not change in k and m – the payoff inferior equilibrium

(D, r) remains the uniquely stochastically stable strategy profile. In contrast, for

Mϵ, only the payoff dominant equilibrium (U, l) is stochastically stable as soon as

the sampling is sufficiently rich (consider, e.g., m = 3 and k = 2). △

6 Applications and related concepts

In this section, we conclude with some applications of dynamics with best re-

sponse to noisy play and some remarks on the relation to other concepts.

Equilibria with alternative best replies As demonstrated in the previous sec-

tions, best responding to noisy play incorporates a certain degree of caution into

learning behaviour that eliminates weakly dominated strategies and establishes a

relation between perfect equilibria and recurrent classes or stochastically stable

strategies. A particularly intuitive connection between equilibrium properties and

stochastic stability can be drawn for games with alternative best replies. Con-

sider, e.g., the following matching market. There are three hospitals (h1, h2, h3)

with strict preferences over sets of students (s1, s2, s3) who wish to conduct an

internship at the hospital. Students in turn have strict preferences over hospitals.

To be specific, let preferences be given by the following lists.

h1 : s1, (s2, s3), s2,∅; s1 : h3, h2, h1
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h2 : s2, (s1, s3), s3,∅; s2 : h1, h3, s2

h3 : s3, (s1, s2), s1,∅; s3 : h2, h1, h3.

That is, hospital h1 strictly prefers student s1 as an intern and if s1 is not

available, the hospital would prefer to have both s2 and s3 as interns (e.g., con-

sider students with different specialisation) rather than only s2. s3, however, is

unacceptable for the hospital in the absence of s2 (e.g., because s3’s specialisa-

tion is a nice add on but other specialisations are needed for the daily business

of the hospital). Now suppose that the matching between hospitals and students

is retrieved by the so-called (student proposing) deferred acceptance algorithm:11

Students submit their preferences over hospitals and hospitals submit their pref-

erences over (sets of) students. In the first round of the algorithm, students apply

at the hospital they rank highest and hospitals accept their most preferred set of

applications and reject the remaining applications. Rejected students then apply

at the next best hospital and hospitals choose the most preferred set of students

given new applications and applications they accepted in the previous round. The

algorithm terminates if no student is rejected. For example, if students and hos-

pitals submit their actual preferences in the example, the algorithm terminates

after the first round as all students apply at their top-ranked hospital and are ac-

cepted. If students submit actual preferences while at least two hospitals only de-

clare their top-ranked student acceptable, the algorithm (after several rejections)

terminates in a matching of h1 with s1, h2 with s2, and h3 with s3. This matching

is strictly better for each hospital than the matching that results from truthful

preference revelation. But if students and two hospitals reveal truthfully while

one hospital declares only the top-ranked student acceptable, the corresponding

hospital remains unmatched in the algorithm.

If students submit truthfully and hospitals decide between truthful preference

submission and a submission of a truncated list that only declares the top-ranked

student acceptable, it is therefore a strict Nash equilibrium that hospitals truth-

fully submit and a Nash equilibrium with alternative best replies that all hospitals

submit a truncated list – whenever the other two hospitals submit a truncated list,

it is irrelevant whether the third hospital truncates or truthfully submits.

For conventional best response learning as in Procedure 1, only truthful pref-

erence submission resembles a recurrent class - the alternative best response to

truthfully submit while two other hospitals truncate destabilizes truncation (sim-

ilar to Example 6). For best response to noisy play, however, it is a strict best

response to truncate if the other two hospitals truncate (and it can be shown that

only truncation is stochastically stable as it takes fewer mistakes for the dynamics

to exit states with only truthful revelation than to exit states with only truncation).

11This design is used in the National Resident Matching Program for medical students in the U.S.
(see Roth and Peranson, 1999).
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A similar situation has been analysed in a laboratory study by Charness and

Jackson (2007). In this experiment, the decision of a row and a column player in a

stag-hunt game is formed by pairs of two individuals, and the treatment variation

is the quota needed for the implementation of a strategy. In one treatment, it

needs two votes for stag to be played by the team and in the other treatment one

vote for stag is sufficient, hare is played otherwise. If a quota of one is needed for

stag, there is the alternative best response to vote for hare if the other individual

of a team votes for stag. Likewise, if a quota of two is needed for stag, there is

an alternative best response to vote for hare if the other individual votes for hare.

As a consequence, voting for stag is a strict equilibrium for quota two and an

equilibrium with alternative best replies for quota one – and vice versa for hare.

In the experiment, participants predominately choose stag if the quota is one and

hare if the quota is two, i.e., they choose the equilibrium with alternative best

replies rather than the strict equilibrium.

This popularity of an equilibrium strategy with alternative best response sug-

gests that truncation (the unique stochastically stable strategy in a dynamics with

best response to noisy play) is more likely than truth-telling (the unique recurrent

class for conventional best response learning) and provides some empirical sup-

port for the cautious learning behaviour modelled in this paper. Charness and

Jackson (2007) also introduce robust belief equilibria that are based on a learning

dynamic with an anticipation of trembles to explain their findings. However, the

selection among best replies proposed in Charness and Jackson (2007) is tailored

to their experimental set-up that focuses on the selection between pure strategy

equilibria and can not be straightforwardly extended to an u.h.c. best response

correspondence against noisy play for arbitrary games (see also Footnote 25 in

Charness and Jackson, 2007).

Generic sequential two-player games On first sight, the motivating example in

Figure 1 seems a bit contrived as it is a non-generic normal form game. But there

is a natural class of games with such a non-generic normal form: the class of

generic extensive form games. In these games no player is indifferent between

any two distinct terminal histories. Consider game Γ7 as an illustration.

R

(0, 3)

L
1

r

(−1, 0)

l

(1, 2)

2

Figure 7: A two-stage game.

The extensive form in Figure 7 gives rise to the normal form depicted in Fig-

ure 8.
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l r
L 1,2 −1,0
R 0,3 0,3

Figure 8: The associated normal form to Γ7.

Strategy l weakly dominates r for player 2 such that the latter is never cho-

sen in a dynamic with best response to noisy play. Only observing the play of l,

player 1 best replies with L such that the backward induction outcome (L, l) re-

sembles the unique recurrent strategy profile. This observation straightforwardly

generalises to all generic extensive form games for two players with perfect in-

formation where each player only moves once. The learning dynamic with best

response to noisy play (applied to the associated normal form) always has a sin-

gleton recurrent class consisting of the (unique) backwards induction outcome.

Just observe that the second mover has a unique admissible strategy for every

history and for generic games the first mover has a unique best response.

Dekel-Fudenberg procedure The assumption that players maximise expected

utility holding beliefs that have full support in the set of other players’ strate-

gies has already been investigated by Börgers (1994). He demonstrates that a

strategy is chosen under approximate common knowledge of this behaviour and

beliefs if and only if the strategy survives an iterated elimination procedure in-

troduced by Dekel and Fudenberg (1990). This procedure first eliminates all

weakly dominated strategies and then iteratively eliminates strictly dominated

strategies. Hence, caution (as expressed by beliefs with full support and (ap-

proximate) common-knowledge thereof) allows to include admissibility into the

connection between common knowledge of rationality and iterated elimination of

strictly dominated strategies as established by Bernheim (1984) and Pearce (1984)

(see Brandenburger, 1992 for an overview). Recurrent classes of a dynamic with

best response to noisy play only contain strategies that survive the iterated elim-

ination procedure by Dekel and Fudenberg (1990). But as indicated by several of

our examples, not all strategies that survive the iterated elimination procedure

are elements of recurrent classes for a given specification of noisy play. Consider,

e.g., the perfect equilibrium strategies D and r in Example 5 for uniform trembles

in Procedure 2.

Semi-robust best responses An earlier attempt to integrate cautious behaviour

into best response learning can be found in Hurkens (1995) who assumes that

players play semi-robust best replies as introduced by Balkenborg (1992) rather

than best replies as in the model by Young (1993). A semi-robust best reply si

to a mixed strategy profile σ−i is a best reply against σ−i and also a best reply

to an open subset of any neighbourhood of σ−i. As there always exists a semi-
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h t g
H −1,1 0,0 −1,1
T 0,0 −1,1 −1,1

Figure 9: A game with a unique proper equilibrium and multiple perfect equilibria.

robust best reply (see Balkenborg, 1992), this augments the learning process of

Young (1993) with a well-defined selection rule in case of multiple best replies. As

semi-robust strategies are admissible, this augmented learning process also guar-

antees the admissibility of recurrent (or stochastically stable) strategies. However,

recurrent classes of the augmented learning process in Hurkens (1995) do not co-

incide with recurrent classes for a dynamic process with best response to noisy

play. For instance, both perfect equilibria in Example 5 are recurrent in a dynamic

with semi-robust best replies, while the selection in a dynamic process with best

response to noisy play depends on the specification of noise as discussed in Sec-

tion 4. More importantly, a semi-robust best response correspondence is not

necessarily convex-valued which rules out the fixed point arguments made in Sec-

tion 4 to establish a relation between trembling hand perfection and recurrent

classes (see the corresponding discussion on p.170 in Balkenborg, Hofbauer, and

Kuzmics, 2013).

Properness Imposing restrictions beyond Definition 1 on the noisy estimation

procedure also allows to investigate the relation between recurrent classes and

proper equilibria. For a normal form game and a parameter ϵ > 0, a totally mixed

strategy profile σ is ϵ-proper if for all player i, σi(si) is at most ϵ times the prob-

ability σi(s
′
i) whenever ui(si,σ−i) < ui(s

′
i ,σ−i). A strategy profile σ P is a proper

equilibrium if it is the limit of a sequence of ϵ-proper strategy profiles (see My-

erson, 1978). As a proper equilibrium is trembling hand perfect, Proposition 2

implies that for every proper equilibrium in pure strategies there is a noisy esti-

mation procedure such that the proper equilibrium profile constitutes a singleton

recurrent class. As in the case of trembling hand perfection (see Section 4) the

relation is less clear-cut for equilibria in mixed strategies. The following example

demonstrates how a learning process with noisy estimates based on Procedure 3

selects the (unique) proper equilibrium out of a continuum of trembling hand

perfect equilibria.

Example 7. Consider the game Γ9 depicted in Figure 9. All mixed strategy profiles

where player 2 chooses g (regardless how player 1 mixes between H and T ) are

perfect equilibria but only the perfect equilibrium where player 1 chooses H and

T with equal probability is proper. Regarding the recurrent classes of a learning

dynamic with best response to noisy play, observe that h and t are weakly dom-

inated such that only g can be a recurrent strategy. Now consider player 1 and
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assume that m = 2 and k = 1. In the long run, player 1 will always sample g

as player 2’s choice. If player 1’s noisy estimate has the logit component as in

Procedure 3, she will expect player 2 to tremble more often to h whenever she

played H in her sample and to tremble more often to t whenever she played T

in her sample. As a consequence, player 1 will choose H whenever she played T

in the sample and vice versa such that both strategies will be equally likely in the

long run as it is also the case in the unique proper equilibrium. △

However, the example also indicates that the selection of the proper equilib-

rium depends on details of the learning process. If, e.g., players estimate accord-

ing to Procedure 2 but player 1 considers a tremble of player 2 to h more likely

than a tremble to t, T is the unique best response to noisy play to g and a perfect

equilibrium that is not proper (T,g) constitutes the unique recurrent class. How-

ever, it can be shown that there is always a noisy estimation procedure such that

a given perfectly CURB set owns the support of a proper equilibrium. This estab-

lishes a path to properness analogously to Corollary 1 (provided that the game is

weakly non-degenerate in best replies and the dynamic process has rich sampling,

see Ritzberger and Weibull, 1995, who derive a similar result for a general class

of continuous time learning processes).

A Appendix

Proof of Lemma 3. Consider a learning dynamic with best response to noisy play

Mϵ and a recurrent class A. Observe that for any player i any recurrent strategy

si played in A will be arbitrarily often in a sufficiently long memory. And observe

that the regular grid of frequencies Qji = {0,
1
k , . . . ,

k−1
k ,1} that player j can sam-

ple regarding the occurrence of a strategy si ∈ Si contains any rational number in

[0,1] if k is sufficiently large. Hence, for every σi ∈ Θi and δ > 0 there is k̃ and

m̃ such that a sampled distribution qji ∈ Qji is in a δ-neighbourhood of σi in Θi

whenever k ≥ k̃ and m ≥ m̃. As a consequence, for any σ ∈ Θ and δ > 0 there is

k̃ and m̃ such that a sampled distribution of play is within a δ-neighbourhood of

σ in Θ.

(Minimal βϵ-CURB ⇒ recurrent): Suppose Y ⊆ S is a set of strategies which is

not recurrent for arbitrary k > k̃ and m > m̃. Then there is y ∈ Y such that

y is transient, i.e., in any recurrent class, y will eventually cease to be played

and y is not a best response to noisy play to arbitrary probability distribution

over recurrent strategies that can be sampled. But for k > k̃ and m > m̃, there

is a sampled distribution in any neighbourhood of σ ∈ Θ and as long as we

consider games that are weakly non-degenerate in best replies, there is a sampled

distribution with the same best response to noisy play as against σ . Hence, if y

is transient, it cannot be in a minimal βϵ-CURB set.
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(Recurrent⇒minimal βϵ-CURB): Suppose that Y ⊆ S is a set of strategy profiles

which are recurrent. Recall that for k > k̃ and m > m̃ there is a sampled distri-

bution in any neighbourhood of σ ∈ Θ and as long as we consider games that

are weakly non-degenerate in best replies, there is such a sampled distribution

with the same best response to noisy play as against σ . Then, Y is also minimally

βϵ-CURB. !

Proof of Proposition 2. As sp is perfect there is
{
σℓ
}∞
ℓ=1

⊆ int (Θ), with
{
σℓ
}∞
ℓ=1

→ sp such that for each ℓ and each i ∈ N, s
p
i ∈ Bi

(
σℓ−i

)
. Now define

a best response to noisy play correspondence βϵi (σ−i) = βi(ϵσ−i + (1− ϵ)σ
ℓ
−i). By

construction, s
p
i ∈ B

ϵ
i (σ

p
−i). If there is ϵ̃ > 0 such that {s

p
i } = B

ϵ
i (σ

p
−i) for all i ∈ N

and ϵ < ϵ̃, then sP constitutes a singleton recurrent class for sufficiently small

noise and we are done. If, for some i ∈ N, there is s′i ∈ B
ϵ
i (σ

p
−i) for a neighbour-

hood of ϵ = 0, we need to augment the best response to noisy play as follows. As

we assume that s
p
i and s′i are not own-payoff equivalent and sPi is a perfect equi-

librium strategy and thereby admissible, there is s′−i ∈ S−i such that ui
(
s
p
i , s

′
−i

)
>

ui
(
s′i , s

′
−i

)
. Now let βϵi (σ−i) = βi ((1− ϵ))σ−i+ ϵ

((
ϵs′−i + (1− ϵ)σ

ℓ
−i

))
. For ϵ suf-

ficiently small, s
p
i ∈ B

ϵ
i (σ

p
−i) but s′i ̸∈ B

ϵ
i

(
σ
p
−i

)
). If now

{
s
p
i

}
≠ B

ϵ
i

(
σ
p
−i

)
for some

i ∈ N, iterate the preceding argument. !

Proof of Proposition 3. Consider a sequence
{
ϵℓ
}∞
ℓ=1

with ϵℓ → 0 and let
{
Y ℓ
}∞
ℓ=1

be a sequence of subsets of S such that Y ℓ is a minimal βϵ
ℓ

CURB set. For each ϵℓ

and i ∈ N, βϵ
ℓ

i is a non-empty, convex-valued, and u.h.c. correspondence mapping

the compact and convex set Θ−i to the compact and convex set Θi. By definition of

a βϵ-CURB set, restricting βϵ
ℓ

i to Y ℓ is also a non-empty, convex-valued, and u.h.c.

correspondence mapping the compact and convex set Υℓ−i to the compact and

convex set Υℓi with Υℓ = ∆(Y ℓ). By Kakutani’s theorem, there is a fixed point σℓ of

βϵ
ℓ

on Υℓ for each ℓ. By definition of a βϵ-CURB set σℓ is also a fixed point of βϵ
ℓ

on Θ. Hence, the sequence
{
Y ℓ
}∞
ℓ=1

induces a sequence of fixed points
{
σℓ
}∞
ℓ=1

of

βϵ on Θ. As Θ is compact, we can restrict ourselves to a convergent subsequence
{
σ k
}∞
k=1 with σ k → σp for some σp ∈ Θ. As

{
σ k
}∞
k=1 converges to σp, we get

for all i ∈ N and s′i ∈ supp
(
σ
p
i

)
that s′i ∈ supp

(
σ ki
)

if k is sufficiently large.

Hence, σp is a perfect equilibrium with a support in a minimal perfectly CURB set

Y . Since this result holds for any sequence
{
Y ℓ
}∞
ℓ=1

of βϵ
l

CURB sets, there is a

perfect equilibrium with a support in any minimal perfectly CURB set. !

For the proof of Proposition 4, we make use of an alternative definition of a

trembling hand perfect equilibrium.12

Definition A1. A tremble in a game Γ is a vector ϵ :=
(
ϵ1, . . . , ϵ|N|

)
, such that, for

each i ∈ N, ϵi is a function Si → R satisfying that:

12For a proof of equivalence, see, e.g., Ritzberger (2002, Ch. 6.2).
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(i) For each si ∈ Si, ϵi (si) > 0,

(ii)
∑
si∈Si ϵi (si) < 1.

Definition A1 allows to define an ϵ-perturbation of a strategic form game.

Definition A2. Let Γ be a game with pure strategy space S and payoffs (ui)
n
i=1.

The ϵ-perturbation of Γ is the game Γ (ϵ) such that for each i ∈ N, Si (ϵi) :=

{σi ∈ Θi : ∀si ∈ Si,σ (si) ≥ ϵ (si)}, S (ϵ) :=
∏
i∈N Si (ϵi), Θ (ϵ) :=

∏
i∈N ∆ (Si (ϵi)),

and ui are von Neumann-Morgenstern utilities defined on S (ϵ).

Definition A3. Let Γ be a game. A strategy profile σp ∈ Θ is a (trembling hand)

perfect equilibrium whenever there are two sequences

(i)
{
ϵℓ
}∞
ℓ=1

with
{
ϵℓ
}∞
ℓ=1

→ 0,

(ii)
{
σ∗,ℓ

}∞
ℓ=1

, with σ∗,ℓ ∈ Θ
(
ϵℓ
)

for each ℓ, and
{
σ∗,ℓ

}∞
ℓ=1

→ σp,

such that, for each ℓ, σ∗,ℓ is a Nash equilibrium of Γ
(
ϵℓ
)
. σ∗,ℓ is called a con-

strained Nash equilibrium.

Definition A4 (Okada, 1981). In a game Γ , a Nash equilibrium σp ∈ Θ is strictly

perfect whenever for any strictly positive
{
ϵℓ
}∞
ℓ=1

with ϵℓ → 0, each Γ
(
ϵℓ
)

has a

Nash equilibrium σ∗,ℓ with σ∗,ℓ → σp.

Lemma A1. Let σp be the unique perfect equilibrium of some strategic form game

Γ . Then, σp is strictly perfect.

The proof is similar to the proof of Theorem 1 in Okada (1981) who demon-

strates that a unique equilibrium is strictly perfect (see also Remark 1, ibid).

Proof of Lemma A1. Consider a sequence of trembles
{
ϵℓ
}∞
ℓ=1

with
{
ϵℓ
}∞
ℓ=1

→ 0

and the corresponding sequence of ϵ-perturbations of Γ , Γ(ϵℓ) with mixed strategy

space Θ(ϵℓ). Observe that Θ(ϵℓ) is a compact and convex set (a subset of the |S|-

dimensional unit simplex defined by weak inequalities). Then, Kakutani’s fixed

point theorem indicates that each Γ
(
ϵℓ
)

exhibits a constrained Nash equilibrium

σℓ. As each σℓ is in the compact set Θ, we can pass to a convergent subsequence
{
σ k
}∞
ℓ=1 with

{
σ k
}∞
ℓ=1 → σ

p′ such that σp
′

is a perfect equilibrium of Γ . If σp
′
≠

σp, we get a contradiction to the uniqueness of σp. "

Lemma A2. Let Γ be a game with a unique perfect equilibrium sp that is in pure

strategies. If for ϵ → 0, s′i ∈ B
ϵ
(
s
p
−i

)
with s′i ≠ s

p
i , then s′i and s

p
i are own-payoff

equivalent strategies.

Proof of Lemma A2. Suppose that for arbitrarily small ϵ > 0, s′i ∈ B
ϵ
(
s
p
−i

)
but

s′i ≠ s
p
i is not an equivalent strategy. Then ui

(
s′i , s

p
−i

)
= ui

(
s
p
i , s

p
−i

)
, and there

exists s′−i ∈ S−i such that ui
(
s′i , s

′
−i

)
> ui

(
s
p
i , s

′
−i

)
(to see this recall that s′i ∈
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B
ϵ
(
s
p
−i

)
is admissible). Consider a sequence of trembles

{
ϵℓ
}∞
ℓ=1

such that ϵℓ → 0

for ℓ → ∞ and parameterize trembles such that
ϵℓ(s′j)

ϵℓ(sj)
→ ∞ for sj ≠ s′j , j ≠ i,

and ℓ →∞ (consider, e.g., trembles that are polynomial in (1/ℓ) with ϵ(s′j) having

a strictly lower leading order in 1/ℓ than sj). Now note that by Lemma A1 the

uniqueness of sp implies that sp is strictly perfect. By strict perfection, the Nash

equilibria of ϵ-perturbations Γ(ϵℓ) have to converge to sp. But as s′i outperforms

s
p
i for the given tremble specification against each σℓ−i for ℓ sufficiently large, the

Nash equilibria of ϵ-perturbations Γ(ϵℓ) do not converge to spi in contradiction to

the uniqueness of sp. "

Proof of Proposition 4.

(i) Consider a unique perfect equilibrium sp in pure strategies. By Lemma A1,

sp is a strictly perfect equilibrium. Hence, s
p
i ∈ B

ϵ
(
s
p
−i

)
for all i ∈ N. By

Lemma A2, all s′i ∈ B
ϵ
(
s
p
−i

)
are equivalent to s

p
i . Now suppose s′i ∈ B

ϵ
(
s
p
−i

)

and s′i ≠ s
p
i .

Case (a): s
p
−i is also a joint best response to

(
s′i , s

p
−i

)
. Consider a sequence{

σℓ
}∞
ℓ=1

⊆ int (Θ) converging to sp such that for each j ∈ N and each ℓ,

s
p
j ∈ βj

(
σℓ−j

)
. Such a sequence exists by the perfection of sp (see Defini-

tion 7). Define σ̂i := (1−α) s
p
i +αs

′
i , where α ∈ (0,1). Then,

(
σ̂i, s

p
−i

)
is

an additional perfect equilibrium—a contradiction to the uniqueness of

sp. To see this, start from the original sequence
{
σℓ
}∞
ℓ=1

and construct

a new sequence
{
σ̃ ℓ
}∞
ℓ=1

⊆ int (Θ) as follows: For each ℓ assign proba-

bility (1 − α)σℓi
(
s
p
i

)
to s

p
i , probability ασℓi

(
s
p
i

)
to s′i , and probability

σℓi
(
s′i
)

to s
p
i . Let σ̃ ℓi (si) = σ

ℓ
i (si) for si ≠ s

p
i , s

′
i , and σ̃ ℓj

(
sj
)
= σℓj

(
sj
)

for all sj ∈ Sj , with j ≠ i. By construction, σ̃ ℓ →
(
σ̂i, s

p
−i

)
. By the equiv-

alence of s
p
i and s′i and the joint best response property of s

p
−i, we have

σ̂i ∈ βi
(
σ̃ ℓ−i

)
and spj ∈ βi

(
σ̃ ℓ−j

)
for j ≠ i for each ℓ, which implies the

perfection of
(
σ̂i, s

p
−i

)
in contradiction to equilibrium uniqueness.

Case (b): s
p
−i is not a joint best response to

(
s′i , s

p
−i

)
.Then, there is j ≠ i such that

for some s′j ∈ Sj

uj

(
s′j, s

′
i , s

p

−({i}∪{j})

)
> uj

(
s
p
j , s

′
i , s

p

−({i}∪{j})

)
. (A.1)

For all such j ≠ i one of the following is true: either there is j such that

Eq. (A.2) holds or there is no such j.

uj
(
s′j, s

p
−j

)
= uj

(
spj , s

p
−j

)
(A.2)

Suppose there is no such j. Then uj
(
s′j, s

p
−j

)
< uj

(
s
p
j , s

p
−j

)
for all j ≠ i
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for which Eq. (A.1) holds. By the continuity of Uj (·), the intermediate

value theorem implies that, for each such j, there is α̂j ∈ (0,1) (suffi-

ciently close to 0) such that for σ̂i
(
s
p
i

)
= 1 − α̂j and σ̂i

(
s′i
)
= α̂j we

get Uj

(
s
p
j , σ̂i, s

p

−({i}∪{j})

)
> Uj

(
s′j, σ̂i, s

p

−({i}∪{j})

)
. Letting α̂ = minj α̂j

(where the minimum is taken over all j ≠ i such that Eq. (A.1) holds),

s
p
−i is a joint best response to

(
σ̂i, s

p
−i

)
with σ̂i

(
s
p
i

)
= 1 − α̂ and

σ̂i
(
s′i
)
= 1 − α̂, and we have again constructed an additional perfect

equilibrium (see Case (a)).

Now suppose there is a j ≠ i such that Eqs. (A.1) and (A.2) hold. Note

that as sp is the unique perfect equilibrium in the game at hand, by

Lemma A1 it must be strictly perfect (cf. Definition A4).

Now consider a sequence of trembles
{
ϵℓ
}∞
ℓ=1

such that ϵℓ → 0 for

ℓ → ∞ and parameterize trembles such that
ϵℓ(s′i)

ϵℓ(si)
→ ∞ for si ≠ s

′
i and

ℓ → ∞ (without further restrictions for players other than i). Hence,

for ℓ → ∞, i trembles into s′i infinitely more often than into any other

strategy in Si. Strict perfection of sp then implies that the sequence

of Nash equilibria of the ϵ-perturbation Γ
(
ϵℓ
)
,
{
σ∗,ℓ

}∞
ℓ=1

, converges to

sp. But as s′j outperforms s
p
j for the given tremble specification against

each σℓ−j for ℓ sufficiently large, the Nash equilibria of ϵ-perturbations

Γ(ϵℓ) do not converge to sp in contradiction to the uniqueness of sp.

(ii) Suppose their exists a recurrent class disjoint from ωp = (sp, . . . , sp). If

Γ is weakly degenerate in best replies and Mϵ has rich sampling, recurrent

classes for ϵ → 0 coincide with minimal perfectly CURB sets, which by Propo-

sition 3 contains the support of a perfect equilibrium—a contradiction to the

uniqueness of sp.

"
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Matthias Sutter: Experimental games on networks: Underpinnings of beha-
vior and equilibrium selection slightly revised version forthcoming in Econo-
metrica

2014-13 Uwe Dulleck, Rudolf Kerschbamer, Alexander Konovalov: Too much
or too little? Price-discrimination in a market for credence goods

2014-12 Alexander Razen, Wolgang Brunauer, Nadja Klein, Thomas Kneib,
Stefan Lang, Nikolaus Umlauf: Statistical risk analysis for real estate col-
lateral valuation using Bayesian distributional and quantile regression

2014-11 Dennis Dlugosch, Kristian Horn, Mei Wang: Behavioral determinants
of home bias - theory and experiment

2014-10 Torsten Hothorn, Achim Zeileis: partykit: A modular toolkit for recursive
partytioning in R
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Abstract
We propose a learning dynamic with agents using samples of past play to estimate
the distribution of other players’ strategy choices and best responding to this esti-
mate. To account for noisy play, estimated distributions over other players’ strategy
choices have full support in the other players’ strategy sets for positive levels of noise
and converge to the sampled distribution in the limit of vanishing noise. Recurrent
classes of the dynamic process only contain admissible strategies and can be cha-
racterised by minimal CURB sets based on best responses to noisy play whenever
the set of sampled distributions is su�ciently rich. In this case, the dynamic process
will always end up in a set of strategies that contains the support of a (trembling
hand) perfect equilibrium. If the perfect equilibrium is unique and in pure strate-
gies, the equilibrium resembles the unique recurrent class of the dynamic process.
We apply the dynamic process to learning in matching markets and sequential two
player games with perfect information.
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