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Abstract

The Basel II framework strictly defines the conditions under which financial institutions
are authorized to accept real estate as collateral in order to decrease their credit risk. A widely
used concept for its valuation is the hedonic approach. It assumes, that a property can be
characterized by a bundle of covariates that involves both individual attributes of the building
itself and locational attributes of the region where the building is located in. Each of these
attributes can be assigned an implicit price, summing up to the value of the entire property.

With respect to value-at-risk concepts financial institutions are often not only interested
in the expected value but also in different quantiles of the distribution of real estate prices.
To meet these requirements, we develop and compare multilevel structured additive regression
models based on GAMLSS type approaches and quantile regression, respectively. Our models
involve linear, nonlinear and spatial effects. Nonlinear effects are modeled with P-splines,
spatial effects are represented by Gaussian Markov random fields. Due to the high complexity
of the models statistical inference is fully Bayesian and based on highly efficient Markov chain
Monte Carlo simulation techniques.

Keywords: Bayesian hierarchical models, hedonic pricing models, GAMLSS, distributional
regression, quantile regression, multilevel models, MCMC, P-splines, value-at-risk

1 Introduction

The financial crisis of 2008, originated from the U.S. subprime mortgage crisis, impressively revealed
the significance to the global economy of housing in general and its reliable valuation in particular.
A widely used concept here is the hedonic valuation approach, theoretically developed by Lancaster
(1966) and Rosen (1974). It assumes that a property can be characterized by a bundle of covariates
that involves both individual attributes of the building itself and locational attributes of the region
where the building is located in. Each of these attributes can be assigned an implicit price, summing
up to the value of the entire property, see e.g. Sheppard (1999) or Malpezzi (2003).

Hedonic pricing suggests the use of regression models that explain the price in dependence of
attributes. The functional form of this dependence should allow for nonlinearities, see Wallace
(1996) or Malpezzi (2003). Thus, we draw on generalized structured additive regression (STAR)
models, described e.g. in Fahrmeir et al. (2013), where continuous covariates are modeled as
P(enalized)-splines, see Eilers and Marx (1996) or Lang and Brezger (2004).

Since the price of a house is considerably influenced by its geographic location, see e.g. Cohen and
Coughlin (2008) or Helbich et al. (2014), we include sociodemographic, economic and neighbor-
hood covariates of the regions where the buildings are located in. In doing so, the hierarchical
structure of the Austrian political-administrative units, on which these covariates are defined, sug-
gests a multilevel regression model: Single-family homes (level-1) belong to municipalities (level-2),
which are nested in district (level-3), which are themselves nested in counties (level-4). Multilevel
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regression models are described e.g. in Gelman and Hill (2006) or in Lang et al. (2014) in the
context of STAR models.

Brunauer et al. (2013) propose a multilevel STAR model of the form (a more detailed description
will be given in Section 3):

level-1: pqm = f1,1(area) + . . .+ f1,q1(age) + x′γ + fspat1(s1) + ε1

level-2: fspat1(s1) = f2,1(purchase power) + . . .+ f2,q2(education) + fspat2(s2) + ε2

level-3: fspat2(s2) = f3,1(price index) + fspat3(s3) + ε3

level-4: fspat3(s3) = γ0 + ε4,

(1)

and analyze the expected value of house prices in Austria. However, the crisis of 2008, if nothing
else, has shown the importance of a profound failure analysis, wherefore the expected value ob-
viously is not sufficient. It is rather important to analyze the whole distribution of house prices.
Thus, recent studies set the focus to the quantiles of house prices, see e.g. McMillen (2008) or
Haupt (2014), with the estimates being based on quantile regression, first introduced by Koenker
and Bassett (1978).

In this paper, we extend the work of Brunauer et al. (2013) and estimate conditional quantiles
of house prices in Austria with two conceptually different approaches: We apply a number of
multilevel STAR models for location scale and shape (GAMLSS type regression), see Rigby and
Stasinopoulos (2005) and Klein et al. (2013), and a Bayesian version of quantile regression, see
Waldmann et al. (2013).

Statistical inference is fully Bayesian and based on highly efficient Markov chain Monte Carlo
(MCMC) simulation techniques. For the estimation we use the R-package BayesR (Umlauf et al.
(2013)). The final model selection is based on proper scoring rules, see Gneiting and Raftery
(2007), and mean weighted errors.

The remainder of the paper is structured as follows: In Section 2, the data set is described in detail.
Section 3 presents GAMLSS type regression models and Bayesian quantile regression models in
the context of hedonic regression for house prices. Section 4 attends to model selection before the
software used for estimation is described in Section 5. Results are presented in Section 6, the final
section draws some conclusions.

2 Data description and model specification

Our dataset contains the price as well as different attributes of 3,231 owner-occupied single-family
houses in Austria. It has been collected by the UniCredit Bank Austria AG between October 1997
and September 2009 in order to estimate the value of the bank’s collateral for mortgages and its
associated risk.

The dependent variable in our analysis is the house price per square meter (pqm), which seems, at
a first glance, to be approximately lognormally distributed (Figure 1). However, we can see that
the mode is not that pronounced than we would expect from the theoretical distribution – an issue
we will dwell on in chapter 3.2.

The reason why we examine the prices per square meter instead of the total prices is that the
effects of the covariates are typically proportional to the size of the house. Using the prices per
square meter implicitly controls for these interactions between the floor area and the remaining
house attributes.

The set of explanatory variables can be separated into two groups:

• Structural covariates characterize the property itself, e.g. the size, the age or the quality of
the house.

• Spatial covariates characterize the region where the building is located in. They are defined
on different levels (municipal, district or county) and account for sociodemographic, economic
or neighborhood attributes.
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Figure 1: Histogram of the dependent variable pqm together with the density of a lognormal distri-
bution. The parameters µ = 7.1237 and σ2 = 0.1763 determining this density correspond to the
empirical values of the data.

2.1 Structural covariates

The structural covariates involve both continuous and categorical variables. The continuous vari-
ables measure the size, the age and the year of purchase, the categorical ones describe the quality
and the equipment of the house:

• Continuous covariates: Since we focus on the (logged) prices per square meter the floor area
(area) should have a decreasing effect due to the law of diminishing marginal utility. For the
plot area where the house is built on (area plot) an increasing effect can be assumed. The
age of the building at the time of sale (age), calculated as the difference between the year of
purchase and the year of construction, reflects depreciation over time. Therefore, we expect
a decreasing effect. Finally, the year of purchase (time index ) incorporates the remaining
unexplained temporal heterogeneity, e.g. inflation, indicating an increasing effect.

• Categorical covariates: The quality of the house is measured by its overall condition
(cond house), the quality of the heating system (heat) and the quality of the bathroom
and toilets (bath). Obviously, we expect an increasing effect for quality enhancing charac-
teristics. Moreover, the existence of an attic (attic dum), a terrace (terr dum) and a garage
(garage, further separated into good and bad quality) describe the equipment of the property
and should increase its price. However, we have to encode all these categorical covariates
according to two slightly different methods that have been employed for data collection (see
table 3 in appendix A for details).

2.2 Spatial covariates

Throughout Austria, one can observe considerable spatial variation in house prices, which we want
to explain using sociodemographic, economic and neighborhood attributes. These covariates are
defined on three different spatial resolutions according to the hierarchical structure of the Austrian
political-administrative units: Municipalities are subareas of districts which are themselves nested
in counties, as it is illustrated by Figure 2. This hierarchical structure imposes the following
multilevel model:

Level-1 is the individual level, on which the prices of 3,231 single-family homes and the corre-
sponding structural covariates are available (see Section 2.1).
Level-2 is the municipal level, where individual observations are available in 946 of the 2379
Austrian municipalities. The following spatial covariates are defined on this level:
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• Sociodemographic and economic attributes: The inhabitants’ disposable income is reflected
by the purchase power index (pp ind) and the share of academics (educ) as a proxy for the
average level of education. Since the share of academics is strongly positively skewed, it
will enter our models logarithmically (denoted by the prefix ”ln”) in order to avoid volatile
estimation results. Both the purchase power index and the share of academics are assumed
to have an increasing effect on house prices. In contrast, structural weakness, represented by
an excess of the population’s age, should affect prices negatively. We measure population’s
age by an index (age ind) constructed as the population-weighted mean of 20 age cohorts.

• Measures of metropolitan areas and proximity to work: Being a scarce resource land is
more valuable in densely populated areas. Therefore, we expect an increasing effect for the
population density (dens), which will enter the models logarithmically (prefix ”ln”) for the
same reason as before. Furthermore, urban economic theory states that commuting from
areas with low economic activity affects prices negatively, while commuting to centers of
economic life has an increasing effect. However, close proximity to such centers may also bring
along some disamenities for residents, reversing the positive effect. Thus, a high commuter
index (comm), meaning many employees commute from the respective municipality, should
reduce house prices while the effect of a low commuter index is unclear.

Level-3 is the district level, where observations are available in 109 of the 121 Austrian districts.
On this level, we incorporate a real estate price index (wko ind) reflecting the local house price
level. Additionally, we employ a correlated spatial effect exploiting the neighborhood structure.
Level-4 is the county level, where we only include the global intercept.

Table 3 in appendix A provides a detailed description and summary statistics of all covariates.

Figure 2: Number of observations on the municipal level

3 Methodology

3.1 Multilevel STAR models

Structured additive regression (STAR) models assume that the distribution of the response variable
y, given covariates z and x, belongs to an exponential family, see Fahrmeir et al. (2013) for details.
The conditional mean µi = IE(yi|z,x) is linked to a structured additive predictor

ηi = f1(zi1) + . . .+ fq(ziq) + x′iγ, i = 1, . . . , n,

by µi = h(ηi). Here, f1, . . . , fq are possibly nonlinear functions of the covariates z, x′iγ is the usual
linear part of the model and h is a known response function. The inverse of the response function
g = h−1 is called link function.
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Normally distributed prices

As the most basic model, we choose the identity for the response function and assume

yi = ηi + εi = f1(zi1) + . . .+ fq(ziq) + x′iγ + εi, i = 1, . . . , n,

with εi being mutually independent Gaussian with mean 0 and variance σ2, i.e. εi ∼ N (0, σ2).
The functions fj comprise usual nonlinear effects of continuous covariates (e.g. the floor area, the
age of the building, the year of purchase, etc.) or indicate a spatial index of the region a certain
observation belongs to (e.g. municipality, district or county). Using known basis functions Bk,
each effect f is approximated by

f(z) =

K∑
k=1

βkBk(z).

with β = (β1, . . . , βK)′ being a vector of unknown regression coefficients to be estimated. Defining
the n × K design matrix Z with elements Z[i, k] = Bk(zi), the vector f = (f(z1), . . . , f(zn))′ of
function evaluations can be written in matrix notation as f = Zβ. Accordingly, we obtain

y = η + ε = Z1β1 + . . .+ Zqβq + Xγ + ε,

where y = (y1, . . . , yn)′, η = (η1, . . . , ηn)′ and

ε ∼ N (0, σ2I).

In a multilevel STAR model the regression coefficients βj of a function fj may themselves obey a
regression model with a structured additive predictor, i.e.

βj = ηj + εj = Zj1βj1 + . . .+ Zjqjβjqj + Xjγj + εj , (2)

where the terms Zj1βj1, . . . ,Zjqjβjqj represent additional nonlinear functions fj1, . . . , fjqj , Xjγj
comprises additional linear effects, and

εj ∼ N (0, τ2
j I)

is a vector of i.i.d. Gaussian errors, see Lang et al. (2014) for details.

Further levels are possible by assuming that the second level regression parameters βjl,
l = 1, . . . , qj , again obey a STAR model. In that sense, the model is composed of a hierarchy
of complex structured additive regression models, why it is often also called hierarchical STAR
model.

In this paper we use the compound prior (2) if a covariate zj ∈ {1, . . . ,K} is a spatial index and
zij indicates the region observation i pertains to. Then, the design matrix Zj is a n×K incidence
matrix with Zj [i, k] = 1 if the i-th observation belongs to region k and zero else. The K × 1
parameter vector βj is the vector of regression parameters, i.e. the k-th element in β corresponds
to the regression coefficient of the k-th region. The use of the compound prior (2) allows for further
explaining the region specific effect by spatial covariates.

The hierarchical structure of the Austrian political-administrative units suggests a four level re-
gression model: Single-family homes (level-1) belong to municipalities (level-2), which are nested
in districts (level-3), which are themselves nested in counties (level-4). Assuming house prices per
square meter to be normally distributed (ε ∼ N (0, σ2I)) leads to the following four level STAR
model, which we will call the Gaussian model, see Brunauer et al. (2013):
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level-1: pqm = f1(area) + f2(area plot) + f3(age) + f4(time index )+
f5(muni) + Xγ + ε

= Z1β1 + Z2β2 + Z3β3 + Z4β4 + Z5β5 + Xγ + ε

level-2: β5 = f5,1(pp ind) + f5,2(ln educ) + f5,3(age ind) + f5,4(comm)+
f5,5(ln den) + f5,6(dist) + ε5

= Z5,1β5,1 + Z5,2β5,2 + Z5,3β5,3 + Z5,4β5,4+
Z5,5β5,5 + Z5,6β5,6 + ε5

level-3: β5,6 = f5,6,1(wko ind) + fmrf5,6,2(dist) + f5,6,3(county) + ε5,6

= Z5,6,1β5,6,1 + Z5,6,2β5,6,2 + Z5,6,3β5,6,3 + ε5,6

level-4: β5,6,3 = 1γ0 + ε5,6,3.

(3)

The categorical covariates on level-1, describing the quality and equipment of the house, are en-
coded as dummy variables and subsumed in the design matrix X with estimated parameters γ.
The possibly nonlinear functions f1, f2, . . . are modeled by P-splines (see Section 3.4).

The level-1 equation contains an uncorrelated random municipality effect (muni), controlling for
unordered spatial heterogeneity. This municipality-specific heterogeneity is modeled through the
level-2 equation and is further decomposed into a district and finally into a county level effect (levels
3 and 4). Furthermore, district specific spatial heterogeneity is modeled through the correlated
spatial effect dist in the level-3 equation by Markov random fields, denoted by the superscript
”mrf ” (see Section 3.4).

From model (3) we immediately get the conditional mean of the house price per square meter pqm.
If we are interested in the ϕ-th conditional quantile of the house price per square meter instead
we use the transformation property of the normal distribution

Qϕ(pqm) = IE(pqm) + σ · Φ−1(ϕ), (4)

with Φ−1(ϕ) being the ϕ-th quantile of the standard normal distribution. The variance parameter
σ2 (and so the standard deviation σ) can be replaced by a suitable estimator. Equation (4) shows
that the quantiles can be received by simply shifting the mean according to the estimated variance.

Due to the additive structure of our model the conditional quantiles of the house price per square
meter change additively with changes in values of covariates. Subsequently, the conditional quan-
tiles of the total house price p change proportionally to the floor area of the building:

Qϕ(p) = area ·
(
η + σ · Φ−1(ϕ)

)
= area ·

(
f1(area) + . . .+ f5(muni) + γ1x1 + . . .+ γpxp + σ · Φ−1(ϕ)

)
.

Therefore, if for example covariate x1 changes by one unit, the predictor η – and so the considered
quantile of the price per square meter – changes additively by γ1. The quantile of the total price
then changes by area · γ1. Thus, the change in the quantiles of the price is proportional to the
floor area of the building. Turning to the nonlinear effects, let f(z) be the nonlinear effect of a
covariate z, and let df(z) = f(z+1)−f(z). Then, analogously, the quantile of the price per square
meter changes by df(z) and the quantile of the total price changes by area · df(z), again being
proportional to the size of the house. Furthermore, since f(.) is a nonlinear function, the change
differs over the range of z. For the conditional mean we get analog results.

Lognormally distributed prices

In Section 2 we have seen that the empirical house prices per square meter seem to be approximately
lognormally distributed instead of being Gaussian. Assuming the response pqm to be lognormally
distributed, i.e.

pqm ∼ LN (µ, σ2),

leads to normally distributed logged house prices per square meter. Thus, one could guess to
improve model (3) by replacing the response pqm by the logged house price per square meter
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lnpqm, i.e.

lnpqm = η + ε, (5)

which we will call the Loggaussian model, with the same hierarchical predictor η as before and the
errors again being mutually independent normally distributed with mean 0 and variance σ2. We
then receive the conditional quantiles of the house price per square meter by

Qϕ(pqm) = exp
(
η + σ · Φ−1(ϕ)

)
= exp

(
f1(area) + . . .+ f5(muni) + γ1x1 + . . .+ γpxp + σ · Φ−1(ϕ)

)
= exp (f1(area)) . . . exp (f5(muni)) exp(γ1x1) . . . exp(γpxp) exp(σ · Φ−1(ϕ)).

Obviously, the conditional quantiles of the house price per square meter pqm now change multi-
plicatively with changes in values of covariates. If for example covariate x1 changes by one unit,
the predictor η again changes by γ1, but the quantiles of the price per square meter now change
multiplicatively by the factor exp(γ1), yielding

∆Qϕ(pqm) = exp(η + σ · Φ−1(ϕ)) · exp(γ1)− exp(η + σ · Φ−1(ϕ))

= exp(η + σ · Φ−1(ϕ)) · (exp(γ1)− 1) .

For the conditional quantiles of the total prices we get:

Qϕ(p) = area · exp(η + σ · Φ−1(ϕ))

= area · exp (f1(area)) . . . exp (f5(muni)) exp(γ1x1) . . . exp(γpxp) exp(σ · Φ−1(ϕ)).

So, the quantiles of the total price change multiplicatively with changes in values of covariates too.
If for example covariate x1 changes by one unit, the quantiles of the total price change by

∆Qϕ(p) = area · exp(η + σ · Φ−1(ϕ)) · (exp(γ1)− 1) ,

making the change again proportional to the floor area. Similarly, if covariate z (representing a
nonlinear effect) changes by one unit, both the conditional quantiles of prices per square meter and
the conditional quantiles of total prices multiplicatively change by the factor exp (df(z)), since

exp (f(z + 1)) = exp (f(z + 1)− f(z) + f(z)) = exp (df(z)) exp (f(z)) .

Therefore, the change in the quantiles of total prices caused by a change in any covariate again is
proportional to the floor area of the building.

For the conditional mean of the house price per square meter

IE(pqm) = exp(η + σ2/2)

we get analog results.

3.2 GAMLSS

STAR models (see Section 3.1) estimate the conditional mean of a response variable whose distri-
bution belongs to an exponential family. A more flexible approach is given by generalized additive
models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos 2005). On the one hand,
the class of distributions that can be estimated with GAMLSS is not restricted to the exponential
family. On the other hand, GAMLSS allow to model not only the conditional mean of the response
variable but the whole set of distribution parameters, i.e. all parameters for the location, scale and
shape of a distribution can be related to a set of predictor variables, which of course may vary
between the different parameters.

For most distribution families a location parameter µ, a scale parameter σ (or σ2) and a maximum
of two shape parameters ν and τ are sufficient to fully characterize the respective distribution.
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Using response functions h1, . . . , h4 each of these parameters can be linked to a structured additive
predictor

µ = h1(η1) = h1(Z11β11 + . . .+ Zq1βq1 + X1γ1),

σ = h2(η2) = h2(Z12β12 + . . .+ Zq2βq2 + X2γ2),

ν = h3(η3) = h3(Z13β13 + . . .+ Zq3βq3 + X3γ3),

τ = h4(η4) = h4(Z14β14 + . . .+ Zq4βq4 + X4γ4).

(6)

Of course, each of these predictors may have a hierarchical structure. Thus, GAMLSS can be
considered as a generalization of the STAR model (3), where we restricted the focus to the location
parameter µ. GAMLSS and STAR models therefore can be subsumed to structured additive
distributional regression models, see Klein et al. (2013) for details.

Usually, the response functions are chosen to ensure appropriate restrictions on the parameter
spaces. We use, for example, the exponential function to ensure positivity of the scale parameter,
i.e. σ = exp(η2).

(Log-)Normal distribution

In Section 3.1 we assumed house prices to be (log-)normally distributed and modeled their condi-
tional mean assuming a homoscedastic variance σ2. However, as already pointed out in Fahrmeir
et al. 2004, not only the mean but also the variance of the response may depend on covariates
when modeling real estate data. Thus, we consider a GAMLSS with

µ = h1(η1) = η1,

σ2 = h2(η2) = exp(η2),

and for both predictors set up the same four level hierarchical STAR model as in (3).

Analogous to Section 3.1 choosing as response either the house price per square meter pqm (which we
will then call the HetGaussian model, indicating a Gaussian model with heteroscedastic variance)
or the logged house price per square meter lnpqm (HetLoggaussian model) allows for modeling a
normal or a lognormal distribution of the house price per square meter. Accordingly, we receive
the conditional mean and the conditional quantiles of the house price per square meter by

IE(pqmi) = µi,

Qϕ(pqmi) = µi + σi · Φ−1(ϕ)

for the normal distribution and

IE(pqmi) = exp
(
µi + σ2

i /2
)
,

Qϕ(pqmi) = exp
(
µi + σi · Φ−1(ϕ)

)
in the case of a lognormal distribution.

Gamma distribution

In Section 2 we have already mentioned that the mode of the observations is not that pronounced
than we would expect from a theoretical lognormal distribution. Thus, we additionally consider
another two parameter distribution that is more flexible than the lognormal distribution: the
gamma distribution with mean parameter µ > 0 and shape parameter σ > 0. The probability
density function is given by

f(yi|µi, σi) =

(
σi
µi

)σi
· y

σi−1
i

Γ(σi)
· exp

(
−σi
µi
· yi
)
,

with Γ(x) =
∫∞

0
ux−1 exp(−u)du for x > 0 being the gamma function. The mean of the gamma

distribution corresponds to µ, the variance is given by µ2/σ. As we can see from Figure 3 the
gamma distribution seems to better capture the mode compared to the lognormal distribution.
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Figure 3: Histogram of the dependent variable pqm together with the densities of a lognormal [a] and
a gamma distribution [b], respectively. The mean 1354.04 and the variance 328, 858.02 determining
these densities correspond to the empirical values of the data.

Setting up a GAMLSS both the mean and the shape parameter are linked to a semiparametric
regression predictor – each of them modeled according to (3) – via the exponential function due
to the positivity constraints:

µ = h1(η1) = exp(η1),

σ = h2(η2) = exp(η2).

We will call this the Gamma model. While we get the conditional mean simply by

IE(pqmi) = µi,

there doesn’t exist a closed form for the conditional quantiles. However, they can be approximated
by a numerical algorithm as it is provided, for example, by the R-function qgamma (R Development
Core Team (2013)), which is used in this paper.

3.3 Quantile Regression

STAR models as well as GAMLSS assume a specific parametric probability distribution of the
response (like the normal, lognormal or gamma distribution) and model some or all of its parameters
in dependence of covariates. Quantile regression, in contrast, is a distribution-free approach, trying
to directly model the different quantiles of the response as a function of covariates.

In linear quantile regression, as introduced by Koenker and Bassett (1978), we assume

qτ,i = βτ,0 + βτ,1xi1 + . . .+ βτ,pxip

where qτ , for τ ∈ (0, 1), is the τ -quantile of the response distribution. Estimation of the quantile-
specific regression coefficients βτ relies on minimizing the asymmetrically weighted error (AWE)
criterion

β̂τ = arg min
βτ

{
n∑
i=1

ρτ (yi − x′iβτ )

}
, (7)

with the loss function ρτ defined by

ρτ (u) =

{
uτ if u ≥ 0

u(τ − 1) if u < 0,
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which is also known as the check function. Since there exists no closed form solution for this mini-
mization problem, estimates are typically obtained based on linear programming and modifications
of the simplex algorithm, see Koenker and D’Orey (1987) and Koenker (2005) for details. The
distribution of the response is implicitly determined by the estimated quantiles qτ provided that
quantiles for a reasonable dense grid of τ -values are estimated.

Generalizations to structured additive predictors are conceptually straightforward. However, esti-
mation is highly challenging and almost impossible for complex hierarchical models, revealing the
limits of frequentist quantile regression.

Bayesian quantile regression requires a distributional assumption for the error terms (or equiva-
lently the responses) to be able to set up a likelihood. Following Yu and Moyeed (2001) and Yue
and Rue (2011) we will assume independent and identically distributed observations following an
asymmetric Laplace distribution with location parameter x′iβτ , scale parameter σ2 and skewness
parameter τ ,

yi|βτ , σ2, τ
iid∼ ALD(x′iβτ , σ

2, τ).

Then, the density of the responses is given by

p(yi|βτ , σ2, τ) =
τ(1− τ)

σ2
exp

(
−ρτ (yi − x′iβτ )

σ2

)
.

Maximizing the corresponding posterior (for fixed σ2 and τ)

p(βτ |y, σ2, τ) ∝
n∏
i=1

p(yi|βτ , σ2)

∝ exp

(
− 1

σ2

n∑
i=1

ρτ (yi − x′iβτ )

)

with respect to βτ obviously is equivalent to minimizing the AWE criterion (7). However, in
contrast to frequentist quantile regression the linear predictor ηi,τ = x′iβτ can be replaced by a
hierarchical structured additive predictor without any further difficulties.

Since the check function ρτ is non-differentiable, inference based on Markov chain Monte Carlo
(MCMC) simulations at a first glance seems to be complicated. However, the asymmetric Laplace
distribution can be represented as a scaled mixture of normals:

Y = η + ξW + δZ
√
σ2W

with ξ = 1−2τ
τ(1−τ) and δ2 = 2

τ(1−τ) . W ∼ Exp( 1
σ2 ) and Z ∼ N (0, 1) are independent random

variables following an exponential distribution with mean σ2 and a standard normal distribution,
respectively. Thus, using offsets ξW and weights δ

√
σ2W the Bayesian quantile regression problem

can be interpreted as a conditionally Gaussian regression model after imputing W as a part of the
MCMC sampler, see Yue and Rue (2011) and Waldmann et al. (2013) for details.

3.4 Effect modeling and priors

Effect modeling and priors depend on the covariate or term type. We first describe the general
form of basic priors. Then we explain how to model continuous covariate effects and spatial effects
using specific design matrices and forms of the basic prior (see Fahrmeir et al. (2013) or Lang
et al. (2014) for further covariate types).

General form of basic priors

In a frequentist setting, overfitting of a particular function f = Zβ is avoided by defining a
roughness penalty on the regression coefficients, see for instance Fahrmeir et al. (2013) in the
context of structured additive regression. The standard are quadratic penalties of the form λβ′Kβ

10



where K is a penalty matrix. The penalty depends on the smoothing parameter λ that governs
the amount of smoothness imposed on the function f .

In a Bayesian framework a standard smoothness prior is a (possibly improper) Gaussian prior of
the form

p(β|τ2) ∝
(

1

τ2

)rk(K)/2

exp

(
− 1

2τ2
β′Kβ

)
· I(Aβ = 0), (8)

where I(·) is the indicator function. The key components of the prior are the penalty matrix K, the
variance parameter τ2

j and the constraint Aβ = 0. Usually the penalty matrix is rank deficient,
i.e. rk(K) < K, resulting in a partially improper prior. The specific structure of K depends on the
covariate type and on prior assumptions about the smoothness of f .

The amount of smoothness is governed by the variance parameter τ2. A conjugate inverse Gamma
prior is employed for τ2 (as well as for the error variance parameter σ2 in models with Gaussian
responses), i.e. τ2 ∼ IG(a, b) with small values such as a = b = 0.001 for the hyperparameters
a and b resulting in an uninformative prior on the log scale. The smoothing parameter λ of the

frequentist approach and the variance parameter τ2 are connected by λ = σ2

τ2 .

The term I(Aβ = 0) imposes required identifiability constraints on the parameter vector. A
straightforward choice is A = (1, . . . , 1), i.e. the regression coefficients are centered around zero.

P-splines

For a continuous covariate z, our basic approach for modeling a smooth function f are P-splines
introduced in a frequentist setting by Eilers and Marx (1996) and in a Bayesian version by Lang and
Brezger (2004). P-splines assume that the unknown functions can be approximated by a polynomial
spline which can be written in terms of a linear combination of B-spline basis functions. Hence,
the columns of the design matrix Z are given by the B-spline basis functions evaluated at the
observations zi. Lang and Brezger (2004) propose to use first or second order random walks as
smoothness priors for the regression coefficients, i.e.

βk = βk−1 + uk, or βk = 2βk−1 − βk−2 + uk,

with Gaussian errors uk ∼ N(0, τ2) and diffuse priors p(β1) ∝ const, or p(β1) and p(β2) ∝ const,
for initial values. This prior is of the form (8) with the penalty given by

K∑
k=d+1

(∆dβk)2 = β′D′Dβ = β′Kβ,

where ∆d is the difference operator of order d = 1 or d = 2 and D is the corresponding difference
matrix.

Markov random fields

The correlated district specific heterogeneity effect fmrf5,6,2(dist) in equation (3) can be modeled by
Markov random fields (MRF). Suppose that z ∈ {1, . . . ,K} is the indicator for the district in which
a house is located. MRFs define one parameter for every discrete geographical unit (districts in our
case), i.e. f(z) = βz, and are defined via the conditional distributions of βz given the parameters
βs of neighboring sites s. We denote the set of neighbors of site z by N(z). Typically sites are
assumed to be neighbors if they share a common boundary. MRFs assume that the conditional
distribution of βz given neighboring sites s ∈ N(z) is Gaussian with

βz |βs, s 6= z ∼ N

 1

|N(z)|
∑

s∈N(z)

βs,
τ2

|N(z)|

 ,

where |N(z)| denotes the number of neighbors of site z.
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The joint (prior) distribution of β is of the form (8) with penalty matrix K given by

K[z, s] =

 −1 z 6= s, s ∈ N(z),
0 z 6= s, s 6∈ N(z)
|N(z)| z = s.

If a Markov random field is used in the level-1 equation the design matrix Z is a 0/1 incidence
matrix whose entry in the i-th row and k-th column is 1 if the i-th observed house is located in
district k and 0 else. In our application the MRF is specified in the level-3 equation to model
smooth district specific heterogeneity. In this case the design matrix is the identity matrix, i.e.
Z5,6,2 = I.

4 Model selection

In Section 3 we have presented different approaches to model the distribution of house prices. Now,
we propose some criteria in order to evaluate the predictive ability of these models and to select
a final model. For this purpose, we will determine proper scoring rules (Gneiting and Raftery
(2007)) and will consider mean weighted errors.

4.1 Proper scoring rules

Proper scoring rules, as proposed by (Gneiting and Raftery (2007)), are suited to compare the
predictive ability of parametric models in terms of probabilistic forecasts based on the predictive
distribution and the actual realizations. Thus, we can apply such scoring rules for the five distribu-
tional regression models that assume the response to be either normally or lognormally distributed
(each with fixed or variable variance) or gamma distributed.

We evaluate the scores for a specific model by means of cross validation, e.g. we randomly divide
the data set into five subsets Ω1, . . . ,Ω5 of virtually equal size and estimate the model based on
four of those subsets. For the remaining subset, without loss of generality Ω1 = {y1, . . . , yR}, we
derive the predictive distributions with densities f1, . . . , fR based on the predictive parameters
µ1, . . . , µR and σ1, . . . , σR (or σ2

1 , . . . , σ
2
R). A proper scoring rule S then leads to a score SΩ1

for
this subset by summing up the individual contributions

SΩ1 =
1

R

R∑
r=1

S(fr, yr).

We receive the conclusive score S as the average score of the five subsets

S =
1

5

5∑
i=1

SΩi .

Following Gneiting and Raftery (2007), we consider the logarithmic score (LogS)

S(fr, yr) = log (fr(yr)) ,

the quadratic score (QuadS)

S(fr, yr) = 2fr(yr)− ||fr||22,

with ||fr||22 =
∫
fr(ω)2dω, dominated by the Lebesgue measure, the spherical score (SpherS)

S(fr, yr) =
fr(yr)

||fr||2
,

as well as the continuous ranked probability score (CRPS)

S(Fr, yr) = −
∫ ∞
−∞

(
Fr(x)− 1{x≥yr}

)2
dx,

with predictive cumulative distribution function Fr(x) =
∫ x
−∞ fr(u)du. Since all of these scores

are proper, higher scores yield better probabilistic forecasts when comparing different models.
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4.2 Mean weighted error

The τ -quantile of a random variable Y corresponds to the value ŷ that minimizes the expected loss

ŷ = arg min
y

{IE (ρτ (Y − y)} ,

see Koenker (2005) for details. We therefore consider an estimator for the expected loss and select
the model with the lowest loss as the final model. For this purpose we revert to the cross validation
with subsets Ω1, . . . ,Ω5. For a given quantile τ we estimate each model based on four of these
subsets (e.g. Ω2, . . . ,Ω5) and calculate predictions ŷτ,i for the remaining subset Ω1. Then, the
average loss

LΩ1
=

1

R

R∑
i=1

ρτ (yi − ŷτ,i) ,

representing a mean weighted error, yields an estimation for the expected loss. The conclusive loss
L is given as the average loss of the five subsets

L =
1

5

5∑
i=1

LΩi .

5 Software

The multilevel structured distributional regression models described above can be estimated with
the open source package BayesX (Brezger et al. (2005)). An R (R Development Core Team (2013))
implementation for such models is provided in the package BayesR (Umlauf et al. (2013)) including
a fully interactive interface to the BayesX engine. In addition, the package contains infrastructure
to conveniently specify complicated multilevel formulas for multiple parameters adopting the usual
R “look & feel” of model fitting functions. Furthermore, a variety of visualization tools are imple-
mented to explore the estimated functions and perform model specification analysis. A number
of extractor functions applied by the common R user, such as summary(), fitted(), predict(),
etc., are implemented with multiple parameter support. Model selection can be based on quantile
residuals(), the DIC() and proper scoring rules.

In the following, we exemplify the usage of the software estimating multilevel STAR models with
predictors specified in (3). We first load the required packages and data sets.

R> library("BayesR")

R> library("spdep")

R> load("HousePrice.rda")

R> load("DistrictsBnd.rda")

The file HousePrice.rda contains a data.frame with the covariates specified in Section 2. The file
DistrictsBnd.rda contains a boundary map object DistrictsBnd that is used to compute the
necessary neighborhood structure for estimating the level-3 correlated spatial effect of the districts
in Austria. After transforming the class “bnd” object to an object of class “SpatialPolygons”
with

R> DistrictsSp <- bnd2sp(DistrictsBnd)

the final neighborhood object DistrictsNb, which is used for fitting the model, can be generated
by

R> DistrictsNb <- poly2nb(DistrictsSp)

Here, districts are identified as neighbors if they share a common border, but different neighborhood
structures can be employed, see e.g. function dnearneigh() or tri2nb() in package spdep (Bivand
(2014)). The base model formula that can be used for all parameters is specified as a list() by
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R> f <- list(

+ ## Level 1

+ lnp_qm ~ -1 + heat_o2 + heat_o3 + heat_neu1 + heat_neu2 +

+ bath_o1 + bath_o3 + bath_neu1 + bath_neu2 + garage_1 +

+ garage_2 + marker + attic_dum + cellar_dum + terr_dum +

+ sx(c_area) + sx(c_area_plot) + sx(c_age) + sx(c_time_ind) +

+ sx(municipal, bs = "re"),

+

+ ## Level 2

+ municipal ~ -1 + sx(c_pp_ind) + sx(c_pp_ind) + sx(c_ln_educ) + sx(c_age_ind) +

+ sx(c_comm) + sx(c_ln_dens) + sx(district, bs = "re"),

+

+ ## Level 3

+ district ~ -1 + sx(c_wko_ind) + sx(district, bs = "mrf", map = DistrictsNb) +

+ sx(county, bs = "re"),

+

+ ## Level 4

+ county ~ 1

+ )

where the (possibly) nonlinear smooth terms are per default set up using P-splines within the
smooth term constructor function sx(). The spatially correlated effect is specified by changing the
basis type argument of sx() to bs = "mrf" and providing the neighborhood object to argument
map. The random effects of the municipals, districts and counties are specified with bs = "re".
To estimate a GAMLSS model using the normal distribution with the same formulas for the mean
and the variance parameter a named list() needs to be created by

R> f1 <- list("mu" = f, "sigma2" = f)

Hence, each list entry represents one formula object for one parameter of the distribution that is
used for modeling. The model is then fitted using the BayesX engine by typing

R> b1 <- bayesr(f1, family = gaussian2, data = HousePrice, engine = "BayesX")

A Gamma model using the untransformed prices is specified in a similar way, i.e., only the base
model formula needs to be slightly adapted by exchanging the response

R> f2 <- f

R> f2 <- update(f2[[1]], p_qm ~ .)

as well as the final formula

R> f2 <- list("mu" = f2, "sigma" = f2)

since the variance parameter is named sigma instead of sigma2 using the Gamma family object.
The model is estimated by

R> b2 <- bayesr(f1, family = gamma, data = HousePrice, engine = "BayesX")

Using the BayesX estimation engine, we can also specify a quantile regression model with the base
model formula

R> b3 <- bayesr(f, family = quant, data = HousePrice, engine = "BayesX")

which estimates a multilevel model for the 50% quantile per default. Model summaries can then
be printed by typing e.g.

R> summary(b1)

which returns the estimation results for all levels and parameters. The estimated smooth and
random effects, for e.g. the mu parameter of the normal distribution model can be plotted with

R> plot(b, model="mu")
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per default all parameters are plotted. Inspecting the model fit using quantile residuals is possible
using the plot method

R> plot(b, which = "qq-resid")

The resulting scores can be extracted with

R> score(b1)

R> score(b2)

At the time of writing the BayesR software project is still work and progress. A detailed description
will be provided, the sources are available at

https://R-Forge.R-project.org/projects/bayesr/

the package can be installed within R by typing

R> install.packages("BayesR", repos="http://R-Forge.R-project.org")

6 Results

We now present the estimation results for the models described in Section 3. The results are
based on a final MCMC run with 120,000 iterations and a burn in period of 20,000 iterations. We
stored every 100th iteration in order to obtain a sample of 1,000 practically independent draws
from the posterior. Computing times for the MCMC sampler ranged between 2 1/2 minutes for
the Gaussian model and 55 minutes for the Gamma model on a modern desktop computer (Intel
Core i7-3740 Quad-Core, 2.7GHz). Note that no more than 32,000 iterations are typically enough
in preliminary MCMC runs to obtain sufficiently exact estimation results. However, we used the
comparably large number of iterations in the final run to be absolutely sure about the precision of
estimates.

In Section 6.1 we focus on the mean of the house price per square meter. We compare the results
from the five parametric models and identify the best of these models with respect to probabilistic
forecasts. Afterwards, we will focus on different quantiles of the house price per square meter and
compare the results of the selected parametric model with those of the quantile regression (Section
6.2) in order to find a final model.

6.1 Expected value

Structural covariates

Figure 4 shows the effects of the structural continuous covariates. In order to get an impression of
the magnitude of effects and make the results comparable, we hold the other continuous structural
covariates constant at mean level of attributes and the categorical variables at their mode level and
we evaluate all neighborhood covariates and spatial effects at the mode of the municipals (which
we will call the average effect). If necessary, we additionally transform the functions to natural
units (prices in Euro per square meter). Since the effects are quite different in magnitude, we do
not show them on the same scale.

In panel [a], the effect of the floor area (variable area) is shown. For all models, we find a
monotonically decreasing and very pronounced effect of additional floor area on prices per square
meter, which is in line with the law of diminishing marginal utility. However, the decreasing
effect weakens as the floor area becomes larger. While the results of the skewed distributions
(Loggaussian, Lognormal and Gamma model) are virtually the same and cover a range of up to
1,730 Euro, in the Gaussian and the HetGaussian model the effect only accounts for a variation of
1,230 Euro and 1,040 Euro, respectively.

Additional plot area (area plot, panel [b]) yields higher prices per square meter of floor area with
the effect becoming weaker as plot area increases. For very large plots, the effect even seems to
reverse. However, the data only include very few observations with plot areas larger than 1,300
square meters, leading to wide credible intervals in this area (not shown in this figure). Again, the

15

https://R-Forge.R-project.org/projects/bayesr/


Figure 4: Effects of the continuous structural covariates. [a] Effect of the floor area; [b] Effect of
the plot area; [c] Effect of the age of the building; [d] Effect of the time index

Gaussian and the HetGaussian model yield an effect that is not that pronounced compared to the
other models. The results of the Loggaussian model deviate as well from those of the Lognormal
and Gamma model, which are again very similar. In total, house prices per square meter change
by about 390 Euro (Gaussian model) to 690 Euro (HetLoggaussian model) over the domain of the
plot area.

The effect of the age of the building, shown in panel [c], can be considered as the rate of depre-
ciation of single family homes. Thus, the initial increase up to an age of 7 years in the results
of the Gaussian and the Loggaussian model seems quite unlikely, whereas the more or less linear
depreciation (until an age of about 55 years) in the other models is in line with our expectations.
However, the decline is much more pronounced in the Lognormal and the Gamma model than in
the HetGaussian model. In all models, the effect slightly reverse for old buildings (again with wide
credible intervals due to a small number of observations in this area). The age of the house covers a
range of about 425 Euro (Gaussian model) to 750 Euro (HetLoggaussian model) per square meter.

The effect of the time index (panel [d]) shows the quality controlled development of house prices
over time. After a moderate increase from 1997 to 2000, prices almost stay constant until 2003
with similar results for almost all models. Only the Gaussian model predicts slightly higher prices
in this period. After 2003 the prices rise until 2008 in a considerably different extent within the
five models: While the increase is less marked for the Gaussian and the HetGaussian model, it is
more pronounced especially for the Loggaussian model. In the last year of the observation period
prices consistently decrease, indicating the effect of the economic crisis of 2008/2009. In total, the
time index accounts for variation in a range of 200 Euro (Normal model) to 350 Euro (Loggaussian
model).

Spatial covariates

The effects of the spatial covariates are shown in Figure 5, again on the natural scale of prices
per square meter. The effect of the purchase power index (pp ind), shown in panel [a], is highly
positive between 80 and 130 index points with similar results for the skewed models and slightly
weaker effects for the Gaussian and the HetGaussian model. The negative effects for low and high
values of the purchase power index is unexpected, but may result from very few municipals with
such extreme index points (wide credible intervals). In total, house prices per square meter change
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Figure 5: Effects of the spatial covariates. [a] Effect of the purchase power index; [b] Effect of the
share of academics; [c] Effect of the age index; [d] Effect of the commuter index; [e] Effect of the
population density; [f] Effect of the WKO house price index

by about 300 Euro (Gaussian model) to 475 Euro (Gamma model).

Although the share of academics (ln educ, panel [b]) enters the equation logarithmically (see Section
2.2), it is displayed in natural values. The effect is clearly positive, with a pronounced increase
starting at a share of approximately 25%. The difference between the five models is rather small,
only for municipalities with a very high amount of academics the HetGaussian model seems to
underestimate the effect compared to the other models. The share of academics accounts for a
variation of up to 1,000 Euro (Loggaussian model).

The effect of the age index (age ind, panel [c]) is more or less linear for all models with the
highest slope in the Loggaussian model (bandwidth of about 535 Euro) and the smallest one in the
HetGaussian model (bandwidth 320 Euro). The negative direction is in line with our expectations
and can be interpreted as a decreasing attractiveness of municipalities that exhibit an excess of
age.

The commuter index (comm, displayed in panel [d]) has the weakest effect of all continuous co-
variates with a variation of not more than 220 Euro. The highest values are realized at about
1.7 index points, where the number of people commuting from the municipality almost equals the
number of those who enter it. Regions with an unbalanced ratio between commuters from and
into the municipality both have slightly lower house prices. Two models seem to overestimate
prices compared to the other models, the Gaussian model in the whole range of the index, the
Loggaussian model only for low index points.
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The results of the population density ln dens (panel [e]) show almost no effect for sparsely inhabited
areas and a highly positive effect for densely populated regions. For the latter ones, we can find
a considerable difference of up to 350 Euro between the results of the Lognormal and the Gamma
model on the one hand and the other models on the other hand. In total, this effect accounts for
a variation between 490 Euro (Gaussian model) and 935 Euro (HetLoggaussian model).

Finally, the results for the house price index (wko ind, the only covariate on the district level) are
shown in panel [f]. The effect is clearly positive, which is in line with our expectations. However,
for index values lower than 90 and higher than 140 the effect is consistently weaker. The bandwidth
ranges between 340 Euro (Loggaussian model) and 610 Euro (HetLoggaussian model).

The spatial heterogeneity over Austria, caused by the previous effects, strikingly can be visualized
by colored maps. However, for the sake of simplicity, we do not show such maps for all parametric
models here, but will do it in the next section when comparing the results of the best parametric
model with those of the quantile regression.

Predictive ability

Although the main shapes of the effects of the continuous covariates are very similar for all five
parametric models, we have seen several differences when analyzing the effects in detail. For
most covariates the results of the skewed models (Loggaussian, Lognormal and Gamma model)
considerably differ from those of the models that are based on a normal distribution (Gaussian
and HetGaussian model). The empirical distribution of the data (see Section 2) here suggests the
skewed models to be superior. Within the skewed models we identified an unexpected behavior
of the Loggaussian model for the age of the building as well as further deviations for selected
covariates from the other models. Finally, the results of the Lognormal and the Gamma model are
very similar for all covariates.

We now compare the predictive ability of these models by means of proper scoring rules (see
Section 4.1). Table 1 shows the average logarithmic, quadratic and spherical scores as well as
the continuous ranked probability score for the five models. As expected from the considerations
above the Lognormal and the Gamma model seem to make the best probabilistic forecasts with
the Gamma model to be slightly superior in all scores.

Model Logarithmic score Quadratic score Spherical score CRPS
Gaussian -0.5524 0.7234 0.8509 -0.2309
Normal -0.4635 0.8090 0.8840 -0.2241
Loggaussian -0.4670 0.8077 0.8860 -0.2250
Lognormal -0.4358 0.8334 0.8951 -0.2225
Gamma -0.4199 0.8441 0.9020 -0.2208

Table 1: Comparison of average score contributions of the parametric models obtained from a
five-fold cross validation

6.2 Quantiles

In Section 6.1 we have identified the Gamma model to be the best parametric model with respect
to probabilistic forecasts. We now compare the results of this model with those from quantile
regression. We consider seven different quantiles (5%-, 10%-, 30%-, 50%-, 70%-, 90%-, 95%-
quantile) in order to get a good overview of the whole distribution of house prices. We restrict the
discussion to covariates with notable results or major differences between the models. The plots
of the remaining covariate effects can be found in appendix 6.

Structural covariates

Figure 6 shows the effects of the floor area and the age of the building with the other covariates
again being hold constant at the average effect. In order to facilitate comparability we show the
effects of a particular covariate on the same scale for both the Gamma model and the quantile
regression.

18



Figure 6: Effects of selected continuous structural covariates of the Gamma model (left column)
and the quantile regression (right column). [a], [b] Effect of the floor area; [c], [d] Effect of the age
of the building

While the quantiles of the floor area have a convex shape in the Gamma model (panel [a]), the
effects are more or less linear in the quantile regression, displayed in panel [b]. Furthermore, the
variance considerably differs in the Gamma model with a large variance for small houses and vice
versa. The bandwidth between the 95%-quantile and the 5%-quantile decreases from 2,530 Euro for
houses with floor areas of 50 square meters to about 675 Euro for buildings with 300 square meters.
In contrast, the variance is substantially lower in the quantile regression with the bandwidth only
varying between 1,840 Euro (small houses) and 1,310 Euro (large houses).

The results of the age are very similar between the Gamma model (panel [c]) and the quantile
regression (panel [d]) for the lower quantiles up to the median. For the 5%- and the 10%-quantile
the effects seem to be almost linear and slightly decreasing over the whole range of the age (at
least for an age exceeding seven years). The 30%- and the 50%-quantiles are linearly decreasing up
to an age of 55 years and almost constant or slightly increasing afterwards. The upper quantiles,
in contrast, considerably differ between the two models: In the quantile regression, the effects
still decline linearly up to 55 years and reverse hereafter. In the Gamma model the effects more
and more tend to a quadratic shape. Thus, the range of house prices is much higher in the
Gamma model (up to 2,770 Euro) than in the quantile regression (only 2,000 Euro) especially for
new buildings. Finally, the different functional forms of the individual quantiles illustrate a great
advantage of using distributional or quantile regression instead of the ordinary mean regression:
In the latter one, the quantiles would have the same marginal effect, only being shifted according
to the overall variance – a restriction that couldn’t be justified economically.

Spatial covariates

Figure 7 shows the estimated quantiles of selected spatial covariates again at the average effect.
The 5%- and the 10%-quantiles of the purchase power index (panels [a] and [b]) are almost linearly
increasing both for the Gamma model and the quantile regression. For the remaining quantiles
we find a tendency towards undulating effects that are more pronounced in the Gamma model.
However, as already discussed the decreasing effect for low and high index points shouldn’t be
overstated due to only a very small number of municipalities with such purchase power indices.

The quantiles of the population density show that over the whole distribution of prices there is
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Figure 7: Effects of selected spatial covariates of the Gamma model (left column) and the quantile
regression (right column). [a], [b] Effect of the purchase power index; [c], [d] Effect of the population
density; [e], [f] Effect of the WKO house price index

almost no effect for sparsely inhabited areas, neither in the Gamma model nor in the quantile
regression. In contrast, for densely populated areas there is a slightly positive effect for the lower
quantiles and an ever-growing positive effect for the upper quantiles. Especially the effects of the
90%- and the 95%-quantile of highly populated areas are much more pronounced in the Gamma
model than in the quantile regression leading to a variation of prices between the 5%- and the 95%-
quantile of up to 2,725 Euro in the Gamma model and only 2,090 Euro in the quantile regression.

The results of the WKO house price index are quite similar in both models with effects that are
more or less linearly increasing for all different quantiles. The slope is rather small for the lower
quantiles and somewhat higher for the upper quantiles. For the latter ones the effect is slightly
more pronounced in the Gamma model than in the quantile regression.

Distribution of spatial heterogeneity over Austria

The spatial covariates, defined on the municipality- and the district-level, explain spatial hetero-
geneity to a certain extent, so we call this the explained spatial heterogeneity. The remaining i.i.d.
spatial random effects ε5, ε5,6 and ε5,6,3 as well as the correlated district specific effect fmrf5,6,2(dist)
in (3) account for unexplained spatial heterogeneity.

Figure 8 visualizes the distribution of the total spatial heterogeneity over Austria that is composed
by the sum of the explained and the unexplained heterogeneity, evaluated again at the average
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Figure 8: Distribution of total spatial heterogeneity over Austria. [a], [c], [e] Quantiles of the
Gamma model; [b], [d], [f] Quantile of the quantile regression.

effect. For the sake of illustration we restrict the analysis to the 10%-, 50%- and 90%-quantiles.
We find considerably higher house prices in the western counties of Austria as well as in the city of
Linz and the metropolitan area of Vienna. This effect can consistently be observed for all quantiles.
Especially for the median, the spatial heterogeneity seems to be more pronounced in the quantile
regression compared to the Gamma model.

If we now compare the total spatial heterogeneity with the unexplained spatial heterogeneity,
displayed in Figure 9, we can see that the continuous spatial covariates indeed are able to explain a
large part of the spatial heterogeneity over Austria, since the variation of the remaining unexplained
heterogeneity is considerably lower than the variation of the total spatial heterogeneity. Moreover,
the unexplained spatial heterogeneity seems to be more randomly distributed, especially for the
10%-quantile the 90%-quantile in the quantile regression. However, for the median in the quantile
regression as well as for all quantiles in the Gamma model, we still find systematically higher prices
in the western counties as well as in Vienna and considerably lower prices in Burgenland (far east
of Austria) and Carinthia (south of Austria), indicating a spatial effect that is not captured by the
covariates involved in the models.
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Figure 9: Distribution of unexplained spatial heterogeneity over Austria. [a] Gamma model; [b]
Quantile regression.

Predictive ability

The previous results sometimes revealed considerable differences between the Gamma model and
the quantile regression. In order to select a final model, we now calculate the mean weighted errors
(see Section 4.2) for the different quantiles from a five-fold cross validation.

According to table 2 the Gamma model yields better predictions for all quantiles compared to
the quantile regression. At a first glance, this result seems surprising since the mean weighted
error basically corresponds to the AWE criterion (7) that the quantile regression tries to minimize.
However, there are three possible explanations: First of all, in Bayesian quantile regression the esti-
mation result is given by the posteriori mean which doesn’t exactly correspond to the minimization
of the AWE criterion (which would be the posteriori mode). Furthermore, the use of smoothness
priors penalizes the check-function, leading to estimation results slightly deviating from the actual
minimization. Finally, quantile regression tries to minimize the AWE criterion for the observed
realizations. The mean weighted error, in contrast, is based on cross validation, meaning that it is
calculated for new observations. Thus, the fact that estimation errors can be quite large in quantile
regression especially for extreme quantiles, may lead to better predictions for parametric models
compared to quantile regression.
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Quantile Model G1 G2 G3 G4 G5 ∅
5% Gamma Model 36.02 40.33 42.65 37.34 41.82 39.63

Quantile Regression 42.46 47.28 51.83 44.13 49.48 47.04
10% Gamma Model 63.92 69.31 70.84 64.98 71.20 68.05

Quantile Regression 70.17 74.49 78.89 71.96 76.89 74.48
30% Gamma Model 135.78 138.99 139.25 133.01 141.77 137.76

Quantile Regression 141.04 142.62 145.98 138.08 143.53 142.25
50% Gamma Model 160.73 162.75 160.57 154.68 164.99 160.75

Quantile Regression 165.21 165.04 168.82 159.28 166.38 164.95
70% Gamma Model 144.07 148.11 142.31 136.15 146.51 143.43

Quantile Regression 145.17 146.36 148.32 139.84 145.86 145.11
90% Gamma Model 80.35 83.46 78.51 75.01 79.99 79.46

Quantile Regression 83.78 84.91 86.30 82.21 84.17 84.27
95% Gamma Model 52.05 52.99 49.51 46.75 50.53 50.37

Quantile Regression 58.06 58.23 60.17 58.72 58.47 58.73

Table 2: Mean weighted errors for the different quantiles from a five-fold cross validation with
groups G1,. . . ,G5

7 Conclusion

This paper analyzes the distribution of house prices using Bayesian multilevel structured distribu-
tional and quantile regression models. Extending the work of Brunauer et al. (2013) we do not
restrict our analyses to the (conditional) mean but additionally concentrate on different (condi-
tional) quantiles of the response in order to summarize its whole distribution. The paper is based
on two conceptually different approaches: Distributional regression models, on the one hand, as-
sume a specific parametric probability distribution of the response and model some or all of its
parameters in dependence of covariates. Quantile regression, in contrast, directly models the differ-
ent quantiles of the response as a function of covariates without a specific distribution assumption.
Model choice is based on proper scoring rules and mean weighted errors. We identify a model
based on the gamma distribution to be most suitable for our data giving new insights into the
distribution of house prices. Our findings are of great practical interest, especially with respect to
the evaluation of the credit risk of financial institutions that accept real estate as collateral.

The magnitude of the effects considerably differs between the individual covariates. Thus a detailed
analysis of confidence bands as well as an automated variable selection for both the particular
parameters of the distributional regression models and the individual quantiles of the quantile
regression could be a conceivable starting point for further research.

Acknowledgement: This work was supported by funds of the Oesterreichische Nationalbank
(Oesterreichische Nationalbank, Anniversary Fund, project number: 15309).
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Appendix

A Description of Covariates

Continuous structural covariates
Name Description [unit] mean / min. / max. Exp. Eff.

area floor area (exc. cellar) [sq. meter] 135 / 44 / 495 +
area plot plot space [sq. meter] 742 / 80 / 2500 +

age age of building [years] 23 / 0 / 82 -
time index year of purchase [date] 2005 / 1997 / 2009 o

Categorical structural covariates
Name Description; categories

cond house condition of the house (6 categories);
method 1: 1 = (very) good (21.79%), 2 = medium (4.46%), 3 = bad
(59.49%); method 2: 4 = (very) good (7.92%), 5 = medium (4.55%), 6
= bad (1.80%)

heat quality of the heating system (8 categories);
method 1: 1 = (very) good (62.46%), 2 = medium (18.85%), 3 = bad
(4.43%); method 2: 4 = excellent (4.70%), 5 = very good (4.61%), 6 =
good (1.95%), 7 = medium (1.83%), 8 = bad (1.18%)

bath quality of the bathroom (7 categories);
method 1: 1 = (very) good (13.22%), 2 = medium (66.73%), 3 = bad
(5.79%); method 2: 4 = very good (7.95%), 5 = good (3.59%), 6 =
medium (1.98%), 7 = bad (0.74%)

garage quality/existence of a garage (3 categories);
1 = high (10.99%), 2 = medium/low (41.23%), 3 = no garage (47.79%)

marker discrimination between methods (2 categories);
0 = method 1 (85.73%), 1 = method 2 (14.27%)

cellar dum existence of a cellar (2 categories);
0 = no cellar (73.23%), 1 = cellar (26.77%)

attic dum existence of an attic (2 categories);
0 = no attic (55.87%), 1 = attic (44.13%)

terr dum existence of a terrace (2 categories);
0 = no terrace (58.40%), 1 = terrace (41.60%)

Table 3: Structural attributes of single family homes. The upper part describes continuous covari-
ates and assumptions about the directions of the effects (”+”: increasing, ”-”: decreasing and ”o”:
no strong assumptions), the lower part describes the categorical variables. Covariates cond house,
heat and bath have been collected by two different methods, which makes it necessary to distinguish
the respective effects for the two subsamples. Specifically, categories 1,2 and 3 of each of these
covariates come from method 1, while the rest of the categories (heat: 4 to 8, bath: 4 to 7 and
cond house: 4 to 6) stems from method 2. Furthermore, a marker discriminating between the two
methods of data collection is introduced.
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B Further results

Figure 10: Effects of the remaining structural covariates of the Gamma model (left column) and
the quantile regression (right column). [a], [b] Effect of the plot area; [c], [d] Effect of the time
index
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Figure 11: Effects of the remaining spatial covariates of the Gamma model (left column) and the
quantile regression (right column). [a], [b] Effect of the share of academics; [c], [d] Effect of the
age index; [e], [f] Effect of the commuter index
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2013-07 Daniela Glätzle-Rützler, Matthias Sutter, Achim Zeileis: No myopic
loss aversion in adolescents? An experimental note

http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-21
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-19
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-19
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-18
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-17
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-14
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-13
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-13
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-11
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-11
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-10
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-10
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-09
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-09
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-08
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-08
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-07
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-07


2013-06 Conrad Kobel, Engelbert Theurl: Hospital specialisation within a DRG-
Framework: The Austrian case

2013-05 Martin Halla, Mario Lackner, Johann Scharler: Does the welfare state
destroy the family? Evidence from OECD member countries
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