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Abstract

In this paper, we propose a unified Bayesian approach for multivariate structured ad-

ditive distributional regression analysis where inference is applicable to a huge class of

multivariate response distributions, comprising continuous, discrete and latent mod-

els, and where each parameter of these potentially complex distributions is modelled

by a structured additive predictor. The latter is an additive composition of different

types of covariate effects e.g. nonlinear effects of continuous variables, random effects,

spatial variations, or interaction effects. Inference is realised by a generic, efficient

Markov chain Monte Carlo algorithm based on iteratively weighted least squares ap-

proximations and with multivariate Gaussian priors to enforce specific properties of

functional effects. Examples will be given by illustrations on analysing the joint model

of risk factors for chronic and acute childhood malnutrition in India and on ecological

regression for German election results.

Key words: correlated responses; iteratively weighted least squares proposal; Markov

chain Monte Carlo simulation; penalised splines; semiparametric regression; Dirichlet

regression; seemingly unrelated regression.

1 Introduction

Papers on regression analysis for multivariate responses usually focus on one spe-

cific distribution such as the multivariate normal distribution in seemingly unrelated
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regression (SUR) models [Zellner, 1962, Greene, 2011] or distributions for categori-

cal outcomes and count data, see for example Winkelmann [2008] or Tutz [2011] for

recent overviews. Bayesian inference for categorical outcomes has been treated ex-

tensively in the last decade [see for example Chen and Dey, 2000, Albert and Chib,

1993, Imai and van Dyk, 2005, Frühwirth-Schnatter et al., 2009]. Most of these ap-

proaches focus exclusively on linear predictors following the classical framework of

generalised linear models [McCullagh and Nelder, 1989, Fahrmeir et al., 2013]. How-

ever, the restriction to a parametric predictor does not capture the flexibility of mod-

elling (possibly more realistic) nonlinear impacts of covariates or spatial variation

within the data. Only a few papers are available dealing with multivariate responses

and nonparametric predictors. For instance, Fahrmeir and Lang [2001] proposed mul-

ticategorical regression models in the spirit of generalised additive models [GAM,

Hastie and Tibshirani, 1990, Ruppert et al., 2003, Wood, 2006, Fahrmeir et al., 2013]

from a Bayesian point of view. Bayesian SUR models with semiparametric predic-

tors are developed in Lang et al. [2003]. However, in all these models only the mean

of the components of the response is related to covariates, neglecting the potential

dependence of higher moments or correlations of the response vector on covariates.

Therefore, covariate effects that are indeed straightforward to estimate and easy to

interpret may lead to misspecification of the model and invalid conclusions drawn

from it. Smith and Kohn [2000] for example showed in simulation studies that esti-

mates can become inefficient and that nonlinear effects can be biased when applying

univariate regressions instead of a multivariate model.

Accordingly, it is of great interest to provide a framework that is flexible enough to

model more than just the mean while remaining interpretable and reliable at the same

time. The aforementioned problems can be solved by the framework of generalised

additive models for location, scale and shape [GAMLSS, Rigby and Stasinopoulos,

2005]) where potentially complex parametric distributions can be assumed for the

response variable. Additionally, each parameter of the distribution i.e. variances and

further moments can be modelled in terms of covariates since they are related to

additive regression predictors. Estimations for a large number of different types of

distributions are obtained from Newton-Raphson or Fisher scoring type algorithms

used to maximise the (penalised) likelihood. However, the framework of GAMLSS is
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currently restricted to univariate responses.

As a consequence, we extend Bayesian distributional regression for univariate re-

sponses, recently developed by Klein et al. [2013] to a generic approach for multi-

variate responses in the spirit of GAMLSS. Inference is realised by a Markov chain

Monte Carlo simulation algorithm based on distribution-specific iteratively weighted

least squares approximations to the full conditionals. The approach is implemented

in the free software package BayesX (www.bayesx.org).

The notion of multivariate distributional regression is more general than multivariate

GAMLSS since the parameters of the response distributions do not always relate

directly to location, scale or shape but instead functions of several parameters usually

lead to these characteristics. In our second application on German elections, the

response vector in this study consists of fractions of electoral votes for five different

parties where the remaining votes are pooled in an additional component of the

response. Hence, a restriction is given by the fact that the sum of all proportions

equals one and the positive density can be represented by a five-dimensional open

simplex. A natural candidate for analysing such fractions is therefore the Dirichlet

distribution with six positive parameters where none of these parameters is directly

linked to location, scale or shape but ratios or the sum of several parameters can be

interpreted more meaningfully.

The normal distribution is one of a few exceptions where the parameters are directly

interpretable since they represent expectation and variance of the response. This

favourable property is preserved even in the bivariate case where in addition to first

and second moment of the components of the response vector, the correlation param-

eter can be explained by various covariate effects. We will use the bivariate normal

distribution in our application on childhood malnutrition in India in Section 3 in

order to study the joint model of two different Z-scores, where one of them repre-

sents chronic malnutrition and the other measures an acute poor nutritional status.

We also consider an extension based on the bivariate t-distribution to contrast the

bivariate normal distribution as an alternative with heavier tails. The performance

of Bayesian inference in bivariate normal and bivariate t-models is demonstrated in a

simulation study (see the supplement Section A). In the appendix A, we present an

extension of the multivariate normal model to the multivariate probit model as an
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example of binary multivariate regression which is often employed in economic and

biostatistical research.

The rest of the paper is structured as follows: In Section 2, we first introduce the

representation of multivariate regression models and present a generic formulation

for inference in Bayesian structured additive distributional regression for multivariate

responses. Section 3 demonstrates a bivariate example based on a high-dimensional

geoadditive regression model for a Indian childhood malnutrition data while Section 4

contains results of an ecological regression for elections of the Germany’s federal

parliament (Bundestag) in 2009. The final Section 5 concludes and provides comments

on directions of future research.

2 Bayesian Multivariate Distributional Regression

2.1 Observation Models

Let fi(yi1, . . . , yiD|ϑi1, . . . , ϑiK), i = 1, . . . , n, be the conditional K-parametric den-

sities of D-dimensional random variables (yi1, . . . , yiD)
′ given some covariate infor-

mation νi. With the help of monotone, twice differentiable response functions hk,

the idea of distributional regression is to link each parameter ϑik to a semiparametric

structured additive predictor ηik formed of the covariates, such that ϑik = hk(ηik) and

ηik = h−1
k (ϑik). The response function is usually chosen to maintain restrictions on the

parameter space, like the exponential function ϑik = exp(ηik) to ensure a parameter

with values on the positive real line, or the identity function if the parameter space

is unrestricted. If ϑik ∈ [−1, 1], which is e.g. the case for the correlation between to

variables, the transformation ϑik = ηik√
1+η2ik

is suitable.

2.1.1 Examples of Multivariate Response Distributions

In the following, we describe examples of multivariate distributions that play im-

portant and useful roles in applied research. Note, however, that more parametric

distributions may be added by transferring the inferential procedure introduced in

Section 2.2.
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Multivariate Continuous Distributions For a D-dimensional multivariate nor-

mal random vector y = (y1, . . . , yD)
′ we write

y ∼ N (μ,Σ)

with expectation μ = (E(y1), . . . ,E(yD))
′ ∈ RD and positive semi definite covariance

matrix Σ = Cov(yi, yj) ∈ RD×D for i, j = 1, . . . , D. Since Σ may not have full column

rank (and in this case no proper density exists), we assume that Σ is positive definite,

implying the density

f(y1, . . . , yD) =
1√

(2π)D det(Σ)
exp

(
−1

2
(y − μ)′ Σ−1 (y − μ)

)
.

The multivariate normal distribution has several practically and theoretically attrac-

tive properties, see for example Kotz et al. [2005].

A special case is the bivariate formulation (D = 2) where μ = (E(y1),E(y2))
′ =

(μ1, μ2)
′ and Σ becomes

Σ =

⎛
⎝ σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

⎞
⎠

with σ2
1 = Var(y1), σ

2
2 = Var(y2) and ρ = Cor(y1, y2). In distributional regression,

the expectations and standard errors of the marginal distributions as well as the

correlation parameter can be estimated as functions of covariates, i.e.

ημ1

i = μ1,i, ημ2

i = μ2,i,

ησ1
i = log(σ1,i), ησ2

i = log(σ2,i),

ηρi =
ρi√
1− ρ2i

.

We will apply the bivariate normal distribution in our application to childhood mal-

nutrition in India (Section 3) and compare it to the bivariate t-distribution, an al-

ternative to the bivariate normal distribution with fatter tails that in general is con-

sidered to be less sensitive with respect to extreme observations. The multivariate

t-distribution [Kotz et al., 2005] is a multidimensional formulation of the univariate t-

distribution. AD-dimensional random variable y = (y1, . . . , yD)
′ is said to follow aD-

dimensional t-distribution, i.e. y ∼ t (ndf ,μ,Σ) with parameters μ = (μ1, . . . , μD)
′,

ndf

ndf−2
Σ (μ and Σ as defined above) and degrees of freedom ndf > 0 if the density of
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y is given by

f(y1, . . . , yD) =
Γ
(

ndf+D

2

)
Γ
(ndf

2

)
(ndfπ)

D/2
(det (Σ))−

1
2
[
1 + (y − μ)′ Σ−1 (y − μ)

]−ndf+D

2 .

Because of y
d−→ N (μ,Σ) for ndf → ∞, the multivariate t-distribution can be seen

as an approximation of the multivariate normal distribution getting better with in-

creasing ndf . Compared to multivariate normal regression we obtain an additional

predictor

η
ndf

i = log (ndf ) .

Multivariate Binary Distribution The multivariate probit model is a generali-

sation of the univariate probit model which can be used to estimate several correlated

binary outcomes jointly. This model is of particular interest to researchers since it

allows for the estimation of the treatment effect that a binary endogenous variable

has on a binary outcome in the presence of unobservables [Heckman, 1978, Maddala,

1983, Woolridge, 2002]. From a Bayesian point of view, inference can be performed

based on a latent model representation, that allows to estimate a complex correlation

structure on the components of the response: Assume a D-variate probit model with

dependent binary variable y = (y1, . . . , yD)
′ and corresponding unobservable latent

variable y∗ = (y∗1, . . . , y
∗
D)

′. Similar to the univariate case we assume a multivariate

normal distribution for y∗ and write

y∗ = ημ + ε, ε ∼ N(0,Σ)

with μ = (μ1, . . . , μD)
′ = (E(y∗1), . . . ,E(y

∗
D))

′ and Σ = Cor(y∗d1 , y
∗
d2
) if d1 �= d2 and

one otherwise for d1, d2 = 1, . . . , D. Then, y is an indicator for whether the latent

variable y∗ is positive i.e.

yid = 1 ⇐⇒ y∗id > 0, i = 1, . . . , n and d = 1, . . . , D.

Following the ideas of Albert and Chib [1993] we show in Appendix A that Bayesian

inference in the multivariate probit model can be realised with the same quantities

as for the multivariate normal distribution such that no further computations are

necessary apart from the imputation of the latent responses y∗.
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Dirichlet Distribution In our second application on elections, the quantity of in-

terest is given by a vector of votes or their proportions for different parties. The sum

of this vector equals the number of all electorates (or one in case of proportions).

Let D − 1 be the number of important parties and the remaining ones be grouped

in one additional category. Then the response can be described by a D-dimensional

non-negative random variable y = (y1, . . . , yD)
′, D ≥ 2 that follows a Dirichlet dis-

tribution. More specifically, y is said to be Dirichlet distributed with parameters

α = (α1, . . . , αD) ∈ RD
>0,

y ∼ Dir (α)

if the following two conditions are satisfied:

f(y1, . . . , yD−1) =
1

B(α)

D∏
d=1

yαd−1
d

D∑
d=1

yd = 1, yd ≥ 0

where the normalising constant is the multinomial beta function of α:

B (α) =

∏D
d=1 Γ(αd)

Γ
(∑D

d=1 αd

) .
We want to give some important properties of the Dirichlet distribution:

• There is a complete symmetry between the D couples (yd, αd) due to yD =

1−∑D−1
d=1 yd and f could be defined on any subset of size D − 1.

• The Dirichlet distribution is a generalisation of the beta distribution since in

the cases of D = 2 it can be seen easily that y1 is beta distributed i.e. y1 ∼
Be(α1, α2).

• When all αd are equal to one, the Dirichlet distribution reduces to the uniform

distribution on the simplex defined by
∑D

d=1 yd = 1, yd > 0 into RD.

• f is zero outside the open D − 1 dimensional simplex.

• The univariate marginal distributions of yd are beta distributions with param-

eters αd and −αd +
∑D

k=1 αk.
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• The y′ds can be seen as the probability of an event to fall in category d with

expectation

E(yd) =
αd

α0

,

where α0 =
∑D

d=1 αd can be interpreted as a precision parameter.

• In our approach to Dirichlet regression each parameter αd is linked to an struc-

tured additive predictor i.e ηαd
i = log (αd,i).

2.2 Generic Regression Formulation

For any parameter of the multivariate distributions discussed in the previous section,

the semiparametric predictor has the general form

ηϑk
i =

Jk∑
j=1

fϑk
j (νi)

comprising various functions fϑk
j (ν i) defined on the complete covariate information

νi. Specific components may for instance be given by

• linear functions fϑk
j (νi) = x′

iβ
ϑk
j , including the overall level βϑk

0j of the predictor

and xi is a subvector of ν i,

• continuous functions fϑk
j (νi) = fϑk

j (xi), where xi is a single element of νi and

f is an appropriate smooth function to represent the effect of xi on ϑik,

• spatial variations fϑk
j (ν i) = fϑk

j (si), where si is a spatial unit, or

• random effects fϑk
j (νi) = βϑk

j,gi
, where gi is a cluster variable that groups the

observations.

The predictors can then always be written in the generic matrix notation

ηϑk =

Jk∑
j=1

Zϑk
j βϑk

j

where the design matrices Zϑk
j are obtained by appropriate basis function expansions

and βϑk
j are the vectors of regression coefficients to be estimated.
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Specific properties of the basis coefficients such as smoothness are regularised by

assuming possibly improper Gaussian priors

βϑk
j ∼

(
1

(τϑk
j )2

)rk
(
K

ϑk
j

)
/2

exp

(
− 1

2(τϑk
j )2

(
βϑk

j

)′
Kϑk

j βϑk
j

)
(1)

where Kϑk
j is a prior precision matrix and (τϑk

j )2 are smoothing variances with inverse

gamma hyperpriors i.e. (τϑk
j )2 ∼ IG(aϑk

j , bϑk
j ) in order to obtain a data-driven amount

of smoothness with aϑk
j , bϑk

j = 0.001 as default values for practical analyses.

As a result, each term fϑk
j = (fϑk

j (νi), . . . , f
ϑk
j (νi))

′ = Zϑk
j βϑk

j is determined by a

design matrix Zϑk
j and a prior precision or penalty matrix Kϑk

j . We give specific

examples in the following:

Continuous Covariates To approximate potentially nonlinear effects, we use

Bayesian P-splines, compare Eilers and Marx [1996] and Brezger and Lang [2006] for

detailed explanations. The n × D design matrix Z in this setting is composed of

D B-spline basis functions evaluated at observed covariates xi. Assuming a first or

second order random walk for β i.e.

βd|βd−1, τ
2 ∼ N

(
βd−1, τ

2
)
, d = 2, . . . , D

or

βd|βd−1, βd−2, τ
2 ∼ N

(
2βd−1 − βd−2, τ

2
)
, d = 3, . . . , D

as smoothness prior with noninformative priors for initial values yields the penalty

matrix K = D′D where D is a difference matrix of first or second order.

Spatial Effects For discrete spatial effects observed on a lattice or regions, we

consider Markov random fields, see Rue and Held [2005]. Let si ∈ {1, . . . , S} denote

the index or region observation i belongs to. Then f(si) = βsi is assumed such that

we estimate separate parameters β1, . . . , βS for each region. As a consequence, the

n × S design matrix is an incidence matrix i.e. Z[i, s] = 1 if observation i belongs

to location s and zero otherwise. The simplest Markov random field prior for the

coefficients βs is defined by

βs|βr, r �= s, τ 2 ∼ N

(∑
r∈∂s

1

Ns
βr,

τ 2

Ns

)
,
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where Ns is the number of regions in ∂s and ∂s denotes the neighbours of region s.

The penalty matrix is given by

K[s, r] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 s �= r, r ∈ ∂s

0 s �= r, r /∈ ∂s

Ns s = r.

For detailed explanations on structured additive regression with further examples we

refer the reader to Fahrmeir et al. [2013].

Generic Algorithm Depending on the response distribution, the full conditionals

log
(
p
(
βϑk

j |·
))

for the coefficient vectors of several distribution parameters ϑk may

not be written in a closed form. In contrast, in the bivariate normal distribution for

instance, it can be shown that the Gaussian priors yield a conjugate model for the

parameters μd, d = 1, 2, such that the full conditionals for the regression coefficients

corresponding to the expectation parameters are again Gaussian. In the following,

we however describe the situation where the full conditionals are not analytically ac-

cessible and note that in cases where the full conditionals can be obtained explicitly

the resulting Metropolis-Hastings updates are reduced to Gibbs samplers from mul-

tivariate normal distributions with the same parameters that we will propose in the

approximations to the full conditionals in more complicated situations.

A quadratic Taylor expansion of the log-likelihood function around the mode

leads to iteratively weighted least square (IWLS) proposals [Gamerman, 1997] with

distribution-and parameter-specific expectation μϑk
j and precision matrix P ϑk

j

μϑk
j =

(
P ϑk

j

)−1 (
Zϑk

j

)′
W ϑk

(
z − (η−j

)ϑk

)
P ϑk

j =
(
Zϑk

j

)′
W ϑkZϑk

j +
1(

τϑk
j

)2Kϑk
j

(2)

for the regression vectors, which are again multivariate normal distributions i.e.

βϑk
j ∼ N

(
μϑk

j ,
(
P ϑk

j

)−1
)
.

Here, z = ηϑk +
(
W ϑk

)−1
vϑk are the working observations,

(
η−j

)ϑk denotes

the predictor without the j-th component, vϑk = ∂l/∂ηϑk are the score vectors

of the log-likelihood l ≡ l
(
ηϑ1 , . . . ,ηϑK

)
and W ϑk are working weight matrices,
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wϑk
i = E

(
−∂2l/∂

(
ηϑk
i

)2)
on the diagonals and zero otherwise. The modularity of

MCMC allows to represent the sampler in a unified framework where in each iter-

ation t = 1, . . . , T the final Metropolis-Hastings algorithm loops over the regression

coefficients of different effects and over all distribution parameters. In summary, the

proposed procedure can therefore be seen as a multivariate extension of the one given

Klein et al. [2013] for the univariate case:

1. For t = 1, . . . , T go to 2.

2. For k = 1, . . . , K go to 3.

3. For j = 1, . . . , Jk propose βp
j from the density q

((
βϑk

j

)[t]
,βp

j

)
=

N

((
μϑk

j

)[t]
,

((
P ϑk

j

)[t])−1
)

with expectation μϑk
j and precision matrix P ϑk

j

given in (2) and accept βp
j as a new state of

(
βϑk

j

)[t]
with acceptance probability

α

((
βϑk

j

)[t]
,βp

j

)
= min

{ p
(
βp

j |·
)
q

(
βp

j ,
(
βϑk

j

)[t])

p

((
βϑk

j

)[t] ∣∣∣∣·
)
q

((
βϑk

j

)[t]
,βp

j

) , 1

}
.

3 Measuring Correlations between Anthropomet-

ric Characteristics of Childhood Malnutrition

Childhood malnutrition is one of the most urgent public health challenges in de-

veloping and transition countries since it is not only related to the growth of chil-

dren but also has severe long term impacts. A rich database with information

on fertility, family planning, maternal and child health, as well as child survival,

HIV/AIDS, malaria, and nutrition is provided by Demographic and Health Surveys

(DHS, www.measuredhs.com) consisting of more than 300 surveys conducted in 90

countries. Usually, childhood malnutrition is measured by a Z-score that compares

the nutritional status of children in the population of interest with the nutritional

status in a reference population. Consequently the Z-score is defined as

Zi =
ACi − μAC

σAC

11



where ACi denotes the anthropometric characteristic for child i, while μAC and σAC

correspond to median and standard deviation in the reference population (stratified

with respect to age and gender). Depending on the choice of the anthropometric

indicator, different aspects of malnutrition can be assessed. Insufficient height for

age is an indicator for chronic malnutrition (stunting) whereas insufficient weight for

height captures acute malnutrition (wasting). Here, we focus on the joint model with

a special interest in the correlation between both risk factors. Our analysis is based on

the 1998/99 survey for India, containing information on 24,316 children. A detailed

description and a pre-selection of the large number of all potential covariates provided

in the data set is given in Belitz and Lang [2008] and Fahrmeir and Kneib [2011]. A

boosting and quantile regression based analysis of a similar data set from 2006 India

DHS without spatial information can be found in Fenske et al. [2011].

As possible response distributions we assume a bivariate normal and t-distribution.

A complete presentation and discussion of results would go beyond the scope of the

paper but additional results can be found in the supplement Section B. Here, we

primarily focus on the results for the correlation coefficient between stunting and

wasting. The predictors of all parameters μstunting, μwasting, σstunting, σwasting, ρ (and

in case of the t-distribution of ndf ) are of the form

ηi = x′
iβ + f1(cagei) + f2(breastfeedingi) + f3(magei) + f4(mbmii)

+f5(medui) + f6(edupartneri) + fspat(disti) + βdisti

where f1 to f6 are smooth functions of the covariates age of the child (cage) in months,

lactation (breastfeeding) in months, age of the mother (mage), body mass index of

the mother (mbmi), education years of the mother (medu), and education years of

the mother’s partner (edupartner). We apply Bayesian P-splines of degree three with

twenty inner knots and a second-order random walk penalty for the nonlinear smooth

terms of continuous covariates. The vector xi contains a constant comprising the

overall level of the predictors and several linear effects (e.g. binary and categorial

variables) which are not discussed here. The spatial function fspat and the district-

specific random effect βdist represent the complete spatial effect of the district the child

belongs to. While fspat captures spatial correlations, βdist catches local and small scale

variations. The former one is based on a Markov random field prior and the latter

is assigned an i.i.d. Gaussian prior, therefore corresponding to a random intercept
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based on clusters defined by regions. Lang and Fahrmeir [2001] have shown through

simulations that the two components of the complete spatial effect can in general

not be separated and only the sum of both effects can be estimated satisfactorily.

Therefore results for spatial effects will always contain the sum of the two parts.

The predictive ability of the bivariate normal and the bivariate t-models are com-

pared in terms of the deviance information criterion [DIC, Spiegelhalter et al., 2002]

and proper scoring rules, proposed by Gneiting and Raftery [2007]. More precisely

we consider the quadratic score S(fr,yr) = 2fr(yr1, yr2)− ||fr(yr1, yr2)||22, the spheri-

cal score S(fr,yr) = fr(yr1, yr2)/||fr(yr1, yr2)||2 and the logarithmic score S(fr,yr) =

log(fr(yr1, yr2)) under the Lebesque measure on the measurable space
(
R2,B (R2

))
and with ||fr(x, y)||2 =

(∫ ∫
fr(x1, x2)

2dx1dx2

)1/2

. Here, yr = (yr1, yr2)
′ is an

observation from a hold out sample y1, . . . ,yR and fr is either the density of a

bivariate normal or a bivariate t-distribution with plugged in predicted parame-

ters which are obtained by cross validation. We therefore split the data set in

ten equal parts, use nine parts for estimation and predict the parameters of the

remaining part each. The predictive ability of the two models can then be com-

pared by the aggregated average score SR = 1
R

∑R
r=1 S(Fr,yr) with predictive dis-

tributions Fr(yr1, yr2) =

∫ yr1

−∞

∫ yr2

−∞
fr(x1, x2)dx1dx2. Note that higher scores rep-

resent better probabilistic forecasts. Unfortunately, the concept of quantile residu-

als [Dunn and Smyth, 1996] used by Klein et al. [2013] in the context of univariate

Bayesian structured additive distributional regression as a graphical device to check

the fit to the data under different response distributions is not expendable to the mul-

tivariate framework since the cumulative distribution functions Fr : U ⊂ RD → [0, 1]

can not be inverted. In the bivariate normal and t-model it would however be possible

to look at the residuals of the marginal distributions.

The scores together with the DIC can be found in Table 1 while the residuals of the

marginal distributions are given in Figure 1. Obviously, all goodness of fit measures

are slightly in favour of the t-distribution. In addition, the estimated effects based on

the bivariate normal and t-distribution are visually close to each other. Therefore, we

restrict our presentation primarily to the results based on the bivariate t-distribution.

Figure 2 visualises posterior mean point estimates and posterior probabilities for the

complete spatial effect. Figure 3 shows posterior mean estimates for the nonpara-
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Distribution DIC Quadratic Score Logarithmic Score Spherical Score

Bivariate normal 157,601 0.058 -3.34 0.242

Bivariate t 156,460 0.060 -3.29 0.245

Table 1: Childhood malnutrition. Comparison of DIC achieved of estimates based on the whole

data set and average score contributions obtained from ten-fold cross validations.
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Figure 1: Childhood malnutrition. Quantile-quantile plots of residuals of the marginal

distributions in the bivariate normal model (first row) and the bivariate t-model (second row).
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metric effects together with 80% and 95% pointwise credible intervals. In Figures 4

(normal distribution) and 5 (t-distribution) contour lines of estimated densities for

four different ages are depicted. The other effects are kept constant at the estimated

functions evaluated at mean covariate values each.

−0.26 0.260 −1 10

Figure 2: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of the

complete spatial effects on ρ (left) and 80% posterior probabilities (right), centred around zero

each.
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Figure 3: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of

nonparametric effects on ρ together with 80% and 95% pointwise credible intervals, centred around

zero each.
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Figure 4: Childhood malnutrition, bivariate normal distribution. Contour lines of densities for

four different ages, the remaining effects are kept constant at estimated effects evaluated at mean

covariate values each.
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Figure 5: Childhood malnutrition, bivariate t-distribution. Contour lines of densities for four

different ages, the remaining effects are kept constant at estimated effects evaluated at mean

covariate values each.
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Especially in the north of India and at the border to China there are several districts

expected to have a negative correlation whereas in some districts in the inner country

we estimate a small positive correlation, compare Figure 2. Figure 3 shows that in

particular, none of the effects related to the mother’s characteristics is estimated to

be significant in the sense that posterior credible intervals of all these effects contain

the zero line (visualised as a grey dashed line in the figure). In contrast, the effect of

age of the child turns out to be nonlinear with a steady increase until an age of about

two years. Afterwards the effect stays approximately constant. One explanation is

a more dynamic process of malnutrition at the very early months after birth. The

effect of duration of breastfeeding which shows a decline up to two years could be

explained by the fact that a shorter lactation increases the risk of both, acute and

chronic malnutrition.

Figures 4 and 5 indicate that the correlation between wasting and stunting decreases

with the age of the child. Furthermore, the variance of stunting increases while the

one of wasting becomes smaller for older children. This can be related to the adoption

of the body to reduced nutrient intake. Children stop growing (become stunted) and

this helps in improving their wasting score as they need fewer calories to nourish

the smaller body [see Wiesenfarth et al., 2012, for further discussion] The densities

obtained from a t-distribution are more flat and with heavier tails as expected.

In a nutshell, estimates indicate that characteristics of the child are more relevant than

the mother’s abilities to explain the joint model of chronic and acute malnutrition.

Especially the age of the child plays an important role since for very young children

wasting and stunting are estimated to have the highest correlation. It furthermore

revealed several local pattern with extremer correlations compared to the rest of India.

4 Selected Socio-Demographic Factors on Ger-

many’s Federal elections

In this section, we present an analysis on Germany’s federal election 2009 as an ex-

ample of Dirichlet regression. The data are provided by the DSTATIS (Statistisches

Bundesamt, www.destatis.de) and contain proportions of the electorate voting (re-

sponse variable) on 5 parties for each of the 413 districts (Landkreise) in Germany.
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The proportion of votes for the Christian Democratic Union/Christian Social Union

(CDU/CSU), Social Democratic Party (SPD), The Liberals (FDP), The Left, The

Greens and others sum up to one in each district. As covariates, we consider dis-

trict specific quantities i.e. the proportion of electorates (PoE) compared to the

total population (turnout), the rate of unemployment (unemployment) in 2008, the

gross domestic product per capita (GDPpc) in 2008 (measured in thousands) and

one of 38 administrative regions (region) the districts are located in. The predictors

ηαd
i = log(αd,i) for d = 1, . . . , 6 and i = 1, . . . , 413 are hence of the form

ηi = β0 + f1(PoEi) + f2(GDPpci) + f3(unemploymenti) + fspat(regioni).

As described in Section 3, f1 to f3 are smooth functions modelled with Bayesian

P-splines and fspat is assigned a Markov random field prior on 38 administrative

regions in Germany. For better interpretation, we computed expected proportions

exp(αk)∑6
d=1 exp(αd)

of votes for each party and for every effect while all other effects are

constant with estimated effects evaluated at mean covariate values. In Figure 6, the

expected values can be compared for different regions in Germany and in Figure 7,

the expected proportions are shown in dependency of the covariates PoE, GDPpc

and unemployment. Note that in order to enhance visibility axes ranges are not the

same for different parties.

For the CDU/CSU and FDP we estimate the smallest spatial variations of electorates

while for the SPD we observe a higher constituency in the Western part of Germany in

general. The Greens seem to have most votes in the South West (since 2011 the prime

minister of Baden-Württemberg is provided by the Greens) whereas the most notable

spatial effect is recorded for the Left. For historic reasons the Left is traditionally

very strong in the East of Germany as well as the Saarland because of the prominent

position of its former chairman Oskar Lafontaine in this federal state.

The effect of GDPpc is most pronounced for the Greens with a steady increase up

to 50,000 which can be explained by their stronger support in urban areas which

compiles with political literature, see for example Walter [2010]. While for SPD,

FDP and others the effect of PoE does not have clear trends, the expected number of

votes increases for the Greens and decreases for CDU/CSU as well as The Left when

the voter turnouts rise. Looking at unemployment, SPD and the Left show similar

behaviour where up to a rate of 10%, increasing unemployment is estimated to have
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.

Figure 6: Federal election. Expected proportions of votes for each region, all others effects are

evaluated at mean covariate effects. Axes are equal for CDU/CSU, SPD as well as FDP, The

Greens, The Left and others, respectively in order to enhance visibility of estimated effects.

Geometric information provided by Bundesinstitut fuer Bau-, Stadt- und Raumforschung [BBSR]
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Figure 7: Federal election. Expected proportions of votes together with 80% and 95% pointwise

credible intervals, all others effects are evaluated at mean covariate effects. Axes scales are only

identical row-wise in order to enhance visibility of estimated effects.
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a positive effect on votes for these two parties. For the Greens we observe the same

tendency but with a negative effect for high unemployment. In contrast, the CDU

reveals most electorates in regions with high rates of employment.

In conclusion it can be said that even with data on a highly aggregated level (we

do not have any individual information) clear trends and differences between the

considered parties can be identified and explained by the four included covariates

geographical region, turnouts, rate of unemployment and the gross domestic product

per capita.

5 Summary and Conclusions

In this paper, we have proposed a generic Bayesian framework for structured additive

distributional regression with various types of multivariate responses. The flexibility

of the approach allows to gain detailed insights into the joint stochastic behaviour

of response vectors accounting for a variety of complex regression effects. While

interpretation remains feasible for bivariate models for continuous responses, the truly

multivariate case with dimensions higher than two remains is challenging since the

complex restrictions on the parameter space have to be ensured for positive definite

dispersion matrices. A possible remedy would be to work with the Cholesky factor

but in this the interpretation of estimated effects gets difficult.

Nevertheless, we believe that multivariate distributional regression is an important

contribution to the toolbox of applied statisticians with a variety of applications. In

particular, the distributional variant of SUR models with all parameters depending

on covariates provides a natural counterpart to recent attempts to define bivariate

quantile regression models. Albeit its admittedly much stronger assumption of a

particular response distribution, the multivariate normal and the multivariate t model

have the considerable advantage to define a coherent, interpretable model for bivariate

responses.

In future research, we will consider multivariate hierarchical distributional regression

models following the ideas of Lang et al. [2013]. In addition, the multivariate normal

model, the multivariate probit model and combinations of binary and continuous

covariates in a joint latent normal model will be studied in detail to assess their
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potential as alternatives to well known model types in economics such as Heckman’s

selection model. The fact that we provide both joint estimation of effects on several

responses and allow for effects not only on the means can be expected to give rise to

interesting new insight in corresponding applications.

A Full Conditionals of Latent Variables in the Bi-

variate Probit Model

In the probit model, the observable binary outcomes are replaced by latent variables

as introduced in Section 2.1.1. For simplicity reasons we describe the procedure at the

example of a bivariate probit model where y∗ is jointly bivariate normal distributed

with expectation μ = (ημ1, ημ2) and covariance matrix

Σ =

⎛
⎝1 ρ

ρ 1

⎞
⎠ .

It follows that the full conditionals of y∗ are truncated bivariate normal distributions

y∗|· ∼ N[a,b] (μ,Σ)

with

[a, b] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0,∞)× [0,∞) y1 > 0, y2 > 0

[0,∞)× (−∞, 0] y1 > 0, y2 < 0

(−∞, 0]× [0,∞) y1 < 0, y2 > 0

(−∞, 0]× (−∞, 0] y1 < 0, y2 < 0

Sampling from a truncated bivariate normal distribution has e.g. been studied by

Robert [1995] and a common way is to derive a Gibbs sampler for realising random

numbers from the desired truncated bivariate normal distribution. This means that in

several steps of the MCMC algorithm another Gibbs sampler would be needed and it is

due to ending up with a time demanding procedure. A more efficient way is to draw

the components of y∗ separately from the conditional distributions. Although the

marginal distributions are not truncated Gaussian any more, it can be shown easily
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that the conditional distributions follow truncated univariate normal distributions i.e.

y∗i |· ∼

⎧⎪⎨
⎪⎩
N[0,∞)

(
μi + ρ(y∗j − μj), (1− ρ2)

)
if yi = 1

N(−∞,0]

(
μi + ρ(y∗j − μj), (1− ρ2)

)
if yi = 0

(3)

for d �= j and i, j = 1, 2. If therefore ϑk = μd for k, d = 1, 2 holds in step 2 of the

generic algorithm summarised in Section 2.2, draw an additional update of y∗d from a

truncated normal distribution (3).
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A Simulation Study for the Bivariate Normal and

Bivariate t-Distribution

In order to validate the performance of Bayesian structured additive distributional

regression for the bivariate normal and the bivariate t-distribution we consider the

following model setup:

fμ1(x1) = sin(x1) fμ2(x2) = cos(x2)

fσ1(x1) =
√
x1 cos(x1) fσ2(x2) = 0.3x1 cos(x2)

f ρ(x1) = log(x1) fndf (x2) =
1

3
x2
2

where fndf is only used in the bivariate t-model. The covariates x1 and x2 are uniform

random numbers from the intervals [1, 6] and [−3, 3], respectively. For each of the

two models we simulated 250 data sets with sample size n = 1, 000.

Figure A1 shows the comparison of logarithmic mean squared errors (MSE) of all

effects in the bivariate normal and the bivariate t-model. Figures A2 and A6 show

pointwise 95% coverage rates for each simulated effect in the bivariate normal model

and the bivariate t-model respectively. The posterior mean estimates of all effects
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compared to the true simulated functions for three specific replications (chosen as the

5%, 50% and 95% quantile of the MSE sample distribution) as well as 95% posterior

probabilities can be compared in Figures A3 to A5 for the bivariate normal model and

in Figures A7 to A9 for the bivariate t-model. All considered results are predictions

resulting from a grid of step size 0.01 within the covariate ranges [1, 6] and [−3, 3],

respectively.

Results can shortly be summarised as follows:

• Coverage rates are generally close to the nominal level such that they can be

considered as a helpful tool in applied analyses to estimate uncertainties of

effects. Except of the effect fμ1 in the t-model, our approach tends to slightly

overestimate uncertainty in the simulated example.

• From MSE in form of boxplots depicted in Figure A1 the indication of slightly

better results for the bivariate normal model can be confirmed.

• The approach yields points estimates which are quite close to the true functions

for all distribution parameters, even for the replication with the 95% worst

MSE.

B Supplemenatry Material to Section 3

In this section we provide summary plots of all included nonlinear and spatial effects

of the model applied in Section 3 of the main paper for the remaining parameters

μstunting, μwasting, σstunting and σwasting. The predictors for these parameters are of

the form (3) given in the main paper. All shown effects are centred around zero.

C Supplemenatry Material to Section 4

In Figures C16 and C17 we show posterior mean estimates of all covariates region,

PoE, GDPpc and unemployment. In Figure C17 80% and 95% pointwise credible

intervals indicate uncertainties of the estimated effects. In each graph, effects are

centred around zero.
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Figure A1: Simulation Study. Boxplots of logarithmic MSE of nonlinear effects in the

bivariate normal distribution(left panels each) and the bivariate t-distribution (right panels

each).
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Figure A2: Simulation Study, bivariate normal distribution. Pointwise coverage probabilities

of 95% intervals. The horizontal line displays the 95% mark. Vertical lines display the

coverage over all 250 simulated models an on a grid of x1 or x2 of size 0.01.
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Figure A3: Simulation Study, bivariate normal distribution. Posterior mean estimates

(dashed lines) together with 95% credible intervals (dotted lines). The solid lines are the true

functions. Estimates were chosen according to their 5% quantile of the MSE distribution

obtained from 250 simulation replications.
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Figure A4: Simulation Study, bivariate normal distribution. Posterior mean estimates

(dashed lines) together with 95% credible intervals (dotted lines). The solid lines are the true

functions. Estimates were chosen according to their 50% quantile of the MSE distribution

obtained from 250 simulation replications.
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Figure A5: Simulation Study, bivariate normal distribution. Posterior mean estimates

(dashed lines) together with 95% credible intervals (dotted lines). The solid lines are the true
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Figure A6: Simulation Study, bivariate t-distribution. Pointwise 95% coverage rates. The
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Figure A7: Simulation Study, bivariate t-distribution. Posterior mean estimates (dashed

lines) together with 95% credible intervals (dotted lines). The solid lines are the true

functions. Estimates were chosen according to their 5% quantile of the MSE distribution

obtained from 250 simulation replications.
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Figure A8: Simulation Study, bivariate t-distribution. Posterior mean estimates (dashed

lines) together with 95% credible intervals (dotted lines). The solid lines are the true

functions. Estimates were chosen according to their 50% quantile of the MSE distribution

obtained from 250 simulation replications.
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Figure A9: Simulation Study, bivariate t-distribution. Posterior mean estimates (dashed

lines) together with 95% credible intervals (dotted lines). The solid lines are the true

functions. Estimates were chosen according to their 95% quantile of the MSE distribution

obtained from 250 simulation replications.
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Figure B10: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of

nonparametric effects on μstunting together with 80% and 95% pointwise credible intervals,

centred around zero each.
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Figure B11: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of

nonparametric effects on μwasting together with 80% and 95% pointwise credible intervals,

centred around zero each.
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Figure B12: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of

nonparametric effects on σstunting together with 80% and 95% pointwise credible intervals,

centred around zero each.
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Figure B13: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of

nonparametric effects on σwasting together with 80% and 95% pointwise credible intervals,

centred around zero each.
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Figure B14: Childhood malnutrition, bivariate t-distribution. Posterior mean estimates of

nonparametric effects on ndf together with 80% and 95% pointwise credible intervals, centred

around zero each.
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Figure C16: Federal election. Posterior mean estimates of spatial effects, centred around zero

each. Geometric information provided by

Bundesinstitut fuer Bau-, Stadt- und Raumforschung [BBSR]
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Figure C17: Federal election. Posterior mean estimates of nonparametric effects together

with 80% and 95% pointwise credible intervals, centred around zero each.
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mon pool resources: Do formal rules have to be adapted to traditional ecolo-
gical norms?

2013-14 Björn Vollan, Yexin Zhou, Andreas Landmann, Biliang Hu, Carsten
Herrmann-Pillath: Cooperation under democracy and authoritarian norms

2013-13 Florian Lindner, Matthias Sutter: Level-k reasoning and time pressure in
the 11-20 money request game forthcoming in Economics Letters

2013-12 Nadja Klein, Thomas Kneib, Stefan Lang: Bayesian generalized additive
models for location, scale and shape for zero-inflated and overdispersed count
data
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Abstract
In this paper, we propose a unified Bayesian approach for multivariate structured
additive distributional regression analysis where inference is applicable to a huge
class of multivariate response distributions, comprising continuous, discrete and la-
tent models, and where each parameter of these potentially complex distributions is
modelled by a structured additive predictor. The latter is an additive composition
of different types of covariate effects e.g. nonlinear effects of continuous variables,
random effects, spatial variations, or interaction effects. Inference is realised by a
generic, efficient Markov chain Monte Carlo algorithm based on iteratively weigh-
ted least squares approximations and with multivariate Gaussian priors to enforce
specific properties of functional effects. Examples will be given by illustrations on
analysing the joint model of risk factors for chronic and acute childhood malnutri-
tion in India and on ecological regression for German election results.
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