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Multivariate Stochastic Volatility via Wishart

Processes - A Continuation

Abstract

This paper picks up on a model developed by Philipov and Glick-

man (2006) for modeling multivariate stochastic volatility via Wishart

processes. MCMC simulation from the posterior distribution is em-

ployed to fit the model. However, erroneous mathematical transfor-

mations in the full conditionals cause false implementation of the ap-

proach. We adjust the model, upgrade the analysis and investigate the

statistical properties of the estimators using an extensive Monte Carlo

study. Employing a Gibbs sampler in combination with a Metropolis

Hastings algorithm inference for the time-dependent covariance ma-

trix is feasible with appropriate statistical properties.

Key Words: Bayesian time series; Stochastic covariance; Time-

varying correlation; Markov Chain Monte Carlo



1 INTRODUCTION

Philipov and Glickman (2006) formulate a general model of multivariate

stochastic volatility driven by Wishart processes. The model aims to pro-

vide a direct connection between univariate and multivariate models in or-

der to increase flexibility in describing the behavior of stochastic covari-

ances and improve volatility estimates and forecasts. Their model offers

several advantages. Covariance matrices are used instead of vectors of log-

variances, and therefore their framework is a multivariate extension of the

scalar case (Philipov and Glickman 2006). Both variances and correlations

evolve stochastically over time, and conditional volatility depends not only

on past volatility, but also on past covariances. Additionally, restrictions im-

posed by previous stochastic volatility (SVOL) models can be tested in their

framework, because many of the existing SVOL models can be regarded as

special cases of their general setup.

This paper picks up on a deficiency in the work of Philipov and Glickman

(2006). The derivation of the full conditionals in Philipov and Glickman

(2006) is erroneous, and consequently the results of the simulation study

therein are not valid. As the approach itself is promising and valuable for
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users, we adjust the model and upgrade the analysis:

1. Due to a mathematical error the derivations of the full conditionals are

not correct. All formulae are corrected and the derivations are given in

detail.

2. Although the expressions of the full conditionals become increasingly

complex, we demonstrate how the approach can be appropriately im-

plemented using Bayesian estimation methods.

3. Philipov and Glickman (2006) demonstrate the suitability of their ap-

proach using just one simulated data set. Although the approach is

CPU time-consuming, we perform an extensive Monte Carlo study in

order to demonstrate the appropriateness of the estimators and the

validity of the approach.

The remainder of this article is structured as follows: Section 2 gives the

model characteristics with all necessary formulae for the joint and conditional

posterior distributions. The Monte Carlo study and its settings are described

in Section 3. Thereafter, the results are discussed and the main conclusions

summarized.
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2 MODEL

The main characteristics of the model derived by Philipov and Glickman

(2006) as well as the correctly deduced formulae for the full conditionals are

given in this section. Detailed derivations are shown in Appendix A.

The paper by Philipov and Glickman (2006) contains several typographical

errors. Appendix B lists the errors and their correction.

2.1 Philipov and Glickman Model

The proposed approach models the time development of k correlated nor-

mally distributed random variables. The dynamic covariance structure is

driven by a stochastic process based on the Wishart distribution with ν de-

grees of freedom,

Σ−1
t |ν,St−1 ∼ Wish(ν,St−1), (1)

where the stochastic process of the observation units is given as yt|Σt ∼

N (0,Σt). Here 0 and yt are k × 1 vectors, Σt is the k × k covariance ma-

trix, N (·, ·) denotes the normal distribution, and the abbreviation ’Wish’
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the Wishart distribution. The matrix St is the time-dependent scale param-

eter and defined as St = 1/ν
(
A1/2

) (
Σ−1

t

)d (
A1/2

)
′

, where A is a positive

definite symmetric parameter matrix, A1/2 is the lower triangular matrix of

a Cholesky decomposition of A and d is a scale parameter. The matrix A

shows the dependencies of each variance on the other variances and covari-

ances. The scale parameter d can be regarded as a persistence parameter.

For a more detailed interpretation of the parameters and their influence on

the dynamic behavior of the covariance matrix see Philipov and Glickman

(2006).

The conditional expected value for matrices following a Wishart distribution

is given as E
(
Σ−1

t |A,Σt−1, d
)

=
(
A1/2

) (
Σ−1

t−1

)d (
A1/2

)
′

. The conditional

distributions of the covariance matrices themselves follow the inverse-Wishart

distribution. The conditional expectation is given as E (Σt|A,Σt−1, d) =

ν
ν−k−1

(
A−1/2

)
′

Σd
t−1

(
A−1/2

)
.

In order to estimate the parameters ν, d,A and to obtain estimates for the

latent variables Σt Bayesian methods are employed. After choosing appropri-

ate prior distributions the joint posterior distribution can be derived. With

the full conditionals the parameters can be estimated using MCMC methods.
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The priors are fixed in the following way. For A−1 a Wishart distribution

with γ0 degrees of freedom and a k × k scale matrix Q0 is assumed. Q0 is

the identity matrix and the degrees of freedom are k + 1. The parameter d

is drawn from a diffuse prior. A uniform distribution at the interval [0; 1] is

chosen. Philipov and Glickman (2006) choose for the parameter ν a gamma

distribution as prior distribution. It is not really obvious why a gamma dis-

tribution should be chosen in our case for ν; a noninformative uniform dis-

tribution is chosen in this paper. In this process it must be remembered that

only values greater than k are allowed. For the inverse covariance matrices a

Wishart distribution is used as prior distribution (see Equation (1)). Given

these assumptions for the prior distributions, the joint posterior distribution

can be derived.

2.2 Full Conditionals

The expressions for the full conditionals for ν, d, A−1, as well as the ex-

pression for the acceptance ratio of Σ−1
t in Philipov and Glickman (2006)

are erroneous. For example, the expression of the acceptance ratio of Σ−1
t

contains the term tr(S−1
t Σ−1

t+1) (cf. p. 326), where tr(A) is defined as the

trace of matrix A. This expression is simplified to:
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tr(S−1
t Σ−1

t+1) = tr
(
ν
(
A1/2′

)
−1 (

Σ−1
t

)
−d (

A1/2
)
−1

Σ−1
t+1

)
= tr(νA−1Σd

tΣ
−1
t+1).

However, this simplification cannot be achieved with known mathematical

methods (Horn and Johnson 1985).

Furthermore, in the derivation of the full conditional for p (A−1|·)

p
(
A−1|·

)
∝ Wish

(
A−1|γ0,Q0

) T∏

t=1

Wish
(
Σ−1

t |ν,St−1

)

∝
∣∣A−1

∣∣(γ0−k−1)/2
exp

(
−1/2 · tr

(
Q−1

0 A−1
))

·

T∏

t=1

|St−1|
−ν/2 exp

(
−1/2 · tr

(
S−1

t−1Σ
−1
t

))

∝
∣∣A−1

∣∣(νT+γ0−k−1)/2
· exp

(
− 1/2 · tr

(
Q−1

0 A−1 +

ν
T∑

t=1

(
A1/2′

)
−1

Σd
t−1

(
A1/2

)−1
Σ−1

t

))
(2)

the following expression is erroneously simplified:

tr

(
Q−1

0 A−1 + ν
T∑

t=1

(
A1/2′

)
−1

Σd
t−1

(
A1/2

)−1
Σ−1

t

)
=

tr

((
Q−1

0 + ν

T∑

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1

)
A−1

)
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(Whether Σ
d/2
t−1 results from a Cholesky or a spectral decomposition depends

on whether the paper by Philipov and Glickman (2006) contains a typo-

graphical error or not.) This term also appears in the full conditionals for ν

and d. Using expression (2) for the sampler for A−1 as well as the correct full

conditionals for ν and d (cf. next section) the MCMC sampler becomes more

complex, because the full conditionals no longer follow known distributions.

For example, Philipov and Glickman (2006) draw the values for A−1 directly

from a Wishart distribution and employ a simple Gibbs sampler. Now the

Gibbs sampler must be combined with a Metropolis Hastings algorithm. The

wrongly computed term can be found in all full conditionals.

Given the assumptions for the prior distributions the joint posterior distri-

bution can be derived,

p(Σ−1,A−1, ν, d|y) ∝ Wish(A−1|γ0,Q0) ·

T∏

t=1

Wish
(
Σ−1

t |ν,St−1

)
· N (yt|0,Σt) (3)

For implementation of the MCMC sampler the full conditionals for the pa-

rameters have to be deduced and are summarized as follows (detailed deriva-
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tions of the full conditionals are given in Appendix A).

p
(
Σ−1

t |·
)

∝ Wish
(
Σ−1

t |ν, S̃t−1

)
·
∣∣Σ−1

t

∣∣(1−νd)/2
· exp

(
−

1

2
tr
(
S−1

t Σ−1
t+1

))

p
(
Σ−1

T |·
)

∝ Wish
(
Σ−1

T |ν + 1, S̃T−1

)
, (4)

where S̃t−1 is defined as S̃t−1 =
(
S−1

t−1 + yty
′

t

)
−1

.

p
(
A−1|·

)
∝

∣∣A−1
∣∣(γ0+νT−k−1)/2

· exp

(
−

1

2
tr
(
Q−1

0 A−1
))

·

T∏

t=1

exp

(
−

1

2
tr
(
S−1

t−1Σ
−1
t

))
(5)

p (ν|·) ∝

(
|νA−1|

ν/2

2νk/2
∏k

i=1 Γ
(

ν+1−i
2

)
)T

·
T∏

t=1

|Σt−1|
νd/2

∣∣Σ−1
t

∣∣ν/2
·

T∏

t=1

exp

(
−

1

2
tr
(
S−1

t−1Σ
−1
t

))
(6)

p (d|·) ∝
T∏

t=1

∣∣Σ−1
t−1

∣∣−νd/2
exp

(
−

1

2
tr
(
S−1

t−1Σ
−1
t

))
(7)

2.3 MCMC Sampler

In the following the superscript ’*’ denotes the proposed values and the

superscript ’[m− 1]’ the current state of the Markov chain.
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2.3.1 Sampling Σ−1
t

To sample Σ−1
t an independence chain Metropolis Hastings (MH) step is

used. We use Wish
(
Σ−1

t |ν, S̃t−1

)
as proposal density. For the acceptance

ratio we obtain:

AR =

∣∣(Σ∗

t )
−1
∣∣(1−νd)/2

∣∣∣∣
(
Σ

[m−1]
t

)
−1
∣∣∣∣
(1−νd)/2

·
exp

(
−1

2
tr
(
S−1

t (Σ∗

t )Σ
−1
t+1

))

exp
(
−1

2
tr
(
S−1

t

(
Σ

[m−1]
t

)
Σ−1

t+1

)) ,

where S−1
t (Σ∗

t ) is defined as S−1
t (Σ∗

t ) = ν
(
A1/2′

)
−1

(Σ∗

t )
d (

A1/2
)
−1

and

S−1
t

(
Σ

[m−1]
t

)
is given as S−1

t

(
Σ

[m−1]
t

)
= ν

(
A1/2′

)
−1
(
Σ

[m−1]
t

)d (
A1/2

)
−1

.

Σ−1
T can be directly drawn from a Wishart distribution (cf. Equation (4))

with ν + 1 degrees of freedom and the scale matrix
(
S−1

T−1 + yTy
′

T

)
−1

.

9



2.3.2 Sampling A−1

For the matrix A−1 a random-walk proposal is employed:

(
A−1

)
∗

=
(
A−1

)[m−1]
+ Ω

Ω =




ω11 ω12

ω12 ω22




(ω11 ω12 ω22)
′ ∼ N

(
0, σ2

A−1I
)
, (8)

where Ω follows a symmetric matrix variate normal distribution. As the

matrix Ω has k · (k+1)/2 different random elements, each one can be drawn

from a k ·(k+1)/2-dimensional normal distribution (Gupta and Nagar 2000).

The acceptance ratio is given as:

AR =
|A∗|−(γ0+νT−k−1)/2

|A[m−1]|
−(γ0+νT−k−1)/2

·
exp

(
−1

2
tr
(
Q−1

0 (A∗)−1
))

exp
(
−1

2
tr
(
Q−1

0 (A[m−1])−1
)) ·

exp
(
−1

2
tr
(∑T

t=1 S−1
t−1 (A∗)Σ−1

t

))

exp
(
−1

2
tr
(∑T

t=1 S−1
t−1 (A[m−1])Σ−1

t

)) ,
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where

S−1
t−1 (A∗) = ν

(
(A∗)1/2′

)
−1

Σd
t−1

(
(A∗)1/2

)
−1

S−1
t−1

(
A[m−1]

)
= ν

((
A[m−1]

)1/2′
)
−1

Σd
t−1 ·

((
A[m−1]

)1/2
)
−1

2.3.3 Sampling ν

The values for ν are also obtained with a random-walk proposal:

ν∗ = ν[m−1] + ǫν , ǫν ∼ N
(
0, σ2

ν

)
, (9)

where ǫν is drawn from a normal distribution. The acceptance ratio can be

derived as:

AR =

(
|ν∗A−1|

ν∗/2

2ν∗k/2
∏k

i=1 Γ
(

ν∗+1−i
2

)
)T

·




∣∣ν[m−1]A−1
∣∣ν[m−1]/2

2ν[m−1]k/2
∏k

i=1 Γ
(

ν[m−1]+1−i
2

)




−T

·

∏T
t=1

∣∣Σ−1
t−1

∣∣−ν∗d/2 ∣∣Σ−1
t

∣∣ν∗/2

∏T
t=1

∣∣Σ−1
t−1

∣∣−ν[m−1]d/2 ∣∣Σ−1
t

∣∣ν[m−1]/2
·

∏T
t=1 exp

(
−1

2
tr
(
S−1

t−1 (ν∗)Σ−1
t

))
∏T

t=1 exp
(
−1

2
tr
(
S−1

t−1 (ν[m−1])Σ−1
t

)) ,
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whereby

S−1
t−1 (ν∗) = ν∗

(
A1/2′

)
−1

Σd
t−1

(
A1/2

)−1

S−1
t−1

(
ν[m−1]

)
= ν[m−1]

(
A1/2′

)
−1

Σd
t−1

(
A1/2

)−1

2.3.4 Sampling d

Finally, d is obtained using a random-walk proposal:

d∗ = d[m−1] + ǫd , ǫd ∼ N
(
0, σ2

d

)
, (10)

where ǫd is drawn form a normal distribution. The acceptance ratio is:

AR =

∏T
t=1 |Σt−1|

νd∗/2

∏T
t=1 |Σt−1|

νd[m−1]/2
·

∏T
t=1 exp

(
−1

2
tr
(
S−1

t−1 (d∗)Σ−1
t

))
∏T

t=1 exp
(
−1

2
tr
(
S−1

t−1 (d[m−1])Σ−1
t

)) ,

12



and

S−1
t−1 (d∗) = ν

(
A1/2′

)
−1

Σd∗

t−1

(
A1/2

)−1

S−1
t−1

(
d[m−1]

)
= ν

(
A1/2′

)
−1

Σd[m−1]

t−1

(
A1/2

)−1

The procedure is implemented in MATLAB 7.7.0.471(R2008b).

3 MONTE CARLO STUDY

3.1 Simulation Design

The validity of our approach is analyzed using a Monte Carlo study. A

two-dimensional model is used. The true values are chosen similar as in

Philipov and Glickman (2006). For the parameters ν and d the same values

are employed: ν = 20 and d = 0.7. As only the value of |A| can be found

in Philipov and Glickman (2006), the matrix A is fixed in order to have a

similar value for the determinant, i.e. A =
(
130 50
50 130

)
. The starting values for the

data generating process (DGP), i.e. Ξ, are chosen to guarantee appropriate

values for the yields: Ξ =
(
3 0.8
0.8 3

)
.
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With these fixed values for the model parameters A, ν, d and Ξ, covariance

matrices for 100 dates (i.e., t = 1, ..., 100) are drawn from the corresponding

Wishart distribution. Using these covariance matrices yields (yt) are simu-

lated. We simulated 100 replicated data sets from the model. The yields of

each data set are the observation units with which the model parameters as

well as the covariance matrices are estimated. Note that with this procedure

Ξ corresponds to the true Σ0, analogously to Philipov and Glickman (2006).

However, after just a few dates (in our various experiments at maximum 10

dates) the starting values of the DGP are no longer relevant.

3.2 Sampling Approach

The employed sampling approach is conducted in two steps. In the first step

the three parameters and the covariance matrices are sampled together. The

starting values are chosen as follows: 5 for ν, 0.5 for d and the identity matrix

for A and Σ0.

With the help of one data set the variances of the samplers for the parameters

ν, d, and A are fixed. The variances of the samplers are set in order to obtain

an acceptance rate of approximately 0.5.
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More than a million simulation steps (1,080,000) are computed and 180,000

are dropped as burn-in phase. For the remaining values, dropping every

9,000th value gives a sample of uncorrelated draws, i.e. the effective sample

size is 100.

Because the estimates of ν and A depend sensitively on the appropriateness

of the values of the covariance matrix, values for ν and A are drawn again in

a second step. The covariance matrices and d are held at the estimates in the

first step. Accordingly, the estimates obtained in the first step for ν and A

are employed as starting values. In the second simulation step 4,000 values

for ν and A are drawn. The first 1,000 values correspond to the burn-in

phase. Again, we obtain an effective sample size of 100 for ν and A.

3.3 Evaluation Methods

In order to assess the quality of the samplers their convergence, the empirical

autocorrelation function and all acceptance rates are investigated. Various

statistical characteristics are used to evaluate the appropriateness of the es-

timates for A, ν, and d. Analogously to Philipov and Glickman (2006),

the findings for the parameter matrix A are condensed and scaled into the
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natural logarithm of the determinant of A, i.e. log|A|.

Additionally, for each estimate the highest posterior density interval (hpdi)

is computed (Koop 2006).

Of course, a practitioner focuses on the quality of the covariance matri-

ces’ forecasts as these estimates are used further in economic models, i.e.

the estimated conditional expectation of the inverse of the covariance ma-

trices is investigated E
(
Σ−1

t |A,Σt−1, d
)

=
(
A1/2

) (
Σ−1

t−1

)d (
A1/2

)
′

. In or-

der to calculate an estimate for the conditional mean, one can assume that

Σ−1
t−1 is known then the estimate of the conditional mean is: ̂E

(
Σ−1

t |·
)

=

(
Â1/2

) (
Σ−1

t−1

)d (
Â1/2

)
′

, or when also respecting the latent nature of the co-

variance matrices the estimate of Σ−1
t−1 is plugged into:

̂̂
E
(
Σ−1

t |·
)

=
(
Â1/2

)
·

(
Σ̂−1

t−1

)d (
Â1/2

)
′

. The quality of the latter expression is of course more rel-

evant for practical implementations.

Two approaches are employed to measure the quality of this statistic. On

the one hand, the mean absolute percentage error (MAPE) is calculated as:

MAPEij =
1

T

T∑

t=1

∣∣∣(Σ−1
t )ij −

̂E(Σ−1
t |·)ij

∣∣∣
∣∣(Σ−1

t )ij

∣∣ , i = 1, 2, j = 1, 2
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for each data set. For the sake of completeness, the MAPE is also computed

for the condensed statistic log|E(Σ−1
t |·)|. However, note that due to the

nature of the log function this MAPE will always be much smaller.

On the other hand, we calculated for each data set how many of the 100 true

values lie in their correspondingly estimated 95% hpdi. This procedure was

performed for each matrix element of the conditional mean as well as for the

condensed statistic.

4 RESULTS

First, important characteristics are discussed using an example data set.

The appropriateness of the samplers is analyzed for their convergence be-

havior, possible autocorrelation, and acceptance rate. The sampling results

demonstrate early convergence of the samplers. The investigation of the cor-

responding autocorrelation shows that we work with a large effective sample

size defined as the number of uncorrelated draws from the conditional distri-

butions. The acceptance rates of the samplers are quite appropriate (cf. last

column of Table 1).

> - - - Insert Table 1 - - - <
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Regarding ν and d, the estimates of these parameters are close to their true

values (cf. Table 1). However, the values of the matrix A are underestimated.

Two questions now arise: Is this underestimation a bias? How does this

statistical distortion influence the forecast for the covariance matrices?

Whether this underestimation is a systematic bias or not is answered below

with the help of all Monte Carlo data sets. In order to answer the second

question, the performance of the forecasts of the covariance matrices is an-

alyzed. In addition to the estimates of the covariance matrices, the 95%

highest posterior density intervals are computed. The results for each el-

ement of the explained variable Σ−1
t are plotted in Figure 1 for ̂E

(
Σ−1

t |·
)

and in Figure 3 for
̂̂

E
(
Σ−1

t |·
)
. Figure 2 shows the equivalent plots for the

condensed statistic log|E(Σ−1
t |A,Σt−1, d)|.

> - - - Insert Figure 1 - - - <

The quality of the findings for ̂E
(
Σ−1

t |·
)

is quite good, not only graphically

but also as expressed by a small mean absolute percentage error for each ele-

ment of ̂E
(
Σ−1

t |·
)

(MAPE for ̂E(Σ−1
t |·)11 = 0.02, MAPE for ̂E(Σ−1

t |·)12 =

0.08, MAPE for ̂E(Σ−1
t |·)22 = 0.11). The same holds for the condensed

statistic (MAPE = 0.005, cf. Figure 2 (a)).
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> - - - Insert Figure 2 - - - <

For practical purposes it must be remembered that Σt is a latent variable and

unknown to the user. Therefore, the estimate of Σt must also be plugged into

the conditional expected value. Figure 3 shows the findings for
̂̂

E(Σ−1
t |·).

> - - - Insert Figure 3 - - - <

Although the fluctuations of the true values are not modeled very well us-

ing the posterior mean (posterior median) (MAPE for
̂̂

E(Σ−1
t |·)11 = 0.23,

MAPE for
̂̂

E(Σ−1
t |·)12 = 0.30, MAPE for

̂̂
E(Σ−1

t |·)22 = 0.33), the estimated

95% hpdi almost always captures the true values. For the condensed statistic

the hpdi contains the true values and theMAPE is 2%. The findings demon-

strate that the time dependence of the covariance matrices is appropriately

modeled using the 95% hpdi (cf. Figure 2 (b)).

Whether the above findings can be generalized is now determined by analyz-

ing the results for all data sets. The first three plots in Figure 4 show the

estimates and their 95% hpdi of the parameters ν, d, and log|A| for each

data set. The parameter d is estimated quite well. There is a high deviation

of ν from its true value, and log|A| is slightly underestimated for almost all

data sets.
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> - - - Insert Figure 4 - - - <

However, these statistical deficiencies do not seem to have a serious impact

on the consequences for the estimates of Σ−1
t . Analyzing Figure 5 we see that

a high fraction of the explained variable lies in the correspondingly estimated

95% hpdi. The findings are similar for each element of
̂̂

E(Σ−1
t |·) as well as for

log|
̂̂

E(Σ−1
t |·)|. Despite the small number of data sets, Σ−1

t can be forecasted

appropriately.

> - - - Insert Figure 5 - - - <

Table 2 shows summary statistics for the 100 Monte Carlo data sets of the

three parameters A, ν, and d. The estimates are suitable as indicated by the

mean and median and are not systematically biased as the true values of the

parameters lie in their 95% hpdi. However, the 95% hpdi for ν and for each

element of the matrix A is large. The estimates are highly volatile.

> - - - Insert Table 2 - - - <

With regard to the forecasts for the explained variable, i.e.
̂̂

E(Σ−1
t |·), we

again calculated how often the true value of the logarithm of the determinant

of the inverse variance covariance matrix for each date and all data sets
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falls into the correspondingly estimated 95% hpdi. The findings for the

condensed statistic are listed in the last column of Table 3. The results

are quite satisfying and promising for practical applications. On average, for

94% of the 100 dates the condensed statistic of the covariance matrices lies

in the estimated 95% hpdi. Consequently, the forecast for the covariance is

appropriate and its time dependence is accurately estimated employing the

95% hpdi. However, regarding the MAPE the forecasts for the covariance

matrices are not estimated well via the mean of the sampling observations

(MAPE for
̂̂

E(Σ−1
t |·)11 = 0.38, MAPE for

̂̂
E(Σ−1

t |·)12 = 0.47, MAPE for

̂̂
E(Σ−1

t |·)22 = 0.38, where MAPE denotes the mean of the MAPEs over all

data sets). For the condensed statistic we have: MAPE = 0.02.

> - - - Insert Table 3 - - - <

5 CONCLUSIONS

Assuming that covariance matrices follow a stochastic process instead of hav-

ing a deterministic structure gives more flexibility in modeling stylized facts

and observed features of e.g. volatilities of assets. Possible applications in

economics are portfolio management, risk management or pricing derivatives.
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Philipov and Glickman (2006) show in their paper an interesting approach

modeling multivariate stochastic volatility via Wishart processes. We pick up

on their model and upgrade the theoretical derivations. Focus is put on the

practical implementation of the approach using Bayesian estimation methods

and on the quality of the estimators. The latter is analyzed profoundly using

a Monte Carlo study.

Our analysis shows that the model parameters are estimated unbiased, but

the corresponding 95% hpdi can be quite large. Whether the quality of the

estimate of Σ−1
t is sufficient for practical applications cannot be definitively

answered. When employing the 95% hpdi the true values of Σ−1
t are ap-

propriately modeled. Estimating Σ−1
t merely via the posterior mean of the

sampling observations gives a large mean absolute percentage error that must

be considered for applications.
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APPENDIX A: DERIVATIONS

A.1 Joint Posterior Distribution

p
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A.2 Full Conditional of d
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A.3 Full Conditional of ν
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A.4 Full Conditional of Σ−1
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A.5 Full Conditional of Σ−1
T
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APPENDIX B: TYPOGRAPHICAL ERRORS

Pages 315 - 317

E (Σt|A,Σt−1) = ν
ν−k−1

(
A−1/2

)
Σd

t−1

(
A−1/2

)
′
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−1
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Σ−1

t

)d
...
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(
Σ−1

t−1

)d
...

Γ
(

ν+j−1
2

)

Γ
(

ν+1−j
2

)

p (Σ−1,A, ν, d|y) ∝ Wish (γ0,Q0) Gam(ν) . . .
p (Σ−1,A−1, ν, d|y) ∝ Wish (A−1|γ0,Q0) Gam(ν − k|α, β) . . .

Note: The gray lines show the erroneous term; the white lines demonstrate the
corresponding correct term.
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Page 326

draw the last Σ directly
draw the last Σ−1 directly
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Table 1: Descriptive statistics of the sampling observations for ν, d, the
elements of A, and log|A| for the example data set.

True Posterior Posterior Standard Acceptance

Value Mean Median Deviation Rate

ν 20 19.59 19.41 1.51 0.50
d 0.7 0.71 0.71 0.02 0.43

A11 130 98.96 98.96 3.06
A12 50 17.70 17.92 4.06
A22 130 116.33 116.33 3.00

0.40

log|A| 9.58 9.32 9.19 0.04
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Table 2: Statistics of the sampling observations for each element of the matrix
A (A11,A12,A22), log|A|, ν, and d for all Monte Carlo data sets. ’AR’
denotes the average acceptance rate for all 100 data sets. The 95% hpdi are
given in the last row.

A11 A12 A22 log|A| ν d

true value 130 50 130 9.58 20 0.7

observations 100 100 100 100 100 100
mean 91.95 33.67 92.58 8.74 28.43 0.73

median 83.25 32.64 80.77 8.64 26.05 0.74
standard

deviation
37.74 22.71 39.75 0.70 15.61 0.02

minimum 28.77 -10.58 30.18 6.76 3.89 0.63
25th percentile 68.18 18.50 67.79 8.18 15.39 0.72
75th percentile 105.84 42.64 106.27 9.25 37.29 0.74

maximum 254.94 154.01 311.18 11.16 85.38 0.78
AR 0.44 0.44 0.44 0.44 0.57 0.38
95% [48.47; [-1.78; [30.18; [7.65; [3.89; [0.68;
hpdi 173.09] 84.42] 159.63] 10.19] 57.14] 0.76]
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Table 3: Analysis of the forecast for Σt. Statistical characteristics of the
fraction of the true values lying in their estimated 95% hpdi for each of the

elements of
̂̂

E(Σ−1
t |·) and for the condensed statistic log|

̂̂
E(Σ−1

t |·)| are given.

̂̂
E(Σ−1

t |·)ij log|
̂̂

E(Σ−1
t |·)|

ij 11 12 22

observations 100×100 100×100 100×100 100×100
mean 0.92 0.91 0.93 0.94

median 0.94 0.94 0.96 0.95
standard

deviation
0.10 0.12 0.09 0.06

minimum 0.41 0.32 0.53 0.69
25th percentile 0.92 0.90 0.92 0.91
75th percentile 0.98 0.97 0.98 0.99

maximum 1 1 1 1
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Figure 1: Plot of the elements of ̂E
(
Σ−1

t |·
)

for the example data set, where
the dotted line is the 95% hpdi, the solid line denotes the true values, and
the dashed line corresponds to the mean of the sampling observations.
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| (- - -), log|
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|

(- - -), their 95% hpdi (· · · ), and their true values (—) for the example data
set.
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Figure 3: Plot of the elements of
̂̂

E
(
Σ−1

t |·
)

for the example data set, where
the dotted line is the 95% hpdi, the solid line denotes the true values, and
the dashed line corresponds to the mean of the sampling observations.
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Figure 4: Estimation results (- - -) for ν, d, log|A|, A11, A12, and A22

for each data set. True values are denoted by the horizontal line, and the
corresponding 95% hpdi by the vertical lines.
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Figure 5: The fraction of the true values of the conditional expected value
of the explained variable lying in the correspondingly estimated 95% hpdi is
plotted. The first three graphs show the findings for the individual elements

of
̂̂

E(Σ−1
t |·); the last plot gives the results for log|

̂̂
E(Σ−1

t |·)|.
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Abstract
This paper picks up on a model developed by Philipov and Glickman (2006) for
modeling multivariate stochastic volatility via Wishart processes. MCMC simulati-
on from the posterior distribution is employed to fit the model. However, erroneous
mathematical transformations in the full conditionals cause false implementation of
the approach. We adjust the model, upgrade the analysis and investigate the statisti-
cal properties of the estimators using an extensive Monte Carlo study. Employing a
Gibbs sampler in combination with a Metropolis Hastings algorithm inference for the
time-dependent covariance matrix is feasible with appropriate statistical properties.
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