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∗∗∗ National Caner Institute, 6120 Exeutive Blvd, Bethesda, MD, 20892-7244, USAAddress for orrespondene : Stefan Lang, University of Innsbruk, Department of Statis-tis, phone: +435125077110, fax: +435125072851, email: stefan.lang�uibk.a.atAbstratP(enalized)-splines and frational polynomials (FPs) have emergedas powerful smoothing tehniques with inreasing popularity in several�elds of applied researh. Both approahes provide onsiderable �exi-bility, but only limited omparative evaluations of the performane andproperties of the two methods have been onduted to date. We thusperformed extensive simulations to ompare FPs of degree 2 (FP2)and degree 4 (FP4) and P-splines that used generalized ross valida-tion (GCV) and restrited maximum likelihood (REML) for smoothingparameter seletion. We evaluated the ability of P-splines and FPs toreover the �true� funtional form of the assoiation between ontinu-ous, binary and survival outomes and exposure for linear, quadratiand more omplex, non-linear funtions, using di�erent sample sizesand signal to noise ratios. We found that for more urved funtionsFP2, the urrent default implementation in standard software, showedonsiderably bias and onsistently higher mean squared error (MSE)ompared to spline-based estimators (REML, GCV) and FP4, thatperformed equally well in most simulation settings. FPs however, areprone to artefats due to the spei� hoie of the origin, while P-splines based on GCV reveal sometimes wiggly estimates in partiularfor small sample sizes. Finally, we highlight the spei� features of theapproahes in a real dataset.Keywords: generalized additive models, GAMs, simulation, smooth-ing
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1 IntrodutionNumerous omplex regression tehniques are available to �exibly model thefuntional form of a ontinuous ovariate's e�et on outome. Partiularlysmoothing approahes, that enompass a broad range of tehniques and avoidassumptions of a partiular funtional form of a relationship between inde-pendent variables and outome have been well-established in the statistialliterature, see e.g. Fahrmeir and Tutz (2001), Hastie et al. (2003), Wood(2006b) and Ruppert et al. (2003).Most smoothing approahes �t into the framework of generalized addi-tive models (GAMs) (Hastie and Tibshirani 1990) or their extensions (e.g.Fahrmeir et al. 2004). GAMs replae the linear preditor in a generalizedlinear model (Fahrmeir and Tutz 2001) by a sum of smooth funtions of theindividual ovariates. Some of the most widely used hoies for the smoothfuntions in GAMs are P(enalized)-splines (e.g. Fahrmeir and Tutz 2001,Wood 2006b), and frational polynomials (Royston and Sauerbrei 2008).P-splines approximate an unknown funtion f by a polynomial splinewhih an be written as a linear ombination of some basis funtions. For�exibility, typially a relatively large number of basis funtions is used. Toprevent over�tting a roughness penalty on the regression oe�ients is used.Frational polynomials (FPs) approximate f by the sum of power transfor-mations of the ovariates. FPs are more �exible than ordinary polynomialsas they allow negative and non-integer powers.Due to the availability of easy to use software, both, P-splines and FPshave extensively been utilized in various appliations (e.g. Strasak et al.2009, Eisen et al. 2004, Andre et al. 2004, Stansfeld et al. 2005, Shlipaket al. 2006, Beatty 2009, Ugarte, Goioa, and Militino 2009, Ellner, Seifu,and Smith 2002, Henley and Peirson 2001, Peterson et al. 2003, Finh et al.2007). However, despite their popularity only very limited omparisons ofthe performane and properties of the two methods have been onduted todate. A omparison of P-splines, restrited ubi splines and FPs in Coxproportional hazards models based on a real single dataset (Govindarajuluet al. 2007) found that P-splines and restrited ubi splines were loserto eah other than either was to the FPs. However, the true funtionalrelationship of exposures and outome was not known. A simulation study(Royston and Sauerbrei 2005) and a ase study (Royston and Sauerbrei 2008)ompared FPs to pure regression splines with an ad ho hoie of knots,without applying penalties or adaptive knot seletion, thus not providing2



relevant insights.We therefore ompared the performane of P-splines and FPs in extensivesimulations and in real data to provide guidane to the pratitioner. Wefoused on assessing the ability of the estimators to reover the nonlinearfuntional relationship between independnet and dependent variables ratherthan on predition. To be pratially relevant, the omparison is based onstandard implementations of both methods (STATA for FPs, and R andBayesX for P-splines). In setion 2, we brie�y desribe GAMs, P-splines andfrational polynomials. In setion 3 we ompare the methods in simulateddata for ontinuous, binary and survival outomes. In setion 4 we applyboth approahes to data on malnutrition in hildren from the National FamilyHealth Survey from India. Conlusions and reommendations are presentedin setion 5.2 Methods2.1 Generalized additive models (GAMs)There is a large literature on �exibly modeling and estimating the e�et ofontinuous ovariates on outome (e.g. Hastie, Tibshirani, and Friedman2003, Fahrmeir and Tutz 2001, Wood 2006b). The vast majority of ap-proahes �ts into the framework of generalized additive models (GAMs), seeHastie and Tibshirani (1990). GAMs assume that the distribution of the re-sponse variable y given ovariates x = (x1, . . . , xp)
′ belongs to an exponentialfamily. A link funtion g relates the expeted value µ of y to the ovariatesthrough

g(µ) = η = f1(x1) + . . . + fp(xp), (1)where f1, . . . , fp are known, possibly nonlinear funtions. The additive de-omposition of the ovariate e�ets in (1) allows for good interpretabilityof the e�ets and irumvents the urse of dimensionality (Hastie and Tib-shirani 1990). There are two main approahes for modeling the funtions
f1, . . . , fp, loal polynomial regression and basis funtions approahes. Herewe fous on basis funtions approahes beause both spline based estimatorsand FPs are variants of this lass.The basis funtion approah assumes that an unknown funtion f in (1)
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an be approximated by a linear ombination of basis funtions, B1, . . . , BK ,
f(x) =

K
∑

k=1

βkBk(x), (2)where β = (β1, . . . , βK)′ is a vetor of unknown regression oe�ients. Typ-ially K is a large number to apture the variability of the data. Over�ttingis avoided by either a roughness penalty, that is applied to the regressionoe�ients to ensure smoothness of (2), or alternatively, by parsimoniousseletion of basis funtions using variable seletion methods. P-splines usea roughness penalty approah, while FPs use variable seletion methods foradaptive basis funtions seletion.In the next two subsetions we disuss P-splines and FPs in more detailfor the simple model y = f(x) + ε.2.2 P-splinesP-splines as introdued by Eilers and Marx (1996) approximate the unknownfuntion f by a polynomial spline of degree l with equally spaed knots
xmin = κ0 < κ1 < . . . < κm−1 < κm = xmaxover the domain of x. Beause of the equal spaing of knots κj = xmin +h · j,

j = 0, . . . , m, where h = (xmax − xmin)/m. A spline has the following twoproperties:� In eah of the intervals [κj, κj+1], j = 0, . . . , m − 1 the spline f is apolynomial of degree l, and� at the knots κj (the interval boundaries) the spline is l − 1 times on-tinuously di�erentiable.A spline an be written in terms of a linear ombination of K = m + l basisfuntions (De Boor 2001). The most widely used bases are the trunatedpower series basis and the B-spline basis. Using a trunated power seriesbasis the funtion f is
f(x) = β0 + β1x + . . . + βlx

l +

m−1
∑

j=1

βl+jtj(x, l), (3)4



where
tj(x, l) = (x − κj)

l
+ =

{

(x − κj)
l x > κj

0 else.In a simple regression spline approah, the unknown regression oe�ients
βk are estimated using standard inferene tehniques for linear or generalizedlinear models. The ruial problem with suh regression splines is the hoieof the number and the position of the knots. A small number of knotsmay result in a funtion spae whih is not �exible enough to apture thevariability of the data. A large number may lead to over�tting. As a remedyEilers and Marx (1996) propose to de�ne a large number of knots (usuallybetween 10 and 40) to ensure enough �exibility. Su�ient smoothness ofthe �tted urve is ahieved through a roughness penalty on the regressionoe�ients.Using a trunated power series basis, over�tting is prevented using aquadrati ridge type penalty

P (λ) = λ

m−1
∑

j=1

β2

l+j, (4)leading to the penalized least squares riterion
PLS(β, λ) =

n
∑

i=1

(yi − f(xi))
2 + λ

m−1
∑

j=1

β2

l+j (5)to be minimized with respet to β = (β0, . . . , βK−1)
′ in (3). Smoothness isontrolled by the �smoothing parameter� λ ≥ 0. Small values of λ produe alose �t to the data, while large values of λ yield smooth funtion estimates.Despite their simpliity P-splines based on a trunated power series ba-sis in ombination with penalty (4) are rarely used in pratie, due to thenumerial instability of the highly ollinear basis funtions. In all availableP-spline software pakages (e.g. mgv of R, BayesX) a loal B-splines basis isused instead. There is a lose relationship between B-splines and trunatedpolynomials as B-splines an be omputed as di�erenes of trunated powers(Eilers and Marx 2004). For instane B-spline basis funtions of degree oneare omputed as

Bj(x, 1) = tj−2(x, 1) − 2tj−1(x, 1) + tj(x, 1) = ∆2tj(x, 1),5



with tj de�ned in (2.2). B-spline basis funtions of degree l are given by
Bj(x, l) = −1l+1∆l+1tj(x, l)/(hll!).For non-equally spaed knots the formulas for omputing B-splines are moreinvolved and based on so alled divided di�erenes (De Boor (2001)). Extraknots κ−l, . . . , κ−1 left to κ0 and κm+1, . . . , κm+l right to κm are required, sothat the trunated polynomials in the above formula are properly de�ned toompute all basis funtions Bj lose to the left and right borders. Now thespline f may be written as

f(x) =
K

∑

k=1

βkBk(x, l).The loal basis also gives rise to alternative penalization. The widely usedapproah by Eilers and Marx (1996) penalizes the sum of squared d-th orderdi�erenes
P (λ) = λ

K
∑

k=d+1

(

∆dβk

)2 (6)were ∆d is the di�erene operator of order d. The default in most imple-mentations (e.g. mgv in R, BayesX) is d = 2, leading to the penalized leastsquares riterion
PLS(β, λ) =

n
∑

i=1

(yi − f(xi))
2 + λ

K
∑

k=d+1

(

∆dβk

)2
. (7)The penalized least squares riteria (5) and (7) are equivalent, i.e. theyprodue the same estimates, when d = l + 1 and λtr = (l!h!)λb where λtris the smoothing parameter in (5) and λb is the smoothing parameter in (7)(Sholz 2004).A losely related approah by O'Sullivan (1986) replaes the disretepenalty (6) by the integral of squared seond order derivatives,

P (λ) =

∫

(f ′′(x))2 dx.While P-splines are de�ned on a somewhat heuristi basis, they work wellin pratie and are widely used. Reently, researhers have also studied theirasymptoti properties, see e.g. Kauermann et al. (2009).6



P-splines are losely related to smoothing splines (Reinsh 1967, Greenand Silverman 1994, Hastie and Tibshirani 1990). A smoothing spline isderived from the penalized least squares riterion
PLS(λ) =

n
∑

i=1

(yi − f(xi))
2 + λ

∫

(f ′′(x))2 dx (8)where f is assumed to be a smooth funtion with two ontinuous derivatives.The funtion f that minimizes (8) is a natural ubi spline. Smoothingsplines are speial ases (with r = 1) of thin plate regression splines de�nedfor a r-dimensional ovariate x (Wood 2003). The original smoothing splineis rarely used in pratie beause in order to minimize (8) a knot has to beplaed at every distint ovariate value. In the extreme, there are as manyknots (and basis funtions) as there are observations. As a remedy Wood(2003) proposes a low rank (optimal) approximation to smoothing or moregenerally, thin plate splines. This low rank approximation is also the defaultsmoother in the mgv pakage of R (see below for more omments on availablesoftware) that we use in our simulation study and the data example.The hoie of the smoothing parameter λ strongly a�ets the resulting�t of any P-spline. Three main approahes to hoose λ are available: �rst,
λ is estimated by minimizing some goodness of �t riterion, suh as AIC orGCV (Wood 2000, Wood 2003, Wood 2004, Wood 2006b, Belitz and Lang2008). Seond, the P-spline is re-expressed as a linear mixed model, and λis estimated via restrited maximum likelihood (REML; Ruppert, Wand,and Carroll 2003, Wand 2003, Fahrmeir, Kneib, and Lang 2004, Kauer-mann, Krivobokova, and Fahrmeir 2009). Finally, a fully Bayesian versionof P-splines in ombination with Markov hain Monte Carlo simulation teh-niques an be used to simultaneously estimate the regression oe�ients andthe smoothing parameters (Lang and Brezger 2004, Brezger and Lang 2006,Jullion and Lambert 2007).For all above mentioned approahes easy to use statistial software isavailable. Smoothing parameter estimation based on minimizing GCV anbe done in a very e�ient, fast and stable way using the mgv pakage of R,see Wood (2006a) and Wood (2006b). Estimation via REML is supported inthe urrent version of mgv (without resorting to the onnetion with mixedmodels) or within the software pakage BayesX (Brezger et al. 2005 andBelitz et al. 2009). BayesX also implements the full Bayesian approah andsupports Cox proportional hazards survival models whih are not overed in7



the mgv pakage. Cox survival models with splines an also be estimatedusing the funtion oxph of the R pakage survival.2.3 Frational Polynomials (FPs)FPs approximate the unknown funtion f by a linear ombination of Mpolynomials xpj , j = 1, . . . , M . In ordinary polynomials the powers pj arerestrited to positive integer values, but within the FP modeling frameworknon-positive and frational values for pj are possible. A typial set of admis-sible powers is given by pj ∈ {−2,−1,−0.5, 0, 0.5, 1, 2, 3} where x0 denotes
ln(x). More formally, an FP of degree M is de�ned as

FPM(x) =
M

∑

j=1

βjhj(x),where β1, . . . , βM are (regression) oe�ients and hj is reursively de�ned as
h0(x) = 1

hj(x) =

{

xpj pj 6= pj−1

hj−1(x) ln(x) pj = pj−1.

(9)Note that this de�nition allows repeated powers. For instane, for M =
2, p1 6= p2 we obtain the frational polynomial

FP2(x) = β1x
p1 + β2x

p2and for M = 2, p2 = p1,
FP2(x) = β1x

p1 + β2x
p1ln(x).FPs of degree 2, i.e. M = 2, are the default setting in all available implemen-tations of FPs. Software for �tting additive models based on FPs is availablefor the statistial omputing platforms STATA (funtion mfp), SAS (maromfp8) and R (funtion fp of the pakage mfp), see Sauerbrei et al. (2006).The R implementation is restrited to FPs of degree 2, i.e. M = 2.An obvious limitation of the de�nition (9) is the requirement x > 0 dueto x0 := ln(x). A ovariate with negative values is automatially shifted inimplementations by x = x + δ to guarantee positivity. However, estimation8



results are sensitive to the hoie of the origin δ, as we show in simulationsand appliation.For prespei�ed order M the regression parameters βj and the polynomialpowers pj, j = 1, . . . , M are estimated by an algorithm desribed in Sauerbreiand Royston (1999) and Ambler and Royston (2001), and outlined here forFPs of order 2:� Test the best �tting FP of order 2 against the null model using a χ2distributed test statisti with 4 degrees of freedom (dfs). In ase of non-signi�ane, the algorithm terminates and the null model is seleted.� Test the best �tting FP of order 2 against a linear �t using a χ2 dis-tributed test statisti with 3 df. In ase of non-signi�ane, a linear �tfor x is assumed to be adequate and the algorithm terminates.� Test the best �tting FP of order 2 against the best �tting FP of order1 based on a χ2 distribution with 2 df. In ase of signi�ane the order2 FP, otherwise the order 1 FP is hosen as the best �t.In additive models with multiple ovariates the algorithm is ombinedwith a bak�tting type algorithm, see Sauerbrei and Royston (1999) for de-tails. There are several ritiisms of the above sequential testing approahto model seletion. First, the test statistis that are used do not have a
χ2 distribution (Sauerbrei and Royston 1999). Seond, the overall type oneerror of the proedure may be in�ated. To date investigations of both issuesare limited (Ambler and Royston 2001).3 Simulation study3.1 Simulation setupWe ompare FPs and P-splines in extensive simulations for ontinuous, bi-nary and survival outomes. We applied FPs with degrees M = 2 (heneforthFP2), the default setting of FP implementations in statistial software pak-ages, and degree M = 4 (FP4). We used the funtion mfp in the softwarepakage STATA to �t the FPs. P-splines were �t to ontinuous and bi-nary outomes with the mgv pakage of R (Wood 2006b) using the defaultsmoother, whih is a low rank approximation to the smoothing spline, seealso setion 2.2. We used generalized ross validation (GCV, the default in9



mgv) and restrited maximum likelihood (REML) to selet smoothing pa-rameters. Survival models are not supported in mgv we thus used the Rpakage oxph and the software BayesX (remlreg objets) to �t these mod-els. oxph uses AIC for smoothing parameter seletion, while BayesX usesREML.The omparison was based on data simulated from the following funtionsof the ovariate x that are also depited in Figure 1:Linear: f1(x) = −0.9xQuadrati: f2(x) = 0.7 · (x − 2.5)2Loalmode: f3(x) = 24x · exp(−2x)Doublemode: f4(x) = 1.3 · (24x · exp(−2x) + 0.11 · x2)

(10)The four funtions were saled suh that they all had the same range of 4units.For eah funtion fj in (10), we generated outome data y from the fol-lowing four models for one hundred equally spaed design points x between0.05 to 5:i) Gaussian model y = fj(x) + ε, where ε ∼ N(0, σ2). We hoose fourdi�erent values for the error standard deviation: σ = 0.3675, σ = 0.735,
σ = 1.1025 and σ = 1.47 to obtain various magnitudes of signal to noiseratio (SNR).ii) Binomial model y ∼ B(1, π) with

π = exp(c · fj(x))/ exp(1 + c · fj(x)),

c = 1, 0.75, 0.5, 0.25 is a saling fator hosen to imitate the SNRs ofthe Gaussian ase.iii) A survival model (similar to Bender, Augustin, and Blettner 2005),with hazard rate λ(t) = λ0(t) exp[0.5fj(x)] where the baseline hazard
λ0(t) is given by

λ0(t) =

{

cos(x) + 1.2 x ≤ 2π
2.2 x > 2π.To obtain ensored observations, we generated independent ensoringtimes C ∼ Exp(0.2). 10



iv) Gaussian, Binomial and survival models with the additive preditor
η = f1(x1) + f2(x2) + f3(x3) + f4(x4), where eah xj was omprised ofone hundred equally spaed points between 0.05 to 5. Error varianesor saling fators of funtions are idential to those spei�ed in i)�iii).For eah of these settings 500 repliated data sets with four di�erent sam-ple sizes n = 100, 500, 1000, 2000 were simulated. In summary, we omparedthe performane of the following approahes: FP2, FP4, P-splines with GCV,REML for ontinuous and binary outomes, and FP2, FP4, P-splines basedon AIC, REML for survival data.The goodness of the �t was measured by the empirial mean squared error(MSE),

MSE(f̂j) = 1/S

S
∑

s=1

(

fj(xs) − f̂j(xs)
)2

,where summation is over all design points x1, . . . , xS, with S = 100.3.2 Gaussian responsesFigure 2 plots average estimated funtions, i.e. the mean of f̂j over all repli-ations, with the true urves for the additive model iv) for σ = 0.735 and
n = 100, 500, 1000. Results for the single preditor models i)-iii) and othervalues of σ and n were similar and are not shown here but are available athttp://www.uibk.a.at/statistis/personal/lang/publiations/fp_sim_summary.pdf.All estimators are unbiased for the linear and quadrati funtions in (10)for all hoies of sample size, SNR and model type (single or additive pre-ditor). FP4s and the P-spline estimators also showed very little bias forthe loalmode and doublemode funtion. An exeption is the ase n = 100,here these estimators are more biased, partiularly at the modes of the fun-tions. As expeted, the bias dereased for large SNR (�gures not shown). Ainspetion of some individual estimates (�gure 3) reveals a tendeny to un-der�tting for FP4s for small sample sizes (n = 100), whereas P-splines basedon GCV (to a lesser extent also REML) tended to over�t, and produe veryunsmooth estimates. The FP2 estimates for the loalmode and doublemodefuntion were onsiderably biased for all sample sizes and values of σ. Theobserved patterns are also re�eted in the MSE estimates (table 1). Theestimates based on FP4 resulted in a lowest log(

√
MSE), followed loselyby P-splines based on GCV and REML. FP2s, however, had a onsiderablyhigher log(

√
MSE) for the loalmode and doublemode funtion.11



Average overage rates of 95% on�dene intervals were below the nom-inal level for the more urved funtions doublemode and loalmode for allestimators (table 2). FP4 and P-splines based on GCV and REML wereloser to the nominal level (with overage rates around 85-90%) than FP2.The overage dereased with sample size for FP4 and the P-splines estima-tors, due to too narrow on�dene intervals (�gure 4). The underoverageof FP2 re�ets lak of �t. For the quadrati and linear funtion the nominallevel was kept by the P-spline estimators whereas FPs produed onservativeon�dene intervals.3.3 Binomial responsesOverall, results for binomial responses are similar to the Gaussian ase. How-ever, we obtained a onsiderable number of unreliable results with the FP2and FP4 estimators and, to a lesser extent, with the P-splines based onGCV (�gure 5), espeially for small sample sizes n = 100 and n = 500. Thisis illustrated by �gure 5 a) whih shows a partiular FP4 estimate for thedoublemode funtion f4 in (10) and saling fator c = 0.75. Results aresomewhat improved for n = 500 for all funtion types. The problem appearsless frequently for the quadrati and linear funtion. The reason for thisproblemati behavior of the FPs is that the support of the design values x islose to zero. The FP basis funtions with negative power have an asymptoteat zero, and thus yield extremely high values lose to zero, whih distorts the�tted funtions. After shifting all x by adding one unit, the problem dis-appears (panel b) in �gure 5), although the FP based estimates still missimportant features of the exposure urves in many ases, see panel ).The P-spline estimator based on GCV also reveals onvergene problemsshowing sometimes extremely rough estimated funtions, see �gure 5, paneld). These problems are most pronouned for the additive model iv) withsmall sample size, n = 100, but our for all SNRs and all funtion types.Remarkably, P-splines based on REML do not have onvergene problemsand almost all estimates produe reasonable results (panel e).The median log(
√

MSE) values show a similar pattern to Gaussian re-sponses (Table 1). After shifting the ovariate values away from zero, resultswere mostly similar for FP4, and P-splines based on GCV and REML. Forsmall sample size, n = 100, the greater stability of the P-splines based onREML however results in better estimates. Of note, the MSEs are muhlarger for FP2 and FP4 on the original sale (data not shown).12



The overage rates of pointwise redible intervals are given in table 2and illustrated in �gure 4. Again, similar to the Gaussian ase, FP4 hasbetter overage than the other approahes even for the more urved funtionsdoublemode and loalmode.3.4 Survival modelsFigure 6 and table 1 show average estimated funtions and estimates of
log(

√
MSE) for the Cox-proportional hazards model with the additive pre-ditor iv) and n = 100, 500, 1000 (the ase n = 2000 is not shown as resultswere similar to the setting with n = 1000).For small sample size, n = 100, P-splines based on AIC are very roughand the results are not reliable. The most stable and best estimator forsmall sample size are P-splines based on REML. Aeptable results are alsoobtained with FP4 while FP2 shows strong bias for the doublemode andloalmode funtion −f3 in (10).For sample sizes n ≥ 500 all estimators are almost unbiased for thequadrati and linear funtions, f2 and f1 respetively, in 10. For the lo-almode and doublemode funtions, FP2 estimators again show strong biaswhile FP4, P-splines with AIC and REML reover the important featuresof these funtions. However, ompared to the Gaussian and binomial out-omes, even with FP4, AIC and REML a notieable bias an be observed,partiularly at the modes of the funtions. The best estimator for samplesize n ≥ 500 is the P-spline based on AIC followed by FP4 and the P-splinebased on REML.Average overage rates of pointwise redible intervals are typially farbeyond the nominal level (table 2). Only P-splines with smoothing parameterhosen via AIC for the quadrati and linear funtion produed adequateoverage. The reason for the underoverage of FP4 is exempli�ed in �gure4. We observe that underoverage is a result of on�dene intervals thatbeome narrower towards the enter of the ovariate support although theobservations are uniformly distributed over the whole range. In the enterthe on�dene interval almost ollapses to a point. This phenomenon was notobserved for FPs with Gaussian and binomial responses. The underoverageof FP2 and P-splines with REML is aused by the biased estimates.
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3.5 Simulation summaryWe brie�y summarize our �ndings regarding the performane of the methods.� Quality of �t: The performane of the P-spline based estimators andfrational polynomials of degree 4, FP4, is similar, with FP4 resultingin slightly lower MSE. Frational polynomials of degree 2, FP2s, do notadequately apture relationships that are more omplex than quadrati.� Coverage rate of on�dene intervals: Coverage rates of FP4 are loseto or above the nominal level for Gaussian and binomial outomes, butnot for survival models. Coverage rates for the P-spline estimators areoften below the nominal level for the more omplex funtions for alltypes of outomes. In survival models P-splines based on REML showsunderoverage even for the less urved funtions. Coverage rates ofFP2 are often below the nominal level, due to the large bias of theestimator.� Stability of estimators: The most stable estimator are P-splines basedon REML. Partiularly for small sample sizes (n = 100) and moreomplex funtions, the FP estimators strongly depend on the ovariatesupport. P-splines with GCV and (for survival models) AIC are alsoprone to unstable behavior, i.e. bumpy estimates, for small samplesizes. Note that the similar behavior of GCV and AIC is not surprisingas both goodness of �t riteria are equivalent in large samples.� Computing time: The mgv funtion of R used in the simulations ofGaussian and binomial responses is extremely fast, produing resultsin (milli)seonds. The FP estimators are sometimes up to 200 timesslower (table 3). For survival models omputing times of all estimationproedures are similar (table 4). However, omputing time is a funtionof both the estimation algorithm as well as the implementation. Inpartiular, for oxph of R and BayesX there is room for improvement, asoxph uses a simple grid searh to �nd the AIC best model and BayesXuses a standard Newton algorithm for optimization. The limitation forfrational polynomials seems to be the omputer intensive stepwiseseletion type estimation algorithm.
14



4 Data exampleIn this setion we apply P-splines and FPs to data from the seond Na-tional Family Health Survey (NFHS-2) from India, onduted in 1998 and1999 (see http://www.nfhsindia.org/). Our analysis fouses on the impat ofmalnutrition in approximately 30000 hildren born in the 3 years preedingthe survey. The e�et of malnutrition is usually measured by omparing theanthropometri status of hildren in a given population to a referene pop-ulation of well nourished hildren. Here we fous on stunting or insu�ientheight for a given age. The outome variable is de�ned as
z =

H − MH

σ
, (11)where H refers to a hild's height at a ertain age, and MH and σ refer tothe median and the standard deviation of height in the referene population,respetively. We �t the following additive model to the data

z = β0 + f1(age) + f2(vacnumb) + f3(border) + f4(educm)+

f5(bmimo) + f6(biage) + f7(hhs) + f8(ai) + ε,where f1, . . . , f8 are unknown nonlinear funtions of the hild's age (age),the number of vainations after the hild's birth (vacnumb), the birth order(border), the mother's years of eduation (educm), the mother's body massindex (bmimo), the mother's age at birth (biage), the household size (hhs)and an asset index of the household's wealth (ai). The errors ε are assumedto be i.i.d. Gaussian with ommon variane σ2 aross subjets. This modelis similar to a model used in Belitz et al. (2010), but with fewer ovariatesand without onsidering spatial heterogeneity.We �t model (4) with the mgv funtion in R. The smoothing parameterswere estimated by GCV and REML. Sine GCV and REML produed similarresults we only present those based on REML. The spline based estimateswere ompared to FP2 and FP4 estimates, obtained from the mfp funtionin STATA.Figure 7 presents the estimated funtions based on the three estimatorsREML (solid line), FP2 (dotted lines) and FP4 (dashed lines). For REMLpointwise 95% on�dene intervals are inluded. Overall the estimated fun-tional forms for individual variables agreed with the literature (e.g. Belitzet al. 2010). P-splines, FP2 and FP4, produed very similar estimates of the15



e�ets of three variables, border, educmy and biage. However, for age, bmimoand hhs we observed pronouned di�erenes between the methods (�gure 8).The top row of �gure 8 shows that the estimated bump around age 25-30months obtained with the spline estimator aptures a distint feature in thedata, and is not an artefat of the method. The very narrow on�dene bandsand the fat that the observations are evenly distributed over the age rangeindiate that this bump is not aused by outlying observations. Moreoverthe bump an be explained by a hange in the referene standard used inthe omputation of the outome variable z in equation (11). Before the ageof 24 months z is obtained by omparing the hildren's height to the heightsof middle lass US white hildren. After 24 months z was omputed basedon a ross-setion of the overall US population, whose nutritional status isworse than that of white middle lass US hildren, thus ausing an apparentimprovement in the nutritional status of the Indian hildren. However, thishange in the e�et of age is missed by the FP2 and FP4 estimators as theyare not �exible enough to apture suh loal phenomena.To further investigate the behavior of the three methods, we simulatedoutome variables from the model y = f(age) + ε and ε ∼ N(0, 2.17), where
f(age) was the P-spline based on REML �tted model for the India dataset.Figure 9 further highlights that FP2 and FP4 are not able to detet theunderlying struture of the e�et of age on outome.The three methods also di�er in the estimated e�ets for bmimo and hhs,although the di�erenes are less pronouned. The spline based estimatoradapts better to the data revealing monotoni dereasing respetively in-reasing e�ets of bmimo and hhs rather than the almost linear �ts obtainedwith FP2 and FP4. However, the partial residuals show that all approahesgive reasonable estimates (middle and bottom panel of �gure 8).Of note is the estimated e�et of FP2 for ai, in the right bottom panelof �gure 8. This behavior of FP2 arises sine the minimum of ai is negative,and the software automatially adds a onstant δ to the variable to guaranteepositive values. As already mentioned FPs are not invariant to the hoie oforigin of a ovariate, whih auses the behavior of the estimates seen in the�gure. Indeed, if we replae ai by ai + 2, and re-�t the model, this artefatdisappears, see �gure 10.Finally we point out that both approahes ould be ombined. The esti-mated spline funtions for vacnumb, border, educm and ai ould be replaedby the simpler and better interpretable FPs. For border, educm and ai FP4results in a linear �t, while for vacnumb a parametri �t with basis funtions16



vacnumb−2, vacnumb−2 log(vacnumb) and vacnumb3 is obtained.5 ConlusionWe ompared P-splines and frational polynomials (FPs), two widely usedsmoothing tehniques in empirial siene, in extensive simulations and a realdata appliation. The simulations show that the spline-based estimators andfrational polynomials of su�iently large degree (we used FPs of degree 4)performed similarly in most settings. FPs of degree 2, however, showed on-siderable bias and onsistently higher MSEs ompared to all other estimators.Moreover, the real data example revealed that very omplex funtional formsan not be deteted by frational polynomials of any degree. We also showedthat FPs are prone to artefats beause of the dependene of results on theovariate support, while P-splines based on GCV (or AIC in the survivalmodels) reveal sometimes wiggly estimates. The most stable estimators wereprodued by P-splines based on REML for smoothing parameter seletion.Our �ndings suggest that P-splines are more suited to exploratory dataanalysis beause of their greater �exibility than FPs. The latter may be ofgreat value in subsequent analysis to simplify models for better interpretabil-ity.We see several diretions for future researh. Currently, FPs are estimatedin a rather ad ho proedure that is largely in the spirit of stepwise proeduresfor linear models. These proedures are not favored by statistiians beause oftheir rather limited theoretial support, see for instane Miller (2002). Henethere is need for alternative estimation methods. A promising approah is aBayesian version of FPs that has been published reently by Sabanés Bovéand Held (2010). Another problem with FPs, that has been ignored in theliterature is the sometimes strong dependene of results on the ovariaterange. A possible remedy ould be a mapping of observed ovariate values ina �save� interval suh that the observed problems are less likely to happen.Although, the behavior of splines based estimators is better understood,the best riterion or approah for smoothing parameter seletion is still notentirely lear. Our �ndings suggest that seletion of the smoothing parameterbased on REML is more stable than GCV and AIC, however, to date notheoretial results exist to support that �nding.
17
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Figure 1: Funtions used for simulations.
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Figure 2: Gaussian additive model, σ = 0.735: True urves (blak solid lines) and average estimated urves(grey solid lines GCV, grey dashed lines REML, blak dots FP2 and blak dashed lines FP4 estimates).
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fj n

Gaussian Binomial Logit SurvivalFP2 FP4 GCV REML FP2 FP4 GCV REML FP2 FP4 AIC REML
f1

100 0.012 0.012 0.021 0.018 0.043 0.042 0.146 0.074 0.015 0.015 4.479 0.029500 0.004 0.002 0.006 0.004 0.014 0.011 0.03 0.028 0.02 0.02 0.05 0.0281000 0.005 0.001 0.003 0.002 0.006 0.005 0.013 0.011 0.016 0.016 0.021 0.0342000 0.008 0.001 0.002 0.001 0.004 0.003 0.007 0.004 0.022 0.022 0.01 0.065

f2

100 0.07 0.063 0.072 0.068 0.265 0.815 0.338 0.189 0.041 0.041 4.488 0.047500 0.038 0.011 0.021 0.022 0.05 0.048 0.062 0.057 0.026 0.026 0.049 0.0391000 0.019 0.006 0.013 0.012 0.029 0.022 0.034 0.029 0.023 0.023 0.02 0.0452000 0.02 0.003 0.008 0.008 0.015 0.01 0.019 0.016 0.021 0.021 0.011 0.066

f3

100 0.308 0.222 0.21 0.251 0.39 0.403 0.409 0.319 0.153 0.153 5.115 0.12500 0.193 0.04 0.057 0.059 0.108 0.107 0.134 0.156 0.079 0.079 0.051 0.091000 0.188 0.02 0.039 0.04 0.101 0.032 0.076 0.082 0.086 0.086 0.02 0.0822000 0.186 0.014 0.031 0.03 0.09 0.017 0.054 0.051 0.092 0.092 0.011 0.18

f4

100 0.49 0.149 0.225 0.252 0.763 0.768 0.56 0.4 0.184 0.184 4.587 0.138500 0.461 0.037 0.076 0.079 0.32 0.085 0.159 0.189 0.137 0.137 0.05 0.0741000 0.459 0.025 0.058 0.06 0.292 0.031 0.1 0.107 0.145 0.145 0.021 0.0662000 0.458 0.021 0.049 0.049 0.289 0.017 0.062 0.059 0.144 0.144 0.012 0.187Table 1: Estimated median log(
√

MSE) of the multivariate models with medium SNR (σ = 0.735 forGaussian responses, saling fator c = 0.75 for Binomial outome, saling fator c = 0.5 for survivalmodels). Numbers in boldfae represent the respetive smallest median of four algorithms for eah row anddistribution.
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f n

Gaussian Binomial Logit SurvivalFP2 FP4 GCV REML FP2 FP4 GCV REML FP2 FP4 AIC REML
f1

100 0.999 0.999 0.939 0.944 0.988 0.987 0.94 0.939 0.829 0.829 0.94 0.875500 0.992 0.999 0.944 0.947 0.986 0.998 0.932 0.925 0.264 0.663 0.932 0.4941000 0.973 0.998 0.92 0.922 0.994 0.996 0.93 0.934 0.087 0.229 0.93 0.3192000 0.938 0.997 0.926 0.934 0.993 0.999 0.936 0.956 0.001 0.011 0.936 0.192

f2

100 0.976 0.979 0.947 0.968 0.893 0.74 0.945 0.956 0.673 0.625 0.945 0.935500 0.9 0.98 0.948 0.964 0.964 0.973 0.944 0.953 0.537 0.644 0.944 0.6811000 0.823 0.982 0.939 0.957 0.957 0.982 0.946 0.966 0.421 0.516 0.946 0.4422000 0.705 0.984 0.924 0.943 0.958 0.988 0.95 0.966 0.296 0.356 0.95 0.24

f3

100 0.758 0.83 0.82 0.696 0.871 0.827 0.837 0.798 0.424 0.406 0.837 0.685500 0.419 0.918 0.9 0.893 0.931 0.948 0.871 0.803 0.316 0.59 0.871 0.6381000 0.292 0.914 0.858 0.866 0.774 0.965 0.92 0.89 0.23 0.487 0.92 0.4842000 0.2 0.88 0.786 0.802 0.54 0.965 0.895 0.892 0.158 0.334 0.895 0.216

f4

100 0.764 0.918 0.9 0.878 0.725 0.717 0.874 0.842 0.42 0.484 0.874 0.767500 0.418 0.929 0.869 0.871 0.742 0.942 0.908 0.865 0.394 0.64 0.908 0.771000 0.279 0.903 0.818 0.83 0.64 0.972 0.908 0.889 0.35 0.565 0.908 0.6232000 0.199 0.768 0.741 0.756 0.498 0.977 0.884 0.89 0.322 0.429 0.884 0.252Table 2: Additive models with medium SNR(σ = 0.735 for Gaussian responses, saling fator c = 0.75 forBinomial outome, saling fator c = 0.5 for survival models): Average overage rates of 95% pointwiseon�dene intervals. Cells orresponding to values below a 92.5% level (underoverage) are marked withdark grey and values larger than a 97.5% level (overoverage) with light grey.
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Figure 6: Survival additive model: True funtions (blak solid lines) and average estimated funtions (greysolid lines P-splines based on AIC, grey dashed lines P-splines based on REML, blak dots FP2 and blakdashed lines FP4 estimates).
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REML GCV FP2 FP4 Sale n1.61 21.3 10.065 148.064 c = 1 1001.75 5.27 7.361 84.763 c = 0.752.02 2.52 6.699 70.632 c = 0.51.97 2.3 4.927 45.266 c = 0.253.42 4.42 28.972 475.539 c = 1 5003.07 4.24 25.176 461.989 c = 0.752.66 3.71 23.714 370.146 c = 0.52.94 3.88 15.613 145.761 c = 0.255.71 6.85 47.018 1060.325 c = 1 10004.86 7.47 45.826 684.641 c = 0.755.51 6.97 42.552 661.518 c = 0.54.81 5.89 33.548 413.669 c = 0.2510.61 11.37 156.296 2380.226 c = 1 20008.9 11.19 70.122 1668.426 c = 0.759.02 12.19 65.174 1317.968 c = 0.58.23 11.83 52.296 885.402 c = 0.25Table 3: Estimation times in seonds for the logit models with additive logit-mean struture based on 10 repliations. The results are obtained on a IntelCore2 Duo CPU E6550 proessor with 2.33GHz and 3.5GB RAM storage ona Windows XP operating system.
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REML AIC FP2 FP4 n180.18 4.28 37.203 458.634 100154.57 13.48 69.08 1007.509 500217.68 24.66 110.1 1882.827 1000330.4 39.25 173.641 2832.071 2000Table 4: Estimation times in seonds for Cox regression models with η =
∑

fi(xi) based on 10 repliations. The results are obtained on a Intel Core2Duo CPU E6550 proessor with 2.33GHz and 3.5GB RAM storage on a Win-dows XP operating system.
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P(enalized)-splines and fractional polynomials (FPs) have emerged as powerful 
smoothing techniques with increasing popularity in several fields of applied research. 
Both approaches provide considerable flexibility, but only limited comparative 
evaluations of the performance and properties of the two methods have been 
conducted to date.  We thus performed extensive simulations to compare FPs of 
degree 2 (FP2) and degree 4 (FP4) and P-splines that used generalized cross 
validation (GCV) and restricted maximum likelihood (REML) for smoothing parameter 
selection. We evaluated the ability of P-splines and FPs to recover the “true” 
functional form of the association between  continuous, binary and survival outcomes 
and exposure for linear,  quadratic and more complex, non-linear functions, using 
different sample sizes and signal to noise ratios. We found that for more curved 
functions FP2, the current default implementation in standard software, showed 
considerably bias and consistently higher mean squared error (MSE) compared to   
spline-based estimators (REML, GCV) and FP4, that performed equally well in most 
simulation settings. FPs however, are prone to artefacts due to the specific choice of 
the origin, while P-splines based on GCV reveal sometimes wiggly estimates in 
particular for small sample sizes. Finally, we highlight the specific features of the 
approaches in a real dataset. 
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