
University of Innsbruck 
 
 
 

 
 
 
 

Working Papers 
in 

Economics and Statistics 
 
 
 
 
 

 
Coordination in Evolving Networks with 

Endogenous Decay 
 

Francesco Feri and Miguel A.Meléndez-Jiménez 
 

2009-19 
 
 
 



Coordination in Evolving Networks with
Endogenous Decay∗

Francesco Feri†

University of Innsbruck
Miguel A. Meléndez-Jiménez

Universidad de Málaga

July 17, 2009

Abstract

This paper studies an evolutionary model of network formation with endoge-
nous decay, in which agents benefit both from direct and indirect connections.
In addition to forming (costly) links, agents choose actions for a coordination
game that determines the level of decay of each link. We address the issues of
coordination (long-run equilibrium selection) and network formation by means
of stochastic stability techniques. We find that both the link cost and the
trade-off between efficiency and risk-dominance play a crucial role in the long-
run behavior of the system.
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1 Introduction

Social interactions are usually subjected to generic frictions, such as noise or delay,
that reduce the benefits that agents may potentially achieve. This is the case within
organizations, where the internal structure of a group usually affects the performance
of its members. For instance, within a firm, a worker may not be able to perform
her task until those that precede her in the production process have finished their
own assignments.1 It is also the case in communication processes. For instance,
when news are transmitted between agents, the accuracy of information may sharply
decrease the higher the number of times it passes from one person to another. In
these situations, we generically talk of decay. Formally, the existence of decay implies
that the benefit that an individual receives from another one is a decreasing function
of the distance between them in the network. The literature on networks has usually
treated the decay as exogenous.2 However, in many real world situations, the level of
decay may be affected by the agents’ decisions. For instance, the rate of decay in a
communication network may well depend on the quality of the device (or technology)
used by each agent, or on the level of effort exerted by each agent. Moreover, the
degree of coordination between two (linked) agents may also affect the decay between
them. If this is the case, agents could prefer to coordinate on the same device or
technology in order to exchange information. Coordination is, however, generally
subjected to a trade-off between efficiency and risk-dominance, as pointed out in the
next two settings.

Consider agents that, in order to create their web sites, choose between using
HTML (a static markup language) and DHTML (a collection of technologies used to
create interactive and animated web sites). Each agent benefits from others visiting
her web site, and each additional visit may attract potential new ones (since, if the
visitor likes the web site, she could inform friends about it, or even create a link
to it in her own web site). If an agent uses DHTML (efficient), her web site will
be of high quality (which increases her expected profit if others visit it). However,
only those people using an advanced web browser will be able to open it properly.
In contrast, if an agent chooses HTML (risk-dominant), her web site will be of low
quality, but readable by any web browser. This example illustrates a trade-off between
sophistication and compatibility. In this case, a sophisticated but non-compatible
technology represents the efficient choice, whereas a more basic but compatible one
represents the risk-dominant choice.3

1In this line, a worker’s outcome will usually depend on the number of workmates that act before
her and, also, in the time and effort that each of them exerts in her interactions.

2See, for instance, Bala and Goyal [1], Jackson and Wolinsky [17], Hojman and Szeidl [14], Watts
[22] and Feri [9].

3Other example could be that of agents who advertise products through e-mail. If an agent
chooses word (efficient) to compose her add, it will be of high quality, but only those people using
word will be able to read it. In contrast, if an agent chooses ascii (risk-dominant), her add will be
of low quality but readable by anyone.
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The second setting is that of minimum effort games. In a minimum effort game,
each agent’s benefit is determined by the minimum level of effort exerted across
players and by the own effort cost. In this case, as the following example illustrates, a
high effort can represent the efficient choice and, a low effort, the risk-dominant one.
Consider a population of agents that use internet to communicate (for instance, to
exchange pictures, videos,...). Each agent chooses between two internet connection
speeds. The first connection (efficient) is fast, but its price per hour is high. The
second one (risk-dominant) is slow but cheap. When two agents communicate, each
of them pays for the price of her connection, but their benefits are constrained by the
slower connection speed.

In this paper, we study this kind of coordination problems in the framework
of the two-way flow (network formation) model with decay described in Bala and
Goyal [1], BG hereafter. Our novelty is to consider that the decay is endogenous
and idiosyncratic to the link. As in BG, we study a dynamic setting in which agents
unilaterally form (costly) links in order to access the (non-rival) benefits generated by
other agents. Benefits flow in both directions of a link (i.e., links are two-way or non-
directed), no matter who bears its cost. A link to another agent allows access to the
benefits available to the latter via his own links. Therefore, individual links produce
externalities whose value depends on the level of decay associated with indirect links.
We depart from BG in the way we model the decay. Specifically, in the present
paper, all the agents choose between two actions (communication technologies) for a
coordination game: One efficient and the other risk-dominant. Whenever two agents
get linked, their choices of actions determine the level of decay that each of them
incurs in.4 If an agent chooses the efficient action, she incurs in no decay (i.e., she
receives the other agents’s benefits without frictions) if the other agent chooses the
same action, whereas she incurs in full decay (i.e., she receives no benefits from the
link) if the other agent chooses the alternative action. On the contrary, if an agent
chooses the risk-dominant action, she incurs in an intermediate and fixed level of
decay (independent of the other agent’s choice). Note that, since agents get benefits
from indirect communication, the decay of a link not only affects the payoffs to the
two involved agents, but also to all the agents that use the link in their indirect
connections. We propose a stochastic adjustment process (agents revise actions and
links), and focus our analysis on the study of the stochastically stable states, i.e.,
those action profiles and network structures that are robust enough to be observed a
significant fraction of time in the long run.

We first address the coordination issue (we characterize the action profiles asso-
ciated to the stochastically stable states). We show that, in the long run, all players
coordinate on the same action. The selected action depends both on the link cost
and on the trade-off between efficiency and risk-dominance. When the link cost is low
enough, the risk-dominant action is selected and, when it is high enough, both the

4A key feature of our model is that each agent chooses a single action (device or technology) that
she uses in all the interactions with her neighbors.
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efficient action and the risk-dominant one coexist. Moreover, provided that the risk-
dominant action delivers a sufficiently low decay level as compared to the efficient one
(lower than the inverse of the golden ratio), the efficient action is (uniquely) selected
for intermediate link cost. We then turn to the network issue (network structures
associated to the different stochastically stable states). We first show that, in those
stochastically stable states in which agents coordinate on the efficient action, the net-
works are minimally connected. Moreover, such states maximize aggregate payoffs.5

On the other hand, when coordination is on the risk-dominant action, the link cost
determines the long-run network architectures: Low link costs result in the complete
network whereas high link costs result in stars.

There is a large literature on the issue of equilibrium selection in social coordi-
nation games by means of stochastic stability techniques.6 Within this literature,
various papers consider that agents have the ability to choose their interaction part-
ners by creating links. Goyal and Vega-Redondo [12] (GV hereafter) and Hojman
and Szeidl [15] (HS hereafter) study one-sided models: Links are unilaterally formed.
GV consider two-way links and focus on the case in which connections are costly
and each agent interacts with her direct neighbors. They obtain that, for low link
cost, all agents coordinate on the risk-dominant action whereas, for high link cost,
all players coordinate on the efficient one. Moreover, the network is complete in all
the stochastically stable states, regardless the action profile.7 HS focus on the case of
one-way (i.e., directed) links and consider that agents receive benefits from indirect
connections (without decay). They analyze two main cases: (i) The link costs are
negligible but miscoordination is punished and (ii) agents are only allowed to form
one link each.8 In both cases, HS obtain that, in the stochastically stable states, all
players coordinate on the same action and the network is a wheel. They prove that the
efficient action is (uniquely) selected if the risk-dominant action delivers sufficiently
low payoffs as compared to the efficient one; otherwise, the risk-dominant action is
selected. In contrast to our case, both in GV and HS, different actions profiles never
coexist in the set of stochastically stable states. However, the present paper integrates
the two effects obtained by GV and HS (link cost and trade-off between efficiency and
risk-dominance), provided the link cost is not too high. Other related papers in this
literature are Jackson and Watts [16] and Meléndez-Jiménez [20], in which the forma-
tion of links requires the mutual agreement between the parties.9 They both obtain

5This result allows us to compare efficiency and stability.
6This literature was pioneered by Kandori et al. [18], Young [23] and Ellison [7]. See also Bhaskar

and Vega-Redondo [2], Dieckmann [6], Ely [8] and Mailath et al. [19].
7GV also show that their main result qualitatively extends to the case of indirect links (without

frictions). In such a case, the long run networks are not complete but stars.
8They also consider a third case, in which links are costless and miscoordination is not punished.

In such a case, all links are formed and risk-dominance considerations prevail.
9In Jackson and Watts [16] the link cost is equally shared between the parties and, in Meléndez-

Jiménez [20], the cost shares result from bargaining. In Meléndez-Jiménez [20], the results on
equilibrium selection are qualitatively similar to those of GV. Differently, Jackson and Watts [16]
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that the complete network is uniquely observed in all the stochastically stable states.
Thus, one interesting pattern missing from this literature that arises from the present
model is that changes in parameters not only affect the action profile, but also the
network architecture.

Also related to our paper are the models of Bloch and Dutta [3] and Deroian
[5], who analyze network formation in the presence of endogenous decay. Instead
of modelling the decay as a coordination game, they consider an allocation problem:
Each player has an endowment that she allocates among different links and, the higher
the total investment of the players in a link, the higher the link strength.10 These
decisions result in a weighted network. Bloch and Dutta [3] propose a non-directed
communication model (two-way flow links) and obtain that the efficient and stable
networks are stars. In contrast, Deroian [5] considers directed communication and
obtains that the efficient and stable networks are wheels. This alternative approach to
endogenize the decay is complementary to ours: Our framework represents situations
where the benefits that an agent receives from all her links are affected (limited)
by a single decision (like, e.g., the choice of a communication technology), whereas
their setting corresponds to situations where agents have flexibility to determine the
strength of each link (for instance, investing more time in some relationships than in
others).

The paper is organized as follows. In section 2, we describe the model. In Section
3, we present our results. In Section 4, we discuss the assumptions on our parameters.
Section 5 concludes. In Appendix A we introduce the techniques that we use to study
the stochastic stability and prove our results. In Appendix B we prove some technical
results.

2 The Model

Networks. Let N = {1, . . . , n} be the set of players, where n > 2. Previously to
the specification of the game we shall introduce some definitions. Let G := {g ⊂
N × N : for each i, j ∈ N , (i, i) /∈ g and (i, j) ∈ g ⇐⇒ (j, i) ∈ g} be the set of
undirected networks. We say (i, j) is a link of g ∈ G if (i, j) ∈ g. Let Ng = {i ∈ N :
{(i, 1), ...(i, n)} ∩ g �= ∅}. Given g ∈ G, we say that g′ ⊆ g is a sub-network of g if,
for each i, j ∈ Ng′ , (i, j) ∈ g =⇒ (i, j) ∈ g′.

We define a path of length m ∈ N in g ∈ G from i ∈ N to j ∈ N\{i} as a sequence
of m consecutive links {(j1, j2), (j2, j3) , . . . , (jm, jm+1)} ⊆ g such that j1 = i and
jm+1 = j.11 Let Pm

i,j(g) denote the set of all the paths of length m that exist from i to
j in network g and let Pi,j(g) = ∪m∈NPm

i,j(g). We define the distance between players
i and j in network g, di,j(g), as the number of links in the shortest path between i and

find a parameter range in which both (homogeneous) action profiles coexist in the long run.
10Given their formulation, they use the terminology link strength instead of decay.
11Two links (i, i′), (i′′, i′′′) ∈ g are consecutive if i′ = i′′.
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j in g, i.e., di,j(g) = minp∈Pi,j(g) |p|. If Pi,j(g) = ∅, we set di,j(g) =∞. We say that a
sub-network g′ of g is a component of g if, for each i, j ∈ Ng′ and each m ∈ N\Ng′ ,
Pi,j(g) �= ∅ and Pi,m(g) = ∅. We say that g ∈ G is connected if for each i ∈ N and
j ∈ N\{i}, Pi,j(g) �= ∅.

We say that g ∈ G isminimally connected if it is connected and, for each (i, j) ∈ g,
g\{(i, j)} is not connected. Let Gm ⊂ G be the set of all minimally connected
networks. The complete network is gco = (N ×N) \{(i, i)i∈N}. A star with center
i ∈ N is a minimally connected network gst such that, for all j ∈ N\{i}, (i, j) ∈ gst.
Let Gst ⊂ Gm be the set of all stars and, for each gst ∈ Gst, let ı̂(gst) ∈ N denote the
center of gst.

Strategies, payoffs and efficiency. The strategy of each i ∈ N , si = (Li, ai),
consists on a subset of players Li ⊆ N\{i} with whom to form links and an action
ai ∈ {α, β}. Let li = |Li|. For each i ∈ N , let Si = 2(N\{i}) × {α, β} be the set of
strategies of player i and let S =

∏
i∈N Si.

Link formation is one-sided and non-cooperative, i.e., the formation of a link only
requires the consent of the player who initiates it. In this sense, s ∈ S results in
a network g(s) ∈ G such that, for each i, j ∈ N , (i, j) ∈ g(s) if and only if either
i ∈ Lj and/or j ∈ Li. A strategy profile s ∈ S is essential if, for each i, j ∈ N ,
i ∈ Lj =⇒ j /∈ Li. Let S∗ ⊂ S be the set of essential strategy profiles.

Players obtain earnings from the network. We assume that each agent is endowed
with one unit of non-rival good of value 1. In what follows, we shall refer to such non-
rival good as information. Agents can access others’ information through the network.
In particular, we model a situation where the information flow is subjected to decay.
The decay that the information suffers when it flows through a link (i, j) ∈ g(s) is
endogenous and depends on ai and aj. More precisely, the decay that player i incurs
in when she receives the information from j, δ (ai, aj), is derived from the following
2× 2 matrix,

α β
α 1 0
β x x

Table 1: The endogenous decay factor

where 1/2 < x < 1. Table 1 is the payoff matrix of the bilateral stag-hunt game
proposed by Carlsson and van Damme [4]. The safe action β yields a fixed decay
factor δ (β, α) = δ (β, β) = x. In contrast, action α yields the best decay fac-
tor δ(α, α) = 1 if the other player also chooses α (i.e., the information flows per-
fectly from j to i), but it yields the worst possible one δ(α, β) = 0 otherwise (i.e.,
there is no information transmission from j to i).12 Therefore, since x ∈ (1/2, 1),
(β, β) is the risk-dominant equilibrium of the bilateral stag-hunt game, as defined
by Harsanyi and Selten [13], whereas (α, α) is the Pareto efficient equilibrium. This

12In Section 4 we discuss the implications of allowing for x < 1/2, δ (α, β) > 0 and δ (α,α) < 1.
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normalized game allows us to interpret our results in terms of a single parameter x
that measures the degree of risk-dominance of action β.13 Given s ∈ S, we assume
that each i ∈ N access the information from j ∈ N i(g) := {j′ : Pi,j′(g) �= ∅}
using the path that allows her to receive it with the highest quality, i.e., using
pi,j(s) := argmaxp∈Pi,j(g(s))

∏
(m,m′)∈p δ(am, am′). Thus, the total earnings that i ob-

tains from g(s) are
∑

j∈Ni(g(s))

∏
(m,m′)∈pi,j(s) δ(am, am′).

On the other hand, links are costly. Each player pays a cost c < 1 for each link
that she initiates.14 Thus, the total cost that player i bears at period t is li · c.
Therefore, given s ∈ S, the payoff to agent i is

Πi(s) =
∑

j∈Ni(g(s))




∏

(m,m′)∈pi,j(s)
δ(am, am′)


− li · c.

Regarding the notion of efficiency, we follow the convention in the literature of network
formation and focus on the sum of payoffs of all players.15 A state s is efficient if, for
each s′ ∈ S,

∑
i∈N Πi(s) ≥

∑
i∈N Πi(s

′).

Dynamics. Time is considered discrete, t = 0, 1, 2, ... At each period t, the state
of the system is represented by a strategy profile s(t) = {si(t)}i∈N ∈ S, where, for
each i ∈ N , si(t) = (Li(t), ai(t)) as defined above. For simplicity, we will refer to
the network associated to the state prevailing at period t as g(t), i.e., g(t) = g(s(t)).
Let s(0) ∈ S denote the initial state. At each period t ≥ 1, one player is randomly
selected to revise her strategy.16 When a player receives a revision opportunity, she
selects a myopic best response to the strategy profile of the previous period. There
is also a small probability ε that the player trembles, and chooses a strategy that
he did not intend to. Thus, with probability ε, there is a mutation and the strategy
si(t) is chosen at random (each si ∈ Si is chosen with positive probability) and, with
probability 1− ε,

si(t) ∈ argmaxsi∈Si Π (si, s−i(t− 1)) .
If there are several best responses, each of them is chosen with positive probability.

Stochastic stability. Let ∆S be the set of probability distributions over S. If we
assume that s(0) is chosen through a certain µ(0) ∈ ∆S, the dynamics described
above defines a Markov chain on S. Let Qε be the |S| × |S| transition matrix, where
(Qε)s,s′ := Pr

(
s(t) = s′ |s(t−1)=s

)
for each s, s′ ∈ S. Then, the probability that the

Markov process (S,Qε) leads to each state at period t ≥ 1 is µε(t) = µ(0) · (Qε)
t.

13Given this normalization, we may also interpret x as the ratio between the decay factors asso-
ciated to the efficient equilibrium and the risk-dominant one, i.e., x = δ (β, β) /δ(α,α).

14In Section 4 we discuss the implications of allowing for c > 1.
15This notion corresponds to the concept of strong efficiency in Jackson and Wolinsky [17].
16Note that, in each period, we only permit one player to revise her strategy. One interpretation

is that strategy revisions are governed by a Poisson process, so that only one revision takes place
during any sufficiently brief interval of time.
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Given a Markov process (S,Qε), µ ∈ ∆S is an invariant probability distribution if
µ · Qε = µ. For each ε > 0, (S,Qε) defines a Markov chain that is aperiodic and
irreducible and, therefore, has a unique invariant probability distribution, namely
µε, and µ̂ = limε→0 µε is well defined.17 A state s ∈ S is stochastically stable when
µ̂(s) > 0. Let Ŝ := {s ∈ S : µ̂(s) > 0}.

3 Results

In this section, after characterizing the efficient states, we analyze the properties of
the stochastic stable states: Action profiles and network structures. For each s ∈ S,
let the set of α − players of state s be Kα(s) := {i ∈ N : ai(s) = α} and let
kα(s) := |Kα(s)|. With some abuse of notation, when there is no confusion, we
will denote by Kα(t) the set of α − players of the state prevailing at period t, i.e.,
Kα(t) = Kα(s(t)) and, by kα(t), its cardinality. The next proposition characterizes
the efficient states.

Proposition 1 A state s is efficient if and only if s ∈ S∗, kα(s) = n and g(s) ∈ Gm.

A formal proof is omitted since, once we show that an efficient state requires
all players to choose action α, the fact that the strategy must be essential and the
resulting network minimally connected directly follows from Proposition 4.3 of Bala
and Goyal [1]. We provide the intuition. First, note that any state with all (or some)
agents coordinated on action β is dominated by a state that prescribes the same link
decisions and all agents coordinated on action α. When all players are coordinated
on α, there are no differences in payoffs between direct and indirect links. Thus, a
minimally connected network allows to connect all the players efficiently, since it uses
the minimum possible number of links, i.e., n − 1. On the other hand, an efficient
strategy must be essential, since, otherwise, there is at least one link such that the
cost is redundantly paid (both players pay c).

We shall now analyze the dynamic model and study the properties of the stochas-
tically stable states in terms of our parameters (x and c). We first characterize the
action profiles included in stochastically stable states (Theorem 1). Then, we study
the networks that are associated to the different stochastically stable states (Propo-
sitions 2 and 3) and compare stability and efficiency (Corollary 1). All the proofs are
in Appendix A.

The next theorem characterizes the action profiles associated to the stochastically
stable states. Prior to the statement, we define c̄(x) := max{2 − 1

x
, 1 + x − x3

2x−1}
and ĉ(x) := max{x, 1− x2 − x

n−2}. In the statement of the theorem, φ represents the
golden ratio.18

17See, for instance, Freidlin and Wentzell [11].
18The golden ratio, also known as the divine proportion, golden section, or golden mean, is a

number often encountered when taking the ratios of distances in simple geometric figures. It is the
only positive number satisfying φ = 1 + 1/φ. Specifically, φ = (

√
5 + 1)/2 and 1/φ = (

√
5− 1)/2.

8



Theorem 1 Let s ∈ Ŝ. For n large enough,
I) If x < 1/φ, (i) if c < c̄(x), kα(s) = 0, (ii) if c̄(x) < c < ĉ(x), kα(s) = n and,
(iii) if c > ĉ(x), kα(s) ∈ {0, n} and there is s′ ∈ Ŝ such that kα(s) �= kα(s

′).
II) If x > 1/φ, (i) if c < ĉ(x), kα(s) = 0 and, (ii) if c > ĉ(x), kα(s) ∈ {0, n} and
there is s′ ∈ Ŝ such that kα(s) �= kα(s

′).

Since x > 1/2, our model presents a tension between efficiency and risk-dominance.
Theorem 1 shows that, when c is higher than a certain threshold (c > ĉ(x)), both
homogeneous action profiles (kα = 0 and kα = n) are significantly played in the long
run. In contrast, when c is lower (c < ĉ(x)), only one of them is significantly observed.
In this case, the golden ratio conjugate (1/φ) defines a threshold for x.19 If x > 1/φ,
in all the stochastically stable states, kα = 0, i.e., risk-dominance consideration pre-
vail. On the other hand, if x < 1/φ, the value of c determines which action profile,
kα = 0 or kα = n, prevails: For low cost (c < c̄(x)), in all the stochastically stable
states, kα = 0, whereas, for intermediate cost (c̄(x) < c < ĉ(x)), only the efficient
action profile is played in the stochastically stable states.

c

x0.6 0.7 0.8 0.9 1
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0.1

A
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c(x)c(x)
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c(x)c(x)

D

1/  1/  

Figure 1: Action profiles in the stochastically stable states. The arc I-II is given by
c = 1+ x− x3

2x−1 , II-III by c = 2− 1
x
, VI-VII by c = x, VIII-IX by c = x− x2, VIII-X

by c = 1− x2 and IV-V by c = 1− x2 − x
n−2 .

20

In Figure 1, we provide a graphic illustration of Theorem 1. The thick lines
represent ĉ(x) and c̄(x) (black and dark grey, respectively), that intersect in point I

19Note that x may be interpreted as the ratio between the decay factors associated to the risk-
dominant equilibrium and to the efficient one (cf. Footnote 13).

20Note that only arc IV-V depends on n. When n increases this arc moves up. In the limit, when
n→∞, we get c = 1− x2 and, therefore, it coincides with arc I-X.
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(x = 1/φ). For each s ∈ Ŝ, in area A, kα(s) = n, in area B, kα(s) = 0 and, in area D,
kα(s) ∈ {0, n}.

We now summarize the main arguments of the proof of Theorem 1. The proof is
based on the notion of recurrent sets. A recurrent set is a collection of absorbing sets
of states with the property that it is impossible for a single mutation, followed by the
unperturbed dynamics, to lead to an absorbing set not contained in it.21 We show
that all the states with heterogenous action profiles (i.e., those where there are players
choosing different actions) are transient, in the sense that there are no recurrent sets
containing them. We prove that there is a region where there is only one recurrent set
(area above VII-I-VIII of Figure 1), and a region where there are two recurrent sets
(area below VII-I-VIII). When there is just one recurrent set, all the states that are
contained in it are stochastically stable (cf. Proposition 4 in Appendix A). Hence, in
such a case, we characterize the action profiles played in all the states contained in
the (unique) recurrent set. In contrast, when there are two recurrent sets, we analyze
which of them is more robust to perturbations since, in this case, the states contained
in it conform the set of stochastically stable states. Then, we characterize the action
profiles played in the more robust recurrent set.

We first focus on the case where there is one recurrent set, i.e., the area above
VII-I-VIII. Intuitively, the higher the link cost, the easier it is, in terms of number of
mutations, to leave states with all the players coordinated on some action and transit
to a state with all the players coordinated in the alternative one. That is why, when
c is high enough, there is only one recurrent set. For instance, in Figure 1, in the area
above arc VI-VII (arc VIII-X), one mutation followed by the unperturbed dynamics
allows for transitions from states with conformity on action β (α) to states with
conformity on α (β). Therefore, there are states with kα = n (kα = 0) contained in the
unique recurrent set. For this reason, in the region above VI-I-X, both homogeneous
action profiles are significantly observed in the long run. In fact, arcs VI-VII and
VIII-X intersect in point I (x = 1/φ), that separates the two cases of Theorem 1.
As expected, since x is the risk-dominance parameter that measures the advantage
of action β with respect to α, arc VI-VII (arc VIII-X) is increasing (decreasing) in
x. In area I-VI-VIII, two or more mutations are needed to transit from states with
kα = 0 to states with kα = n and, therefore, in all the states contained in the unique
recurrent set, kα = 0. In area I-VII-X, there are two regions: In region IV-V-VII, in
all the states contained in the unique recurrent set, kα = n. In contrast, in region
I-V-VI-X, one mutation is enough to transit from states with kα = n to states with
kα = 0 and, therefore, both action profiles are played in the unique recurrent set.
This last region vanishes as n increases (cf. footnote 20) and, therefore, in the limit,

21The unperturbed dynamics corresponds to the case without mutations, i.e., ε = 0. An absorbing
set is a collection of states such that: (i) there is zero probability that the unperturbed dynamics can
cause the system to exit it, and (ii) there is a positive probability of moving from one state in the
set to any other state in a finite number of periods. See Appendix A and Samuelson [21] (chapter
7) for technical details.
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only kα = n would be significantly observed in area I-VII-X.
We now focus on the case where there are two recurrent sets, i.e., the area below

VII-I-VIII. We show that one recurrent set only contains states with kα = n and the
other one only contain states with kα = 0. When x is low (x < 1/φ), if the cost is
higher than a certain threshold (c > c̄(x)) the recurrent set where kα = n dominates
whereas, if the cost is lower, risk-dominance considerations prevail. As expected, the
threshold is increasing in x. In contrast, when x is high (x > 1/φ), the recurrent set
where kα = 0 prevails.

One important difference between our results and those of GV (and HS) is the
presence of area D (where both homogeneous action profiles coexist). The main reason
why GV do not obtain such a case is that, since they do not consider externalities
from indirect links (in the main body of the paper), when c exceeds the payoffs from
the risk-dominant action (but is lower than the payoff from the efficient one), no
state where agents coordinate on β belongs to absorbing sets.22 In this cost range,
GV obtain that there is just one recurrent set, which only contains states with kα = n.

Once we have addressed the issue of coordination, a natural question is to study
the network structures that are robust enough to be significantly observed in the
long run. In the next proposition, we characterize the networks associated to the
stochastically stable states where the efficient action profile is played.

Proposition 2 For n large enough, if there is s ∈ Ŝ such that kα(s) = n, then
s ∈ S∗, g(s) ∈ Gm and, for each g′ ∈ Gm and each s′ ∈ S∗ such that g(s′) = g′ and
kα(s

′) = n, s′ ∈ Ŝ.

In Proposition 2 we show that, in areas A and D of Figure 1, in each stochastically
stable state where kα = n, the strategy profile must be essential and the associated
network minimally connected. The next corollary allows us to compare efficiency and
stability in our framework.

Corollary 1 For n large enough, the efficient states are contained in Ŝ if and only
if there exists s ∈ Ŝ such that kα(s) = n. If there is no s′ ∈ Ŝ such that kα(s

′) = 0,
then Ŝ coincides with the set of efficient states.

The result directly follows from Theorem 1 and Propositions 1 and 2. In area
A of Figure 1 the set of efficient states and the set of stochastically stable states
coincide. In area D, the set of efficient states is a subset of the set of stochastically
stable states. Hence, in this region, efficient states are significantly observed in the
long run, but also inefficient ones. In area B there is a conflict between efficiency and
stability: Due to risk-dominance considerations, in this broad area of our parameter

22Moreover, in GV’s extension (where agents obtain benefits from indirect connections), for this
cost range, the fact that there are no frictions (δ = 1) produces miscoordination problems (regarding
the choices of links) when all players choose β. Therefore, also in this case no absorbing set contains
states where kα = 0.

11



space no stochastically stable state is efficient.23 Finally, in the following proposition,
we study the network structures associated to the stochastically stable states where
all players coordinate on the risk-dominant action.

Proposition 3 For n large enough, if there is s ∈ Ŝ such that kα(s) = 0, then s ∈ S∗

and
I) If c < x− x2, then g(s) = gco and, for each s′ ∈ S∗ such that g(s′) = gco and

kα(s
′) = 0, s′ ∈ Ŝ.

II) If x−x2 < c < x−x3, then, for each s′ ∈ S∗ such that g(s′) ∈ Gst and kα(s
′) = 0,

s′ ∈ Ŝ.
III) If x− x3 < c < x, then g(s) ∈ Gst and for each s′ ∈ S∗ such that g(s′) ∈ Gst and

kα(s
′) = 0, s′ ∈ Ŝ.

IV) If c > x, then, for each s′ ∈ S∗ such that kα(s
′) = 0, g(s′) ∈ Gst and Lı̂(g(s′)) = ∅,

s′ ∈ Ŝ.24

In Proposition 3 we analyze which networks arise in the long run in area B of
Figure 1 and which networks are associated to the stochastically stable states with
kα = 0 of area D. In both cases, the strategy profile must be essential. Area B has two
differentiated regions regarding the network structure: When the cost is low enough,
i.e., c < x−x2 (region II-III-VIII), the complete network is the unique stochastically
stable network. When c is intermediate, i.e., x− x2 < c < x (region I-II-VIII-VI) all
the stars are associated to stochastically stable states. Moreover, in the wider part of
this region (x − x3 < c < x), we show that only the stars are significantly observed
in the long run. In area D (high cost), we find that all the periphery-sponsored stars
(cf. footnote 24) are associated to stochastically stable states with kα = 0, although
there might be additional network structures related to them.

Interestingly, in region III-VIII-XI of Figure 1 (low cost), the network structures
associated to the stochastically stable states with kα = n and the network associated
to those ones with kα = 0 are polar cases:25 While the former ones are minimally con-
nected, the later one is complete. In contrast, in region VI-VII-IX-VIII (intermediate
cost), there are networks of the very same nature associated to stochastically stable
states with kα = 0 and with kα = n (for instance, the stars). Hence, for low cost, the
completeness of the network associated to the stochastically stable states with kα = 0
makes the recurrent set containing them relatively more robust to perturbations than
the efficient one (with respect to the case of intermediate cost). This issue is clear in
Figure 1, since in region III-VIII-IX, area B relatively grows at the expense of area
A with respect to region VI-VII-IX-VIII.

23In a pioneering paper, Jackson and Wolinsky [17] show that efficiency and stability in networks
do not always coincide.

24Note that s′ ∈ S∗, g(s′) ∈ Gst and Lı̂(g(s′)) = ∅ imply that each peripheral player meets the cost
of her link. This is known in the literature as a periphery-sponsored star (cf. Bala and Goyal [1]).

25They are polar with respect to the total number of links within the set of connected networks.
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4 Discussion

In this section, we discuss our assumptions on the parameters of the model.
So far, we have assumed x > 1/2 and have shown (Theorem 1) that, in the long

run, the tension between efficiency and risk-dominance is differently solved in three
regions of our space of parameters (areas A, B and D of Figure 1). If we were to
consider x ≤ 1/2, then (α, α) would be both the efficient and the risk-dominant
equilibrium of the bilateral game presented in Table 1. Hence, we might expect the
region where the efficient action profile (kα = n) is played in stochastically stable
states to increase significantly. In the proofs of our main results (Appendix A and
B), we basically use the assumption x > 1/2 to show that, when c > x, those states
where an heterogenous action profile is played are transient.26 Thus, when x ≤ 1/2,
if c > x, we can not assert that in the stochastically stable states kα ∈ {0, n}. Hence,
there might be additional stochastically stable states as compared to Theorem 1.
Abstracting from these considerations, our intuition is that, when x ≤ 1/2, (i) all the
efficient states will be stochastically stable (i.e., there will be no region equivalent to
area B of Figure 1), and (ii) when the cost is high enough, there will be inefficient
stochastically stable states (those essential states where kα = 0 and a periphery-
sponsored star forms).27

In our model, we have considered δ(α, β) = 0. We shall now discuss the possible
effects of allowing for δ(α, β) > 0. If δ(α, β) were close to zero, our main results should
hold, since no α− player would be willing to form links to β − players. In contrast,
if δ(α, β) were higher, then α− players may form links to β − players. In this case,
the compatibility of action α would increase and, therefore, it would become more
attractive. Thus, intuitively, it should be easier (in terms of number of mutations) to
reach recurrent sets where α is played (and more difficult to leave them). Thus, we
conjecture that the region of parameters where the efficient states are stochastically
stable increases with respect to Figure 1. If 2x − 1 < δ(α, β) < 1, then, as in the
previous point (x ≤ 1/2), (α, α) would be both the efficient and the risk-dominant
equilibrium of the bilateral game. Thus, both forces (efficiency and risk-dominance)
would move the system in the same direction, i.e., coordination on action α.

We have also assumed δ(α, α) = 1. This assumption implies not only that action
α is more efficient than β, but also that there is an additional asymmetry between
actions (there is decay when choosing one action and not when choosing the other).
We now discuss the possible effects of allowing for δ(α, α) = y, with x < y < 1. In
such a case, when c < y−y2, those states contained in recurrent sets such that kα = n
would be associated to the complete network. In contrast, when c > y − y2, these
states could be associated to (a subset of) minimally connected networks (including
stars) and, maybe, also to other kinds of networks. The fact that recurrent sets
admit different interaction structures would affect the robustness to perturbations

26See Lemma 11.
27This should occur when c > 1− x2 − x

n−2 , i.e., c > ĉ(x), analogously to the case x > 1/2.
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and the subsequent stochastic selection. Nevertheless, we believe that the results of
Theorem 1 should qualitatively hold for the following two reasons: (i) When c is close
to zero, those states contained in recurrent sets will be characterized by the fact that
all players coordinate on the same action (either α or β) and the complete network
forms. In such a case, the model becomes very similar to GV. Thus, we can invoke
their result that states that, when the link cost is sufficiently low, those states with
all players coordinated on the risk-dominant action will be selected in the long run.
(ii) When c > y − y2, it is possible to show that, among the set of states with all
agents coordinated on α, only one recurrent set can exist, and it must contain those
essential states such that the associated network is a star. In fact, the proofs of our
results suggest that the robustness of the recurrent set of states with kα = n depends
on the robustness of states where the network is a star.28 Therefore, it is quite likely
that, for high link cost, the long run selection will produce similar results to those
obtained in Theorem 1.

Last, we have restricted our analysis to the case c < 1, which, in our view, provides
the most interesting results. However, if we were to consider c > 1 (but not too high),
in the stochastically stable states, either the empty network (no links) would arise
and/or the action profile played would be kα = 0.

29 If c were high enough, only the
empty network would be significantly observed in the long run. The fact that, when
c > 1, no efficient state is stochastically stable is deeply affected by the assumption
δ(α,α) = 1. When c > 1 and δ(α, α) = 1, it is possible to show that, starting from
any state where kα = n, the unperturbed dynamic leads the system into a state
characterized by the empty network. This fact is not true if we assume δ(α,α) < 1.

5 Conclusion

We have analyzed, in a stylized form, an evolving social network with endogenous
decay. Our framework integrates the coordination problem of GV and HS and the
network formation problem in the presence of decay of BG. Indeed, in our model,
the link cost and the trade-off between efficiency and risk-dominance affect both the
action in which agents coordinate in the long run (as in GV and HS) and the network
architecture (as in BG). A novelty of the present paper is to show that, depending on
parameters, different stochastically stable sets can admit different network structures.

Further developments can be made in different directions. For instance, it would
be interesting to consider endogenous decay in a two-sided link formation model or to
endogenize the decay using different social games, which may better represent other
real world situations. These extensions are left for future research.

28See Lemmas 3, 4 and 6 in Appendix A.
29The interested reader is referred to Feri [10] for a derivation of these results.
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Appendix A

We shall prove Theorem 1 and Propositions 2 and 3. To this aim, in order to
identify the stochastically stable states, we use the techniques introduced by Kandori,
Mailath and Rob [18] and Young [23], that are summarized as follows.

We call unperturbed dynamics to the extreme case in which ε = 0 (i.e., players do

not make mistakes when they revise their strategies). A set S̃ ⊂ S is an absorbing

set if the unperturbed Markov process (S,Q0) is such that, (i) for each s′ ∈ S̃,∑
s∈S̃ (Q0)s′,s = 1 and, (ii) for each s′, s′′ ∈ S̃, there exists t ≥ 1 such that (Q0)

t

s′,s′′ >

0. Let S be the set of absorbing sets of (S,Q0). A S̃ − tree is a directed graph on S
whose root is S̃ and such that there is a unique (directed) path in the graph from each

S̃ ′ ∈ S\{S̃} to S̃. Given a S̃ − tree, we define a cost for each arrow S̃ ′ → S̃′′ as the

minimum number of mutations that are required for the transition from S̃ ′ to S̃ ′′ to
be feasible through the unperturbed dynamics. The cost of the S̃ − tree is obtained
by adding up the costs associated with all its arrows. The stochastic potential of
S̃ is defined as the minimum cost across all S̃ − trees. Then an absorbing set S̃ is
stochastically stable if it has the minimum stochastic potential across S.
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Definition 1 (Samuelson [21], Definition 7.4.) A recurrent set R ⊆ S is a collection
of absorbing sets with the following two properties:
(I) Starting from S̃ ∈ R, by means of a single perturbation followed by the

unperturbed dynamics, it is impossible to end up in S̃ ′ /∈ R;
(II) Given a pair S̃ ′, S̃ ′′ ∈ R, there is a sequence {S̃1, . . . , S̃V } ⊆ R such that S̃1 = S̃ ′,

S̃V = S̃ ′′ and, for each v ∈ [2, V ], by a single mutation followed by the
unperturbed dynamics, the transition from S̃v−1 to S̃v is feasible.

In what follows, we shall refer the kind of sequence described in Property (II) of
Definition 1 as a path of one step mutations. Let R ⊂ 2S be the set of recurrent sets
and, for each R ∈ R, let E(R) =

⋃
S̃∈R S̃. We shall use the following two results.

Lemma 1 (Samuelson [21], Lemma 7.1) At least one recurrent set exists. Recurrent
sets are disjoint.

Proposition 4 (Samuelson [21], Proposition 7.7) Ŝ ⊆ ⋃
R∈RE(R) and, for each

R ∈ R, Ŝ ∩ E(R) ∈ {∅, E(R)}.30

Hence, as a first step to prove Theorem 1 and Propositions 2 and 3, we begin by
stating Lemmas 2 to 6, that are proven in Appendix B. In Lemmas 2, 3 and 4, we
identify R when c < x − x2, x − x2 < c < x and c > x, respectively.31 These three
lemmas show that |R| ∈ {1, 2}. By Proposition 4, when |R| = 1, i.e., R = {R},
Ŝ = E(R). In contrast, if |R| = 2, i.e., R = {Rh, Rh′}, in order to characterize Ŝ, we
need to compute the stochastic potential of the absorbing sets belonging to Rh and
Rh′. We denote by ωhh′ the minimum (mutation) cost across all paths connecting one
absorbing set of Rh to one absorbing set of Rh′. If ωhh′ > ωh′h, then the absorbing
sets in Rh have the minimum stochastic potential across S and, therefore, Ŝ = E(Rh).
On the other hand, if ωhh′ = ωh′h, then all the absorbing sets in Rh ∪ Rh′ have the
minimum stochastic potential across S and, therefore, Ŝ = E(Rh) ∪ E(Rh′). Hence,
in Lemmas 5 and 6, we obtain the minimum (mutation) costs for the ranges of c such
that, given Lemmas 2 to 4, |R| = 2, i.e., c < x−x2 and x−x2 < c < min{x, 1−x2}.
For each z ∈ R, we denote by ⌈z⌉ the least (strictly) positive integer not less than z.

Lemma 2 Let c < x− x2. For n large enough, R = {Rα, Rβ}, where E(Rα) = {s ∈
S∗ : kα(s) = n and g(s) ∈ Gm} and E(Rβ) = {s ∈ S∗ : kα(s) = 0 and g(s) = gco}.

Lemma 3 Let x− x2 < c < x. For n large enough,
I) If c < 1− x2, then R = {Rα, Rβ′}, where E(Rα) = {s ∈ S∗ : kα(s) = n

and g(s) ∈ Gm} and, for each s′ ∈ E(Rβ′), kα(s
′) = 0.

II) If c > 1− x2, then R = {Rβ′′} and, for each s ∈ E(Rβ′′), kα(s) = 0.
III) For each s ∈ S∗ such that kα(s) = 0 and g(s) ∈ Gst, s ∈ ⋃R∈RE(R).

30We have adapted the statement of Proposition 7.7 of Samuelson [21] to our notation.
31Note that, in Figure 1, this partition is provided by arcs VI-VII and VIII-IX.

17



Lemma 4 Let c > x. For n large enough,
I) If c < 1− x2 − x

n−2 , then R = {Rα} where E(Rα) = {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm}.

II) If c > 1− x2 − x
n−2 , then R = {R1}, where R1 is such that

(i) E(R1) ⊇ {s ∈ S∗ : kα(s) = n and g(s) ∈ Gm},
(ii) E(R1) ⊇ {s ∈ S∗ : kα(s) = 0, g(s) ∈ Gst and lı̂(g(s)) = 0} and
(iii) for each s ∈ E(R1), kα(s) ∈ {0, n} and, if kα(s) = n, then

s ∈ {s ∈ S∗ : kα(s) = n and g(s) ∈ Gm}.

Lemma 5 If c < x− x2, then ωαβ = ⌈(n− 1)(1− x)⌉ and ωβα =
⌈
(n−1)(x−c)

1−c

⌉
.

Lemma 6 If x− x2 < c < min{x, 1− x2}, then ωαβ′ =
⌈
(n−1)(1−c−x2)
1−c−x2+x

⌉
and

ωβ′α =
⌈
(n−1)(x−c)

1−c

⌉
.

Proof of Theorem 1

First, we claim that, if c < min{2− 1
x
, x−x2}, for each ŝ ∈ Ŝ, kα(ŝ) = 0 whereas,

if 2− 1
x
< c < x− x2, for each ŝ ∈ Ŝ, kα(ŝ) = n. Let c < x− x2. By Lemma 2, for n

large enough, R = {Rα, Rβ}. Thus, by Proposition 4, either Ŝ = E(Rα), Ŝ = E(Rβ),

or Ŝ = E(Rα)∪E(Rβ). Given Lemma 5, if c > 2− 1
x
, then ωαβ > ωβα and, therefore,

Ŝ = E(Rα). In contrast, if c < 2 − 1
x
, then ωβα > ωαβ and, therefore, Ŝ = E(Rβ).

Hence, by Lemma 2, the claim follows.
Second, we claim that, if x − x2 < c < min{x, 1 + x − x3

2x−1}, for each ŝ ∈ Ŝ,

kα(ŝ) = 0 whereas, if max{x− x2, 1 + x− x3

2x−1} < c < x, for each ŝ ∈ Ŝ, kα(ŝ) = n.
Let x− x2 < c < x. By Lemma 3, for n large enough, if c > 1− x2, then R = {Rβ′′}
and, if c < 1 − x2, then R = {Rα, Rβ′}. Hence, by Proposition 4, if c > 1 − x2,

then Ŝ = E(Rβ′′) whereas, if c < 1 − x2, then either Ŝ = E(Rα), Ŝ = E(Rβ′), or

Ŝ = E(Rα) ∪ E(Rβ′). In the latter case, by Lemma 6, if c > 1 + x − x3

2x−1 , then

ωαβ′ > ωβ′α and, therefore, Ŝ = E(Rα). In contrast, if c < 1 + x − x3

2x−1 , then

ωβ′α > ωαβ′ and, therefore, Ŝ = E(Rβ′). Hence, by Lemma 3, the claim follows.32

Third, we claim that if x < c < 1− x2 − x
n−2 , for each ŝ ∈ Ŝ, kα(ŝ) = n whereas,

if c > max{x, 1− x2 − x
n−2}, for each ŝ ∈ Ŝ, kα(ŝ) ∈ {0, n} and there exist ŝ′, ŝ′′ ∈ Ŝ

such that kα(ŝ
′) = n and kα(ŝ

′′) = 0. Let c > x. By Lemma 4, for n large enough, if
c < 1− x2 − x

n−2 , then R = {Rα} and, if c > 1− x2 − x
n−2 , then R = {R1}. Hence,

by Proposition 4, if c < 1− x2 − x
n−2 , then Ŝ = E(Rα) and, if c > 1− x2 − x

n−2 , then

Ŝ = E(R1). Hence, by Lemma 4, the claim follows.
The third claim proves parts I.(iii) and II.(ii). Hence, in what follows, we assume

that c < ĉ(x). Since c̄(x) = max{2− 1
x
, 1+x− x3

2x−1} and ĉ(x) = max{x, 1−x2− x
n−2},

32Note that, since c > x, c > 1− x2 implies c < 1 + x− x3

2x−1 .
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c̄(x) < ĉ(x) if and only if x <
√
5−1
2

(i.e., x < 1/φ). It is directly verifiable that, if

c < x− x2, then c̄(x) = 2− 1
x
and that, if c > x− x2, then c̄(x) = 1 + x− x3

2x−1 .
Let x < 1/φ. We distinguish the cases c < c̄(x) and c > c̄(x). (i) c < c̄(x) if and

only if either c < min{2− 1
x
, x−x2} or x−x2 < c < min{x, 1+ x− x3

2x−1}. Hence, by

the first two claims, if c < c̄(x), then for each ŝ ∈ Ŝ, kα(ŝ) = 0. (ii) c̄(x) < c < ĉ(x)
if and only if either 2 − 1

x
< c < x − x2, max{x − x2, 1 + x − x3

2x−1} < c < x, or
x < c < 1− x2 − x

n−2 . Hence, by the three claims, if c̄(x) < c < ĉ(x), then for each

ŝ ∈ Ŝ, kα(ŝ) = n. This proves part I.
Let x > 1/φ. Then, c < ĉ(x) if and only if either c < min{2 − 1

x
, x − x2} or

x− x2 < c < min{x, 1 + x− x3

2x−1}.33 Hence, by the first two claims, if c < ĉ(x), then

for each ŝ ∈ Ŝ, kα(ŝ) = 0. This proves part II. �

Proof of Proposition 2

Assume that there is s ∈ Ŝ such that kα(s) = n. By Proposition 4, there is a
recurrent set, namely R′, such that s ∈ E(R′) and E(R′) ⊆ Ŝ. By Lemmas 2 to 4,
s ∈ S∗, g(s) ∈ Gm and E(R′) ⊇ {s′ ∈ S : kα(s

′) = n and g(s′) ∈ Gm}. �

Finally, prior to the proof of Proposition 3, we shall state the following Lemma, that
is proven in Appendix B.

Lemma 7 Let x − x3 < c < x. From any state in {s ∈ S∗ : kα(s) = 0 and
g(s) ∈ Gst}, for n large enough, one mutation followed by the unperturbed dynamics
leads the system with probability one to a state in {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst}.

Proof of Proposition 3

Assume there is s ∈ Ŝ such that kα(s) = 0.
First, let c < x − x2. By Lemma 2, R = {Rα, Rβ}. By Proposition 4, either

Ŝ = E(Rα), Ŝ = E(Rβ), or Ŝ = E(Rα) ∪ E(Rβ). Since kα(s) = 0, s ∈ E(Rβ). This
proves I.

Second, let x− x2 < c < x. By Proposition 4, there is a recurrent set, namely R′,
such that s ∈ E(R′) and E(R′) ⊆ Ŝ. By Lemma 3, if c < 1 − x2, R′ = Rβ′ and, if
c > 1 − x2, R′ = Rβ′′ . Moreover, By Lemma 3, E(R′) ⊇ {s′ ∈ S∗ : kα(s

′) = 0 and
g(s′) ∈ Gst}. This proves II. If x − x3 < c < x, by Lemma 7, {s′ ∈ S∗ : kα(s

′) = 0
and g(s′) ∈ Gst} satisfies property (I) of Definition 1. Hence, in such a case, E(R′) =
{s′ ∈ S∗ : kα(s

′) = 0 and g(s′) ∈ Gst} and, by Proposition 4, either Ŝ = E(Rα),
Ŝ = E(R′), or Ŝ = E(Rα) ∪E(R′). This proves III.

Finally, let c > x. By Proposition 4, there is a recurrent set, namely R′′, such
that s ∈ E(R′′) and E(R′′) ⊆ Ŝ. Since kα(s) = 0, by Lemma 4, R′′ = R1, R = {R1}
and E(R1) ⊇ {s′ ∈ S∗ : kα(s

′) = 0, g(s′) ∈ Gst and lı̂(g(s′)) = 0}. �

33If x > 1/φ, then it is directly verifiable that ĉ(x) = x, min{2 − 1
x
, x − x2} = x − x2 and

min{x, 1 + x− x3

2x−1} = x.
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Appendix B

This Appendix is devoted to prove Lemmas 2 to 7. To this aim, as a first step,
we begin by stating and proving Lemmas 8 to 12. In Lemmas 8 and 9, we study
the convergence of the unperturbed dynamics when the initial state has conformity
in the choice of actions (kα ∈ {0, n}). The main lessons from these two lemmas are:
(i) there are states with kα = n and states with kα = 0 in absorbing sets, (ii) the
states with kα = n that belong to absorbing sets must have associated a minimally
connected network and (iii) the states with kα = 0 that belong to absorbing sets
must be in absorbing sets that do not include any state with kα = n. Lemma 10
is instrumental for the proof of Lemma 11, that identifies, for different parameter
ranges, the states that belong to absorbing sets and that, therefore, are candidates to
belong to recurrent sets. We show that a state in an absorbing set must be essential
and have kα ∈ {0, n}. In Lemma 12, we show that if there is a recurrent set that
contains a state with kα = n, then all the essential states with kα = n that result in a
minimally connected network must be in such a recurrent set. Once we have formally
stated and proved these Lemmas, we use them to prove Lemmas 2 to 7.

Prior to the statement of Lemmas 8 to 12, we shall introduce some notation. For
each s ∈ S and Mα(s) ⊆ Kα(s), let gMα(s) be the sub-network of g(s) such that
NgMα(s)

=Mα(s). We say that Mα(s) is an α− group of s if gMα(s) is a component of
gKα(s). Let Mα(s) be the set of α − groups of state s. We say that Mα(s) ∈ Mα(s)
is minimally connected if, for each (i, j) ∈ gMα(s), Mα(s) is split into two distinct
α−groups in g(s)\{(i, j)}. For each period t > 0, we denote by it ∈ N the player
that is (randomly) chosen to revise her strategy at t. Moreover, ait � α denotes it
chooses action α when she revises her strategy (similarly for ait � β). We define
Kβ(s) (i.e., the set of β − players of state s) and kβ(s) analogously to Kα(s) and
kα(s). Finally, for each s = {(Li, ai)i∈N} ∈ S, a ∈ {α, β} and j ∈ N , let laj be the
number of links that j supports to players in Ka(s).

34

Lemma 8 Let ε = 0.
I) If, for some t ≥ 0, kα(t) = n, then there is T > t such that, for each t′ ≥ T ,

s(t′) ∈ S∗, kα(t
′) = n and g (t′) ∈ Gm.

II) If s ∈ S∗, kα(s) = n and g (s) ∈ Gm, then s ∈ ⋃S̃∈S S̃.

Proof. We first prove I). Let s(t) ∈ S be such that kα(t) = n. For each Lit+1(t+1) ⊆
N\{it+1}, if ait+1 � α, Πit+1(s(t + 1)) is strictly higher than if ait+1 � β.35 Hence,
ait+1 � α. Analogously, for each τ > t + 1, aiτ � α. Let period T be such that
all players have received a revision opportunity. Then, for each τ > t and j ∈ N
such that iτ ∈ Lj(τ − 1), j /∈ Liτ (τ). Thus, for each t′ ≥ T , s(t′) ∈ S∗. We now

34Note that, for each j ∈ N , lj = lαj + lβj .
35Only if it+1 /∈ Ng(t+1), it+1 is indifferent between choosing α or β. However, in such a case,

Lit+1(t+ 1) = ∅ is not a best response.
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claim that at each τ > t, g(τ) is connected. Assume not, i.e., there is j ∈ N such
that Piτ ,j = ∅. Since aj(τ) = ai(τ) = α and c < 1, j /∈ Liτ (τ ) contradicts that iτ
has chosen a best response. Finally, we claim that for each τ > t and j ∈ N such
that j ∈ Liτ (τ ), g(τ)\{(iτ , j)} is not connected. Assume not. Then, since kα(τ ) = n,
L′iτ (τ ) = Liτ (τ )\{j} increases the payoff to iτ at τ by c > 0, a contradiction with a
best response. Thus, for all t′ > T , g(t′) ∈ Gm.

We now prove II). Let s′ ∈ S∗, kα(s
′) = n and g (s′) ∈ Gm and assume, for the sake

of contradiction, that s′ /∈ ⋃
S̃∈S S̃. Then, if s(t) = s′ for some period t ≥ 0, eventually

at some T ≥ t+1, the following two conditions must hold: (i) there is S̃ ∈ S such that

s(T ) ∈ S̃ and (ii) for each t′ ∈ [t, T − 1], s(t′) /∈ ⋃S̃∈S S̃. Since kα(t) = n, ait+1 � α.
We claim that a best response implies lit+1(t+1) = lit+1(t) and g(t+1) ∈ Gm. Assume
not. If either lit+1(t + 1) = lit+1(t) and g(t + 1) /∈ Gm or lit+1(t + 1) < lit+1(t), since
s(t) ∈ S∗ and g (t) ∈ Gm, g (t+ 1) is not connected. Hence, since kα(t+ 1) = n, it+1
could increase her payoff by creating a new link to a player in N\(N i(g(t+1))∪{i}),
which contradicts a best response. If lit+1(t+ 1) > lit+1(t), the payoff to it+1 at t+ 1
is at most n− 1− lit+1(t+1) · c, which is lower than Πit+1(s(t)) = n− 1− lit+1(t) · c, a
contradiction. Therefore, Πit+1(s(t+ 1)) = Πit+1(s(t)). The same reasoning holds for
each t′ ∈ [t, T ], i.e., kα(t′) = n, g (t′) ∈ Gm and, for each j ∈ N , Πj(s(t

′)) = Πj(s(t)).
Finally, let iT+1 = iT . Since ΠiT (s(T )) = ΠiT (s(T − 1)), to choose siT+1(T + 1) =
siT+1(T −1) is a best response. Hence, with positive probability, s(T +1) = s(T −1).
Since s(T ) ∈ ⋃S̃∈S S̃, this contradicts s(T − 1) /∈ ⋃S̃∈S S̃. �

Lemma 9 Let ε = 0. If, for some t ≥ 0, kα(t) = 0, then there is T ≥ t such that,
for each t′ > T , s(t′) ∈ S∗ and
I) If c < x− x2, then kα(t

′) = 0 and g(t′) = gco.
II) If x− x2 < c < x, then kα(t

′) = 0.
III) If c > x, then either kα(t

′) = n and g (t′) ∈ Gm, or kα(t
′) = 0.

Proof. Let s(t) ∈ S be such that kα(t) = 0 and let period T be such that all players
have revised.

First consider I). For each τ ≥ 0 such that kα(τ) = 0, if aiτ+1 � α, the payoff to

iτ+1 at τ + 1 is at most 0. In contrast, if ait+1 � β, by choosing L̂iτ+1 = {j ∈ N :
iτ+1 /∈ Lj(τ )}, her payoff is at least (n− 1)(x− c) > 0. Hence, ait+1 � β. Moreover,

since c < x− x2, Liτ+1(τ + 1) = L̂iτ+1.
Now consider II). By the same arguments used in part I), for each τ > t, aiτ � β.

It is immediate that, for each τ > t and each j ∈ N such that iτ ∈ Lj(τ − 1),
j /∈ Liτ (τ ). Thus, for each t′ ≥ T , s(t′) ∈ S∗.

Finally, consider III). For each s ∈ S, order the players in N and let them revise
in consecutive periods, i.e., at each τ , τ ′ ∈ [t + 1, t + n], iτ �= iτ ′ . At t + n choose a
new order afresh and let all the players revise again. Repeat the process, exploring
all possible orders, until some t̂ > t such that ait̂ � α whereas, for each τ ∈

(
t, t̂
)
,

aiτ � β. If such t̂ does not exist, then the proof follows. Otherwise, since, for each
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j ∈ N\{it̂}, aj(t̂) = β, it̂ /∈ Ng(t̂) and Πit̂(s(t̂)) = 0. Hence, no link in g(t̂) is profitable.

Then, if all players in N\{it̂} revise consecutively, for each τ̂ ∈ [t̂+1, t̂+n−1], either
aiτ̂ � α, Liτ̂ (τ̂ ) ⊆ Kα(τ̂ − 1) and liτ̂ (τ̂) = 1 or aiτ̂ � α, Liτ̂ (τ̂ ) = ∅ and iτ̂ ∈ Ng(τ̂).
Thus, for each t′ ≥ t̂+ n− 1, s(t′) ∈ S∗, kα(t

′) = n and g (t′) ∈ Gm. �

Lemma 10 Let ε = 0. From each s ∈ S, with positive probability the dynamics leads
the system either (i) to a state s′ such that kα(s

′) = 0 or (ii) to a state s′′ such that
Kα(s

′′) is a minimally connected α − group, kα(s
′′) ≥ 2 and, for each i ∈ Kα(s

′′),
Li(s

′′) ⊂ Kα(s
′′).36

Proof. Let t1 ≥ 0 and s(t1) = s. If kα(t1) = 0, (i) holds. If kα(t1) ≥ 1, let all players
in Kα(t1) revise consecutively until t2 = t1+ kα(t1). If kα(t1) = 1, then, if ait1+1 � α,
the payoff to it1+1 is at most 0, whereas, if ait1+1 � β and Lit1+1(t1 + 1) = ∅, the
payoff to it1+1 is at least 0. Thus, with positive probability, ait1+1 � β and (i) holds.
Therefore, let kα(t1) ≥ 2. For each τ ∈ [t1 + 1, t2], if aiτ � α, then Liτ (τ ) must be
such that |Mα(s(τ))| = 1 and that j ∈ Liτ (τ ) if and only if both j ∈ Kα(τ − 1)
and Liτ (τ)\{j} implies |Mα(s(τ))| > 1. Given the revision structure, each M ∈
Mα(s(t2)) is minimally connected.37 If ait2 � α, (ii) holds. Otherwise, let all players
in Kα(t2) revise consecutively until t3 = t2+kα(t2). If for each τ ∈ [t2+1, t3], aiτ � β,
(i) holds. Otherwise, (ii) holds at period τ̂ ∈ [t2 + 1, t3] such that aiτ̂ � α. �

Lemma 11 Let ε = 0. For n large enough,
I) If c < x− x2, then s ∈ ⋃S̃∈S S̃ if and only if s ∈ S∗ and, either kα(s) = n

and g (s) ∈ Gm, or kα(s) = 0 and g(s) = gco.

II) If c > x−x2 and s ∈ ⋃S̃∈S S̃, then s ∈ S∗ and, either kα(s) = n and g (s) ∈ Gm,
or kα(s) = 0.

Proof. We first claim that, if there is S̃ ′ ∈ S such that for some s′ ∈ S̃ ′, kα(s
′) = n,

then for each s ∈ S̃ ′, kα(s) = n, s ∈ S∗ and g (s) ∈ Gm. Assume not, i.e., there is

s′′ ∈ S̃ ′ such that s′′ /∈ {s ∈ S∗ : kα(s) = n, and g (s) ∈ Gm}.38 By Lemma 8, for each

t ≥ 1, (Q0)
t
s′,s′′ = 0, a contradiction to s′, s′′ ∈ S̃ ′.

We now claim that, if there is S̃ ′ ∈ S such that for some s′ ∈ S̃ ′, kα(s
′) = 0, then

for each s ∈ S̃ ′, kα(s) = 0, s ∈ S∗ and, if c < x− x2, g(s) = gco. Assume not. First,

consider the case where there is s′′ ∈ S̃′ such that kα(s
′′) > 0. If c < x, by Lemma 9,

for each t ≥ 1, (Q0)
t
s′,s′′ = 0, a contradiction to s′, s′′ ∈ S̃ ′. For each t ≥ 1, if c > x,

by Lemma 9, (Q0)
t
s′,s′′ > 0 only if kα(s

′′) = n. But, then by the former claim, this

contradicts s′ ∈ ⋃
S̃∈S S̃. Second, consider the case where there is s′′ ∈ S̃ ′ such that

s′′ /∈ S∗. By Lemma 9, for each t ≥ 1, (Q0)
t
s′,s′′ = 0, a contradiction to s′, s′′ ∈ S̃ ′.

36Note that the fact that Kα(s
′′) is an α− group implies M(s′′) = {Kα(s

′′)}.
37Note that |Mα(s(t2))| > 1 only if ait2 � β.
38Note that this formulation allows for the case s′′ = s′.
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Finally, consider the case where c < x−x2 and there is s′′ ∈ S̃ ′ such that g(s′′) �= gco.

By Lemma 9, for each t ≥ 1, (Q0)
t
s′,s′′ = 0, a contradiction to s′, s′′ ∈ S̃ ′.

Given these two results, in order to prove part II) and the necessary condition
of part I) of the lemma, we just need to show that, from each s(0) ∈ S, there is
a sequence of events with positive probability that leads the system to a state in
{s ∈ S : kα(s) ∈ {0, n}}. If kα(0) ∈ {0, n}, the result is immediate. Thus, let
1 ≤ kα(0) ≤ n − 1. By Lemma 10, with positive probability, at some t1 > 0 the
system is either in a state s′ such that kα(s

′) = 0 or in a state s′′ = {(L′′j , a′′j )}j∈N
such that Kα(s

′′) is a minimally connected α − group, kα(s
′′) ≥ 2 and, for each

i ∈ Kα(s
′′), L′′i ⊂ Kα(s

′′). In the first case, the corresponding result follows. Thus,
consider the second case, i.e., s(t1) = s′′.

We first prove I). Let c < x − x2. We first show the necessary condition (⇒).
Let the players in Kβ(t1) revise consecutively until t2 = t1 + kβ(t1). If kα(t2) >
kα(t1) repeat the process, letting the players in Kβ(t2) revise consecutively until,
at some tr either kα(tr) = n or kα(tr) = kα(tr−1) < n. In the first case, the re-
sult follows. In the second case, for each j, j′ ∈ Kβ(tr), |Lj(tr) ∩Kα(tr)| = 1 and
(j, j′) ∈ g(tr). Moreover, at tr, Kα(tr) is a minimally connected α − group and, for
each i ∈ Kα(tr), Li(tr) ⊂ Kα(tr). Consider the event (with strictly positive proba-
bility) that, for each j ∈ Kβ(tr), Lj(tr) ∩ Kα(tr) = {m}, where m ∈ {j′ ∈ Kα(tr) :∣∣gKα(tr) ∩ {(j′, 1), ..., (j′, n)}

∣∣ = 1}, i.e., all players who form a link to the α−group get
linked to the same player, m, who is linked to only one α− player.39 Hence, at tr no
player in Kβ(tr) has incentives to switch to α. Let j ∈ Kβ(tr) and s̃j = (α, {m}) ∈ Sj.
Then, since Πj(s(tr)) ≥ Πj(s̃j, s−j(tr)),

kα(tr) ≤ (n− 1) · x− (lj(tr)− 1) · c. (1)

Let itr+1 = m. Then aitr+1 � α only if

kα(tr) ≥ (n− 1) · x+ 1, (2)

which, for each lj(tr) ≥ 1, is not compatible with (1). Then am � β and Lm(tr +
1) = Lm(tr). Note that Kα(tr + 1) is a minimally connected α − group. Then,
let the players in Kβ(tr + 1) revise consecutively until T = tr + 1 + kβ(tr + 1).
Since kα(tr + 1) < kα(tr), for each t′ ∈ [tr + 2, T ], ait′ � β, Lit′ (t

′) ∩ Kβ(tr + 1) =
Lit′ (tr + 1) ∩ Kβ(tr + 1) and |Lit′ (t′) ∩ Kα(tr + 1)| = 1. Consider the event (with
strictly positive probability) that, for each t′ ∈ [tr+2, T ], Lit′ (t′)∩Kα(tr+1) = {m′},
where m′ ∈ {j′ ∈ Kα(tr + 1) :

∣∣gKα(tr+1) ∩ {(j′, 1), ..., (j′, n)}
∣∣ = 1}. Then, by the

same arguments used above (equations (1)-(2)), if we let iT+1 = m′, am′ � β and
Lm′(T + 1) = Lm′(T ). Therefore, continuing recursively this process, at some finite
T ′, kα(T

′) = 0 and the result follows. This proves the necessary condition.

39Note that, since the α− group is minimally connected, there are at least two players that are
linked to only one member of the α− group.
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We prove the sufficient condition (⇐). First, let s′ ∈ S∗, such that kα(s
′) = 0

and g (s′) = gco and let t ≥ 0 such that s(t) = s′. Since c < x − x2, for each t′ > t,

s(t′) = s′. Hence, s′ ∈ ⋃
S̃∈S S̃. On the other hand, for each s ∈ S∗, such that

kα(s) = n and g (s) ∈ Gm, by Lemma 9, s ∈ ⋃
S̃∈S S̃. This proves I).

We now prove II). Let c > x − x2. Let d̄ be the maximum element of {d ∈ Z :
2xd ≥ 2x− c}, let n̄ be the minimum element of {n ∈ Z : (n− 1)xd̄+1 > c/(x− x2)}
and assume that n > n̄. Let the players in Kβ(t1) revise consecutively from t1 + 1
to t2 = t1 + kβ(t1) (recall that s(t1) = s′′). Then, for each t′ ∈ [t1 + 1, t2], there is a
unique and minimally connected α− group and |Lit′ (t′) ∩Kα(t

′)| ≤ 1. If kα(t2) = n,
by Lemma 8, the result follows. If kα(t2) < n, consider the event (with strictly
positive probability) that, for each j ∈ Kβ(t2), Lj(t2) ∩ Kα(t2) ∈ {∅, {m}}, where
m ∈ {j′ ∈ Kα(t2) :

∣∣gKα(t2) ∩ {(j′, 1), ..., (j′, n)}
∣∣ = 1}. For each t, let K̄β(t) := {j ∈

Kβ(t) : dj,m(g(t)) > d̄} and let it2+1 ∈ K̄β(t2). Since, for each d > d̄, 2xd < 2x − c,
Lit2+1(t2+1) is such that dit2+1,m(g(t2+1)) ≤ d̄.40 Then, K̄β(t2+1) ⊂ K̄β(t2). Repeat

the process, letting a player in K̄β(t2+1) revise in t2+2 and so on, until some period T
such that K̄β(T ) = ∅ and, for each j ∈ Kβ(T ), LiT (T )∩Kα(T ) ∈ {∅, {m}}. Consider
the event (with strictly positive probability) that

∣∣gKα(T ) ∩ {(m, 1), ..., (m,n)}
∣∣ = 1.

Let iT+1 = m. There are two cases: (i) kα(T ) < 1 + (n − 1)xd̄+1 and (ii) kα(T ) ≥
1 + (n − 1)xd̄+1. Former to the analysis of the two cases, for each period t > T , let

us denote by L̃it(t) ∈ 2(N\{m}) be the set of links that maximize the payoff to it at t

conditional on ait � α, and let l̃it(t) = |L̃it(t)|.
Consider case (i), i.e., kα(T ) < 1+ (n− 1)xd̄+1. In this case, l̃m(T +1) ∈ {0, 1}.41

Assume first that kα (T ) = 2. If am � α, she gets a maximum payoff of 1− l̃m(T+1)·c
whereas, if am � β, she gets a payoff greater than (n− 2) xd̄−l̃m(T+1)·c. Hence, for n
large enough, am � β and kα (T + 1) = 1. Then, let iT+2 ∈ Kα (T + 1). If aiT+2 � α,
the payoff iT+2 obtains is at most 0, whereas, if aiT+2 � β and LiT+2(T + 2) = ∅,
the payoff to iT+2 is at least 0. Thus, with positive probability, aiT+2 � β. Hence,
kα(T +2) = 0 and the result follows. Assume now that kα (T ) > 2. Then, if am � α,

m gets a maximum payoff of kα (T ) − 1 − l̃m(T + 1) · c whereas, if am � β, since

kα (T ) > 2, she gets a payoff greater than (n− 1)xd̄ − l̃m(T + 1) · c. Then, since
kα(T ) < 1 + (n− 1)xd̄+1 and x < 1, am � β.

If kα (T + 1) = 2, we are in the previous situation and the result follows. If
kα (T + 1) > 2, let iT+2 ∈ {j′ ∈ Kα(T + 1) :

∣∣gKα(T+1) ∩ {(j′, 1), ..., (j′, n)}
∣∣ = 1}.

If aiT+2 � α she gets at most kα (T + 1) − 1 − l̃iT+2(T + 2) · c. If aiT+2 � β, she
can form a link to m (so that she observes all the players at distance at most d̄+ 1)

40Note that since kα(t2) ≥ 2, either ait2+1 � α and she forms a direct link to the α − group or

ait2+1 � β and she creates links such that she is at distance at most d̄ from the α − group. In
the former case, we assume that the link is to a player different from m and, in the later case, if
it2+1 forms a (direct) link to the α− group, we assume that the link is to m.

41Note that l̃m(T + 1) = 1 if and only if, for each j′ ∈ Kα(T ), m /∈ Lj′(T ).
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and, therefore, the payoff to iT+2 is at least (n− 1) xd̄+1 − (l̃iT+2(T + 2) + 1) · c.
Since kα(T + 1) = kα (T ) − 1 and kα(T ) < 1 + (n − 1)xd̄+1, aiT+2 � β.42 Then,

either kα (T + 2) = 2, or we repeat recursively the process until some T̂ , such that
kα(T̂ ) = 2. Then, we are in the previous situation and the result follows.

Consider case (ii), i.e., kα(T ) ≥ 1 + (n − 1)xd̄+1. Let all those player in Kβ(T )
that are not directly linked to m revise consecutively, say until period T ′. Since n > n̄
and kα(T ) ≥ 1 + (n − 1)xd̄+1, kα(T ) > c/(x − x2). Hence, for each t ∈ [T + 1, T ′],
|Lit(t) ∩Kα(t)| = 1. Consider the event (which has positive probability) that, for each
j ∈ Kβ(T

′), Lj(T
′) ∩ Kα(T

′) = {m} and
∣∣gKα(T ′) ∩ {(m, 1), ..., (m,n)}

∣∣ = 1. Thus,
kα(T

′) ≥ kα(T ). Then, let the players in Kβ(T
′) revise consecutively until a period

T1 ∈ [T ′ + 1, T ′ + kβ(T )] such that either aiT1 � β and, for each t ∈ [T + 1, T1 − 1],
ait � α or T1 = T ′+ kβ(T

′) and, for each t ∈ [T +1, T1], ait � α. In the second case,
the result follows. Thus, assume the first case. Since kα(T1−1) ≥ kα(T ), kα(T1−1) ≥
1 + (n − 1)xd̄+1. Thus iT1 gets directly linked to the α − group. As in the previous
cases, assume LiT1 (T1) ∩Kα(T1) = {m} and

∣∣gKα(T1) ∩ {(m, 1), ..., (m,n)}
∣∣ = 1.

Since aiT1 � β, the largest payoff to iT1 by choosing β, i.e., (n− 1)x− l̃iT1 (T1) · c,
must be higher than the payoff that she gets choosing α, i.e., kα(T1− 1)− l̃iT1 (T1) · c.
Hence, kα(T1 − 1) ≤ (n− 1) · x. Let iT1+1 = m. Since kα(T1) = kα(T1 − 1), kα(T1) ≤
(n − 1) · x and, therefore, aim � β and Lm(T1 + 1) = Lm(T1).

43 Assume that from
T1+2 all players in {j ∈ Kβ (T1) : Lj (T1)∩Kβ (T1) �= ∅} revise consecutively, say until
period T2. Then, for each t′ ∈ [T1 + 2, T2], if ait′ � β, then Lit′ (t

′) ∩Kβ (t
′) = {m}

and |Lit′ (t′) ∩ Kα (t
′) | = 1.44 Moreover, if there is τ ∈ [T1 + 2, T2 − 1] such that

aiτ � α, then aiT2 � α.45 Hence, there are two possibilities. First, if aiT2 � α,
let the players in kβ(T2) revise consecutively. Then all of them switch to α and the
result follows. Second, if aiT2 � β, then kβ(T2) = kβ(T1 + 1). If aiT2 � α, her payoff

is kα(T2)− l̃iT2 (T2) · c. If aiT2 � β, her payoff is x + (kβ(T2)− 2) · x2 + kα(T2) · x −
(l̃iT2 (T2) + 1) · c. Then, since aiT2 � β is a best response,

kα(T2) · (1− x) ≤ x+ (kβ(T2)− 2) · x2 − c. (3)

Then, let iT2+1 ∈ {j′ ∈ Kα(T2) :
∣∣gKα(T2) ∩ {(j′, 1), ..., (j′, n)}

∣∣ = 1}. If aiT2+1 � α,

her payoff is at most kα(T2)− 1− l̃iT2+1(T2 + 1) · c. If aiT2+1 � β, by creating a link

to m, the payoff to iT2+1 is at least kα(T2)x + (kβ(T2)− 1) x2 − (1 + l̃iT2+1(T2 + 1))c.

42Note that aiT+2 � β if kα(T +1)− 1 < (n− 1)xd̄+1 − c that, since kα(T +1) = kα (T )− 1, can
be rewritten as kα(T )− (1− c) < (n− 1)xd̄+1 + 1.

43Note that the payoff to m at T1 + 1 if am � α exceeds her payoff if am � β only if kα(T1) >
(n− 1)x+ 1.

44Note that, since kα(T1) ≥ kα(T ), and aiT1+1 � β, kα(t
′) ≥ kα(T ) − 1. Thus, since kα(T ) ≥

1 + (n − 1)xd̄+1, kα(t′) ≥ (n − 1)xd̄+1. Moreover, since n > n̄, kα(t′) > c/(x − x2). Hence,
|Lit(t′) ∩Kα(t

′)| = 1.
45Note that iT2 does not receive any links from β − players at period T2.
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Hence, aiT2+2 � α only if kα(T2) − 1 ≥ kα(T2)x + (kβ(T2)− 1) x2 − c, which is
incompatible with (3). Hence aiT2+1 � β. Then, repeat recursively the process until
T3 = T2 + 1 + kα(T2 + 2), choosing for each t ∈ [T2 + 2, T3], it ∈ {j′ ∈ Kα(t − 1) :∣∣gKα(t−1) ∩ {(j′, 1), ..., (j′, n)}

∣∣ = 1}. Since kα(T2+2) = kα(T2+1)− 1, by the former
argument (using (3)), aiT2+2 � β. Following the same reasoning for the subsequent
periods, kα(T3) = 0 and the result follows. �

Lemma 12 For each pair S̃ ′, S̃ ′′ ∈ S such that that S̃ ′, S̃ ′′ ⊆ {s ∈ S∗ : kα(s) = n and
g(s) ∈ Gm}, there is a path of one step mutations in the set {s ∈ S∗ : kα(s) = n and

g(s) ∈ Gm} from S̃ ′ to S̃ ′′.

Proof. Let s′ = {(L′j , a′j)}j∈N ∈ S̃ ′ and s′′ = {(L′′j , a′′j )}j∈N ∈ S̃ ′′. Assume that,
for some t ≥ 0, s(t) = s′. Consider that, for each j ∈ N , there is one period tj
where j mutates and, after each mutation, the players that have not mutated yet
revise consecutively. We order the periods of mutation inversely to the player indices
(tn < ... < t1) such that, after the mutation of player j, from tj+1 to t′j = tj+(j−1),
players from 1 to j − 1 revise (for instance, for each j′ ∈ {1, ..., j − 1}, j′ = itj+j′).
Then, let tn = t + 1 and, for each j < n, tj = t′j+1 + 1.

46 For each j ∈ N , let the
mutation at tj be such that aj � α and Lj (tj) = L′′j . Then, since kα(t) = n and
each player that mutates chooses α, for each τ ∈ [tn, t′1], kα(τ ) = n. Since after j’s
mutation at period tj, each j′ ∈ {1, ..., j − 1} revises consecutively until t′j, the best
responses of these players imply the choice of link strategies such that s(t′j) ∈ S∗ and

g(t′j) ∈ Gm. Hence, for each j ∈ N , s
(
t′j
)
∈ {s ∈ S∗ : kα(s) = n and g(s) = Gm}. By

construction, since at t′1 there has been a mutation for each j ∈ N in the direction of
s′′, s (t′1) = s′′. �

Proof of Lemma 2

We proceed in 3 steps. By part I of Lemma 11,
⋃
R∈RE(R) ⊆ {s ∈ S∗ : either

kα(s) = 0 and g(s) = gco or kα(s) = n and g(s) ∈ Gm}.
Step 1. Let s′ ∈ S∗ such that kα(s

′) = 0 and g(s′) = gco. We claim that, if there
is R ∈ R such that s′ ∈ E(R), then {s ∈ S∗ : kα(s) = 0 and g(s) = gco} ⊆ E(R).
To prove it, it suffices to show that, for each pair s′, s′′ ∈ {s ∈ S∗ : kα(s) = 0
and g(s) = gco}, there is a path of one-step mutations in {s ∈ S∗ : kα(s) = 0 and
g(s) = gco} from s′ to s′′. We construct it as follows. Let s′ = {(L′j, a′j)}j∈N and
s′′ = {(L′′j , a′′j )}j∈N . Assume that, for some t ≥ 0, s(t) = s′. Consider that, for each
j ∈ N , there is one period tj where j mutates and, after each mutation, the players
that have not mutated yet revise consecutively. We order the periods of mutation
inversely to the player indices (tn < ... < t1) such that, after the mutation of player
j, from tj + 1 to t′j = tj + (j − 1), players from 1 to j − 1 revise. Then, let tn = t+ 1
and, for each j < n, tj = t′j+1 + 1. For each j ∈ N , let the mutation at tj be such
that aj � β and Lj (tj) = L′′j . Then, since kα(t) = 0 and c < x− x2, for each j ∈ N ,

46Player j mutates after j + 1 has mutated and all the players in {1, ..., j} have revised.
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s
(
t′j
)
∈ {s ∈ S∗ : kα(s) = 0 and g(s) = gco}. By construction, since at t′1 there has

been a mutation for each j ∈ N in the direction of s′′, s (t′1) = s′′.
Step 2. We claim that, for n large enough, there is Rβ ∈ R such that Rβ =

{s ∈ S∗ : kα(s) = 0 and g(s) = gco}. Given Step 1, in order to prove the claim, it
suffices to show that, if s(t) ∈ {s ∈ S∗ : kα(s) = 0 and g(s) = gco}, after any possible
single mutation at t+1 followed by the unperturbed dynamics, the system goes with
probability one to a state in {s ∈ S∗ : kα(s) = 0 and g(s) = gco}. If the mutation at
t+ 1 is such that ait+1 � β, by Lemma 9, the claim follows. Thus, let the mutation
be such that ait+1 � α. Let it+2 ∈ N\{it+1}. If ait+2 � α the payoff to it+2 is at
most 1. If ait+2 � β the payoff to it+2 is at least (n− 1) (x− c). Hence, for n large
enough, ait+2 � β. By the same reasoning, for each t′ > t+ 2, ait′ � β. Eventually,
at some t′′ > t + 1, with positive probability it′′ = it+1. Hence, kα(t

′′) = 0 and, by
Lemma 9, the claim follows.
Step 3. We claim that, for n large enough, there isRα ∈ R such thatE(Rα) = {s ∈

S∗ : kα(s) = n and g(s) ∈ Gm}. By Lemma 8.II and Lemma 12, {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm} satisfies property II of Definition 1. Thus, we just need to prove that
it also satisfies property I. To this aim, we now show that, if s(t) ∈ {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm} and n is large enough, then after any possible single mutation at
t+1 followed by the unperturbed dynamics, the system goes with probability one to a
state in {s ∈ S∗ : kα(s) = n and g(s) ∈ Gm}. First note that, if the mutation at t+1
is such that ait+1 � α, by Lemma 8, the system goes to a state in {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm}. Thus, let the mutation be such that ait+1 � β. Let it+2 ∈ N\{it+1}.
If ait+2 � β the payoff to it+2 is at most (n − 1)x. If ait+2 � α the payoff to it+2
is at least (n− 2) (1− c). Then, if (n− 2) (1− x− c) > x, ait+2 � α. Hence, since
c < x − x2 < 1 − x, for n large enough, ait+2 � α. By the same reasoning, for each
t′ > t+2, ait′ � α. Eventually, at some t′′ > t+1, with positive probability it′′ = it+1.
Hence, kα(t

′′) = n and, by Lemma 8, the system goes to a state in {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm}.
Step 4. Since E(Rα) ∪ E(Rβ) =

⋃
S̃∈S S̃, R = {Rα, Rβ}. �

Proof of Lemma 3

Let x− x2 < c < x. We proceed in 5 steps.

Step 1. We shall prove the following two claims. Claim 1: Let s(t) ∈ S∗ such
that kα(t) = n and g(t) ∈ Gm. For n large enough, if c < 1− x2, after any possible
single mutation at t+1 followed by the unperturbed dynamics, the system goes with
probability one to a state s′ ∈ S∗ such that kα(s

′) = n and g(s′) ∈ Gm. Claim 2: Let
s(t′) ∈ S∗ such that kα(t

′) = n, g(t′) ∈ Gst and lı̂(g(t′)) = n − 1. If c > 1 − x2, then
there is one single mutation at t′ + 1 that, followed by the unperturbed dynamics,
leads the system to a state s′′ such that kα(s

′′) = 0.
By Lemma 8, a mutation at t + 1 such that ait+1 � α satisfies the statement of

Claim 1 and does not allow to prove Claim 2. Thus, consider a mutation such that
ait+1 � β. Let it+2 ∈ N\{it+1}. Let s̄′it+2 = (L̄

′
it+2

, α) ∈ Sit+2 be the strategy where
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it+2 chooses action α and the set of links L̄′it+2 that maximizes her payoff conditional
on ait+2 = α and the strategies of the other players at t+2. Define analogously s̄′′it+2 =

(L̄′′it+2, β) ∈ Sit+2 . Denote byM1 ⊆Mα(s̄
′′
it+2

, s−it+2(t+2)) the set of those α−groups
to which it+2 gets directly linked if ait+2 � β. Denote by M2 ⊆Mα(s̄

′′
it+2

, s−it+2(t+
2))\M1 the set of those α−groups to which it+2 gets indirectly linked at distance 2
via her link to it+1 if ait+2 � β.47 Let m1 =

∣∣⋃
M∈M1

M
∣∣ and m2 =

∣∣⋃
M∈M2

M
∣∣. Note

that m1+m2 = kα(t+1)−1. Then Πit+2(s̄
′′
it+2

, s−it+2(t+2)) = (1+m1)x+m2x
2− l̄′′it+2c.

On the other hand, if ait+2 � α, she optimally gets (directly) linked to every α−group
and it+1 /∈ L̄′it+2 . Let d = 0 if it+2 ∈ Lit+1(t + 2) and d = 1 otherwise. Then

l̄′it+2 = (l̄
′′
it+2
−d)+ |M2|. Hence, Πit+2(s̄

′
it+2

, s−it+2(t+2)) = n−2−(l̄′′it+2−d+ |M2|)c.
Therefore, Πit+2(s̄

′′
it+2

, s−it+2(t+ 2))−Πit+2(s̄′it+2, s−it+2(t+ 2)) equals

m1x+m2x
2 + |M2| c− dc+ x− (n− 2). (4)

We now determine the state smax that maximizes (4) in S(t + 1) := {s(t + 1) ∈ S :
s(t) ∈ S∗, kα(t) = n, g(t) ∈ Gm and ait+1 � β}. We analyze (4) by parts. First
note that x − (n− 2) is common to all s ∈ S(t + 1). We claim that, in smax, d = 0,
|M2| = m2 and m2 = n − 2. The first two conditions are straightforward. Thus,
we shall prove the third one. Let d = 0, |M2| = m2 and assume for the sake of
contradiction that, in smax, m2 < n − 2. Then M1 �= ∅. Let M ∈ M1 and j ∈ M .
Consider s′ ∈ S(t+1) that only differs from smax in the fact that {j} is a (separated)
α− group and j ∈ Lit+1(t+ 1). Then, since c > x− x2, in state s′, {j} ∈ M′

2. Thus,
|M′

2| = |M2|+ 1, i.e., m′
2 = m2 + 1, and m′

1 = m1 − 1. Since x2 + c > x, expression
(4) is higher for s′ than for smax, a contradiction. Finally, we show that there exists
smax ∈ S(t + 1) such that d = 0, |M2| = m2 and m2 = n − 2. Let s(t) ∈ S∗ be
such that g(t) ∈ Gst and Lı̂(g(t))(t) = n− 1. Then, just consider the mutation where
it+1 = ı̂(g(t)), ait+1 � β and Lit+1(t + 1) = Lit+1(t), and we obtain the desired smax.
Substituting d = 0 and |M2| = m2 = n− 2 in (4) we obtain

x− (n− 2)(1− x2 − c). (5)

If 1 − x2 − c > 0, then, for n large enough, (5) is negative. Thus, no player in
N\{it+1} switches to β when revising her action and when, eventually, at some finite
t′ > t + 1, it′ = it+1, it′ � α. Since kα(t

′) = n, by Lemma 8, Claim 1 follows. Now,
let 1− x2 − c < 0 and consider that, starting at s(t+ 1) = smax, from period t+ 2 to
T = t+n, the players in N\{it+1} revise consecutively. Since (5) is positive ait+2 � β
and Lit+2(t + 2) = ∅. This, in turn, increases the incentives to switch to β for the
next player who revises. Hence, for each t ∈ [t+ 2, T ], ait � β and Lit(t) = ∅. Then
kα(T ) = 0 and Claim 2 follows.

Step 2. Let s(t) ∈ S∗ such that kα(t) = 0. We claim that, for n large enough,
after any possible single mutation at t+1 followed by the unperturbed dynamics, the

47Note that, since c < x, if it+2 /∈ Lit+1(t+ 1) then it+1 ∈ L′′it+2 .

28



system goes with probability one to a state s′′ ∈ S∗, such that kα(s
′′) = 0. Note that,

if the mutation is such that ait+1 � β, by Lemma 9, the claim follows. Thus, let the
the mutation be such that ait+1 � α. Let it+2 ∈ N\{it+1}. If ait+2 � α the payoff
to it+2 is at most 1. If ait+2 � β the payoff to it+2 is at least (n− 1) (x− c). Since
c < x, for n large enough, ait+2 � β. By the same reasoning, for each t′ > t + 2,
ait′ � β. Eventually, at some t′′ > t+ 1, with positive probability it′′ = it+1. Hence,
kα(t

′′) = 0 and, by Lemma 9, the claim follows.

Step 3. Let s(t) ∈ S such that kα(t) = 0. We claim that, for each s′ ∈ {s ∈ S∗ :
kα(s) = 0, g(s) ∈ Gst and lı̂(g(s)) = n − 1}, there is a single mutation at t + 1 that,
followed by the unperturbed dynamics, leads the system to s′. Moreover, if T ≥ t+1
is such that s(T ) = s′, then, for each t′ > T , s(t′) = s′. Let it+1 = ı̂(s′) and the
mutation be such that ait+1 � β and Lit+1 (t+ 1) = N\{it+1}. Then, consider that,
from period t+2 to T = t+n, the players in N\{it+1} consecutively revise. Then, for
each Lit+2 ∈ 2N\{it+2}, if ait+2 � α then the payoff to it+2 is −lit+2c and, if ait+2 � β,
the payoff to it+2 is x+ (n− 1)x2 − lit′ c. Hence, ait′ � β and Lit′ (t

′) = ∅. The same
reasoning holds for each t′ ∈ [t + 3, T ], i.e., ait′ � β and Lit′ (t

′) = ∅. Therefore,
s(T ) = s′. It is immediate to see that, for each t′ > T , s(t′) = s(T ).

Step 4. We claim that for each s̄, s̄′ ∈ {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst} there
is a path of one step mutations in {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst} from s̄ to s̄′.
The claim directly follows from Lemma 2 of Feri [9].48

Step 5. Finally, we complete the proof using the previous steps. By part II of
Lemma 11,

⋃
R∈RE(R) ⊆ {s ∈ S∗ : either kα(s) = n and g(s) ∈ Gm or kα(s) = 0}.

We first prove part I. Let x − x2 < c < min{x, 1 − x2}, by Lemma 12, Rα satisfies
property (II) of Definition 1. By Claim 1 of Step 1, Rα also satisfies property (I).
Hence Rα ∈ R. We claim that, if for some R̄ ∈ R there is s′ ∈ E(R̄) such that
kα(s

′) = 0, then E(R̄) ⊇ {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst}. Assume not. Then, by
Steps 3 and 4, R̄ does not satisfy property (I) of Definition 1, a contradiction. Note
that the claim implies that E(R̄) ⊇ {s ∈ S : kα(s) = 0} ∩ (⋃R∈RE(R)). We now
claim that there is Rβ′ ∈ R such that, for each s′ ∈ E(Rβ′), kα(s

′) = 0. Let Rβ′ ⊆ S
that satisfies the following two conditions. First, E(Rβ′) ⊇ {s ∈ S∗ : kα(s) = 0 and
g(s) ∈ Gst}. Second, E(Rβ′) is formed by all the states in {s ∈ S∗ : kα(s) = 0} such
that, for each s′, s′′ ∈ E(Rβ′), a path of one step mutations allows for a transition from
s′ to s′′. By Step 4, the second condition is satisfied by the states in {s ∈ S∗ : kα(s) = 0
and g(s) ∈ Gst}, which guarantees the existence of Rβ′ . Hence, Rβ′ satisfies property
(II) of Definition 1. By Step 2, it is not possible to move from Rβ′ to Rα using paths
of one step mutations. Hence, Rβ′ also satisfies property (I), which proves the claim.
We now prove part II. Let 1− x2 < c < x. By Claim 2 of Step 1, Rα does not satisfy

48In Feri [9], players’ strategies only have the links dimension and all the links that form are
subjected to an exogenous decay factor δ ∈ (0, 1). If we consider paths of one step mutations where
players only change links (and, therefore, all of them remain using action β), we can identify x to δ
and use Feri’s [9] result. Note that, our set {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst} corresponds to Gs

in Feri [9].
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property (I) of Definition 1. By an analogous reasoning to that used in part I, there
exists R̄′ such that R̄′ ∈ R, E(R̄′) ⊇ {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst} and, for
each s ∈ E(R̄′), kα(s) = 0. Hence, let Rβ′′ = R̄′. Finally, part III is already shown in
the proof of parts I and II. �

Proof of Lemma 4

Let c > x. By part II of Lemma 11, if s ∈ ⋃
S̃∈S S̃, then s ∈ S∗ and either

kα(s) = n and g(s) ∈ Gm or kα(s) = 0. By part II of Lemma 8, {s ∈ S∗ : kα(s) = n

and g(s) ∈ Gm} ⊆ ⋃
S̃∈S S̃. We proceed in 4 steps.

Step 1. We claim thatR = {R} and {s ∈ S∗ : kα(s) = n and g(s) ∈ Gm} ⊆ E(R),

which follows from the following two results. We first claim that from s(t) ∈ ⋃
S̃∈S S̃

such that kα(t) = 0, a single mutation at t+1 followed by the unperturbed dynamics,

leads the system to a state in {s ∈ ⋃S̃∈S S̃ : kα(s) = n}. Consider a mutation such
that ait+1 � β and Lit+1 (t+ 1) = N\{it+1}. Then, let the players in N\{it+1} revise
consecutively until t1 = t + n. For each t′ ∈ [t+ 2, ..., t1], ait′ � β and Lit′ (t

′) = ∅.
Let it1+1 = it+1. Then, Lit1+1 (t1 + 1) = ∅ and, with positive probability, ait1+1 � α.
Thus, g(t1 + 1) = ∅. Then, let the players in N\{it1+1} revise consecutively until
t2 = t1 + n. For each t′ ∈ [t1 + 2, ..., t2], a best response implies ait′ � α, lit′ (t

′) = 1
and Lit′ (t

′) ⊆ Kα (t
′ − 1). Then kα (t2) = n. By Lemma 8, the claim follows.

Second, we claim that there is no R ∈ R such that E(R) ∩ {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm} = ∅. Assume not. Then by our first claim, R does not satisfy
property (I) of Definition 1, a contradiction. Hence, by Lemma 12, for each R′ ∈ R,
{s ∈ S∗ : kα(s) = n and g(s) ∈ Gm} ⊆ E(R′), which implies that |R| = 1.
Step 2. Let s(t) ∈ {s ∈ ⋃

S̃∈S S̃ : kα(s) = n}. We claim that, for n large enough, if
c < 1−x2− x

n−2 , after any possible single mutation at t+1 followed by the unperturbed

dynamics, the system goes with probability one to a state in {s ∈ ⋃
S̃∈S S̃ : kα(s) = n}.

By Lemma 8, a mutation at t + 1 such that ait+1 � α satisfies the statement of the
claim. Thus, consider a mutation such that ait+1 � β. Let it+2 ∈ N\{it+1} and let
s̄′it+2 = (L̄′it+2, α), s̄′′it+2 = (L̄′′it+2 , β), M1, M2, m1, m2 and d be defined exactly as
in Step 1 of the proof of Lemma 3. Let M∞ ⊆ Mα(s̄

′′
it+2

, s−it+2(t + 2)) be the set
of those α−groups that it+2 does not observe (neither directly nor indirectly) if she
chooses s̄′′it+2 , and m∞ =

∣∣⋃
M∈M∞

M
∣∣.49 Note that m1 +m2 +m∞ = kα(t+ 1)− 1.

In this case, l̄′it+2 = (l̄′′it+2 − d) + |M2| + m∞. Hence, Πit+2(s̄
′′
it+2

, s−it+2(t + 2)) =

(1+m1)·x+m2·x2−l̄′′it+2 ·c andΠit+2(s̄′it+2 , s−it+2(t+2)) = n−2−(l̄′′it+2−d+|M2|+m∞)c.
Therefore, Πit+2(s̄

′′
it+2

, s−it+2(t+ 2))−Πit+2(s̄′it+2, s−it+2(t+ 2)) equals

m1x+m2x
2 + |M2| c+m∞c− dc+ x− (n− 2). (6)

By analogous arguments to those used in Step 1 of the proof of Lemma 3, (6) is
maximized when d = 0, |M2| = m2 and m2 = n− 2. Introducing these values in (6)

49Each M ∈ M∞ must be a singleton since, if |M | ≥ 2, it+2 would form a link to one player in
M when ait+2 � β.
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we obtain
x− (n− 2)(1− x2 − c). (7)

Since c < 1 − x2 − x
n−2 , (7) is negative. Thus, no player in N\{it+1} switches to β

when revising her action and when, eventually, at some finite t′ > t + 1, it′ = it+1,
it′ � α. Since kα(t

′) = n, by Lemma 8, the claim follows.

Step 3. Let c > 1−x2− x
n−2 . We claim that, for n large enough, for each j ∈ N , a

single mutation at t+1 followed by the unperturbed dynamics, allows for a transition
from s ∈ ⋃S̃∈S S̃ such that kα(s) = n, g(s) ∈ Gst, ı̂(g(s)) = j and lj = 0 to s′ ∈ S∗

such that kα(s
′) = 0, g(s′) ∈ Gst, ı̂(g(s′)) = j, and l′j = 0. Let s(t) = s. Let it+1 = j

and consider the mutation at t + 1 such that aj � β and lj(t + 1) = 3. Let the
players in Lj(t + 1) revise consecutively until t + 4. If ait+2 � α, the payoff to it+2
at t + 2 is (n− 2) (1 − c) whereas, if ait+2 � β, her payoff is x + x2(n − 2). Since,
c > 1−x2− x

n−2 , ait+2 � β. By the same reasoning, ait+3 � β and ait+4 � β. Let the
players in N\{Lj(t+1)∪{j}} revise consecutively until t+n. For each τ ∈ {5, ..., n},
assuming that ait+τ ′ � β for each τ ′ ∈ {4, ..., τ − 1}, if ait+τ � α, then the payoff to
it+τ at t+τ is (n− τ ) (1−c) whereas, if ait+τ � β, then her payoff is x−c+x2(n−2).
Hence, in such a case, ait+τ � β if

x− c+ x2(n− 2) ≥ (n− τ ) (1− c). (8)

The LHS of (8) does not depend on τ , whereas the RHS is decreasing in τ . Hence,
since ait+4 � β, if (8) holds for τ = 5, then, for each τ̂ ∈ {5, ..., n}, ait+τ̂ � β. Hence,

let τ = 5. We can rewrite (8) as c ≥ (n−5)−x2(n−2)−x
(n−6) . Since c > 1−x2− x

n−2 , in order to

show that c > (n−5)−(n−2)x2−x
n−6 it suffices to show that 1− x2 − x

n−2 > (n−5)−(n−2)x2−x
n−6 ,

i.e., (n−2)(4x2−1)+4x
(n−6)(n−2) > 0. Since x > 1

2
, for n > 7, the inequality holds. Hence,

kα(t+ n) = 0, g(t+ n) ∈ Gst, ı̂(g(t+ n)) = j and lj(t+ n) = 3. Then, let it+n+1 = j.
If aj � α, her payoff is at most 0 whereas, if aj � β, her payoff is strictly positive.
Hence aj � β and lj(t+ n+ 1) = 0. Let the players in Lj(t+ 1) revise consecutively
until t + n + 4. If ait+n+2 � α, her payoff is at most 0 whereas, if ait+n+2 � β and
Lit+n+2(t + n+ 2) = {j}, her payoff is x + x2(n − 2)− c. Hence, for n large enough,
ait+n+2 � β and Lit+n+2(t + n + 2) = {j}. By the same reasoning, ait+n+3 � β,
ait+n+4 � β and Lit+n+3(t+n+3) = Lit+n+4(t+n+4) = {j}. Then, s(t+n+4) ∈ S∗,
kα(t+ n+ 4) = 0, g(t+ n+ 4) ∈ Gst, ı̂(g(t+ n+ 4)) = j and lj = 0.

Step 4. Finally, we complete the proof using the previous steps. By Step 1,
there is a unique recurrent set, namely R, such that E(R) ⊇ {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm}. Moreover, by Lemma 11, E(R) ⊆ {s ∈ S∗ : kα(s) = n and
g(s) ∈ Gm} ∪ {s ∈ S∗ : kα(s) = 0}. We first prove part I). Since c < 1− x2 − x

n−2 , by
Step 2, {s ∈ S∗ : kα(s) = n and g(s) ∈ Gm} satisfies property (I) of Definition 1. By
Lemma 12, {s ∈ S∗ : kα(s) = n and g(s) ∈ Gm} satisfies property (II) of Definition
1. Hence, R = Rα. We now prove part II). By Step 3, E(R) ⊃ {s ∈ S∗ : kα(s) = 0,
g(s) ∈ Gst and lı̂(s) = 0}, since otherwise R does not satisfy property (I) of Definition
1. Hence, R1 = R. �
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Proof of Lemma 5

If c < x − x2, by Lemma 2, R = {Rα, Rβ}, where E(Rα) = {s ∈ S∗ : kα(s) = n
and g(s) ∈ Gm} and E(Rβ) = {s ∈ S∗ : kα(s) = 0 and g(s) = gco}. We proceed in
two steps.

Step 1. We claim that ωαβ = ⌈(n − 1)(1 − x)⌉. Consider the transition from
s′ ∈ E(Rα) to s′′ ∈ E(Rβ). Let s(t) = s′ for some t ≥ 0. Consider a sequence
of ω consecutive mutations such that, for each τ ∈ [t + 1, t + ω], aiτ � β. Let
t1 = t + ω + 1 and it1 ∈ N\{it+1, ..., it+ω}. Let s̄′it1 = (L̄′it1 , α) ∈ Sit1 be the

strategy where it1 chooses action α and the set of links L̄′it1 that maximizes her

payoff conditional on ait1 = α. Define analogously s̄′′it1 = (L̄
′′
it1
, β) ∈ Sit1 . Denote by

M1 ⊆Mα(s̄
′′
it1

, s−it1 (t1)) the set of those α−groups to which it1 gets directly linked by

supporting one link if ait1 � β. Then Πit1 (s̄
′′
it1

, s−it1 (t1)) = (n−1)x− (|M1|+ l′′βit1 )c.
50

If s̄′′it1 is a best response then, for each j ∈ {it+1, ..., it+ω} such that it1 /∈ Lj(t1),

j ∈ Lit1 (t1) and M ∈ M1 if and only if, for each j′ ∈ M , it1 /∈ Lj(t1). On the other
hand, Πit1 (s̄

′
it1
, s−it1 (t1)) = (n− 1− ω)− |M1| c.51 Player it1 prefers action β only if

Πit1 (s̄
′′
it1
, s−it1 (t1)) ≥ Πit1 (s̄′it1 , s−it1 (t1)), i.e.,

ω ≥ l′′βit1c+ (n− 1)(1− x). (9)

The RHS of (9) is minimized when l′′βit1 = 0. Let

ω̄ = ⌈(n− 1)(1− x)⌉. (10)

Hence, ω ≥ ω̄ is a necessary condition for a transition from s′ to s′′. We now claim
that there exist s̃′ ∈ E(Rα) and s̃′′ ∈ E(Rβ) such that ω ≥ ω̄ is also sufficient
for a transition from s̃′ to s̃′′. Let s̃′ ∈ E(Rα) and ω = ω̄, and consider that, for
each τ ∈ [t + 1, t + ω], aiτ � β and Liτ (τ ) = N\{iτ}. Then, let the players in
N\{it+1, ..., it+ω} revise consecutively from t1 = t+ω+1 to t2 = t+n. Then, for each
τ ∈ [t1, t2], aiτ � β. Hence kα(t2) = 0 and, by Lemma 9, the claim follows. Hence,
ωαβ = ω̄.

Step 2. We claim that ωβα = ⌈(n−1)(x−c)/(1−c)⌉. Consider the transition from
s′′ ∈ E(Rβ) to s′ ∈ E(Rα). Let s(t) = s′′ for some t ≥ 0. Consider a sequence of ω
consecutive mutations such that, for each τ ∈ [t+1, t+ω], aiτ � α. Let t1 = t+ω+1
and it1 ∈ N\{it+1, ..., it+ω}. Let s̄′it1 = (L̄

′
it1

, α) ∈ Sit1 and s̄′′it1 = (L̄
′′
it1
, β) ∈ Sit1 and

M1 be as defined in Step 1. Then, Πit1 (s̄
′′
it1
, s−it1 (t1)) = (n− 1)x− (|M1|+ l′′βit1 )c and

Πit1 (s̄
′
it1
, s−it1 (t1)) = ω−|M1|·c. Player i prefers action α only if Πit1 (s̄

′
it1

, s−it1 (t1)) ≥
50Recall that l′′βit1

is the number of links that it1 supports to players in Kβ(s̄
′′
it1
, s−it1 (t1)).

51If ait1 � α, it1 only receives a strictly positive payoff from agents in Kα(t1 − 1) choosing α.
Hence, her best response is to support a link to one player of each α− group such that none of the
members of the α− group were supporting a link to it1 at t1 − 1.
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Πit1 (s̄
′′
it1
, s−it1 (t1)), i.e.,

ω ≥ (n− 1)x− l′′βit1c. (11)

The RHS of (11) is minimized when l′′βit1 = n−ω−1. If we substitute l′′βit1 by n−ω−1
in (11), we obtain ω ≥ (n− 1)(x− c)/(1− c). Let

ω̄′ = ⌈(n− 1)(x− c)/(1− c)⌉. (12)

Hence, ω ≥ ω̄′ is a necessary condition for a transition from s′′ to s′. We now claim
that there exist s̃′′ ∈ E(Rβ) and s̃′ ∈ E(Rα) such that ω ≥ ω̄′ is also sufficient for a
transition from s̃′′ to s̃′. Let ω = ω̄′ and s̃′′ ∈ E(Rβ) be such that, for each j ∈ N ,

L̃′′j = {1, 2, ..., j − 1}. For each τ ∈ {1, ..., ω}, consider that, at period t+ τ , it+τ = τ
and the mutation ait+τ � α occurs. Then, consider that, for each τ ∈ {ω + 1, ..., n},
it+τ = τ . It is directly verifiable that condition (11) is satisfied for each τ ≥ ω̄′ + 1.
Hence, for each τ ∈ {ω + 1, ..., n}, ait+τ � α. Thus kα(t+ n) = n and, by Lemma 8,
the claim follows. Hence, ωβα = ω̄′. �

Proof of Lemma 6

Let x − x2 < c < min{x, 1− x2}. By Lemma 3, R = {Rα, Rβ′}, where E(Rα) =
{s ∈ S∗ : kα(s) = n and g(s) ∈ Gm}, E(Rβ′) ⊇ {s ∈ S∗ : kα(s) = 0 and g(s) ∈ Gst}
and, for each s′′ ∈ E(Rβ′), kα(s

′′) = 0. We proceed in 2 steps.

Step 1. We claim that ωαβ′ = ⌈(n− 1) (1− c− x2) / (1− c− x2 + x)⌉. Consider
the transition from s′ ∈ E(Rα) to s′′ ∈ E(Rβ′). Let s(t) = s′ for some t ≥ 0.
Consider a sequence of ω consecutive mutations such that, for each τ ∈ [t+ 1, t+ ω],
aiτ � β. Let t1 = t + ω + 1 and it1 ∈ N\{it+1, ..., it+ω}. Let s̄′it1 = (L̄

′
it1

, α) ∈ Sit1
be the strategy where it1 chooses action α and the set of links L̄′it1 that maximizes

her payoff conditional on ait1 = α. Define analogously s̄′′it1 = (L̄′′it1 , β) ∈ Sit1 . For

each d ∈ {1, ..., ω+1}, denote byMd ⊆Mα(s̄
′′
it1
, s−it1 (t1)) the set of those α−groups

that, using paths of β − players, are at distance d from it1 if ait1 � β, and let md =∣∣⋃
M∈Md

M
∣∣. Note that

∑ω+1
d=1 md = n− ω − 1. Additionally, for each d ∈ {1, ..., ω},

denote by m̂d the number of β − players that, using paths of β − players, are at
distance d from it1 if ait1 � β. Then, Πit1 (s̄

′′
it1

, s−it1 (t1)) =
∑ω+1

d=1 mdx
d+
∑ω

d=1 m̂dx
d−

l̄′′it1c. On the other hand, since l̄′it1 = l̄′′it1 − l̄′′βit1 +
∑ω+1

d=2 |Md| (by construction),

Πit1 (s̄
′
it1
, s−it1 (t1)) = n− ω − 1− (l̄′′it1 − l̄′′βit1 +

∑ω+1
d=2 |Md|)c. Player it1 prefers action

β if and only if Πit1 (s̄
′′
it1

, s−it1 (t1)) ≥ Πit1 (s̄′it1 , s−it1 (t1)), i.e.,

ω ≥ n− 1 + c · (l̄′′βit1 −
∑ω+1

d=2 |Md|)−
∑ω+1

d=1 md · xd −
∑ω

d=1 m̂d · xd. (13)

We shall now explore the situation in which the RHS of (13) is minimized. The RHS
of (13) can be rewritten as

n− 1 + c · l̄′′βit1 −
∑ω

d=1 m̂d · xd −
∑ω+1

d=2 |Md| · c−
∑ω+1

d=2 md · xd −m1 · x. (14)
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We claim that (14) is minimized when (i) l̄′′βit1 = 0, (ii)
∑ω

d=1 m̂dx
d = ωx, (iii) for

each d ∈ {2, ..., ω + 1}, |Md| = md and (iv) m2 = n− ω − 1. Conditions (i)-(iii) are
straightforward. Thus, we shall prove (iv). Let l̄′′βit1 = 0,

∑ω

d=1 m̂dx
d = ωx and, for

each d ∈ {2, ..., ω+1}, |Md| = md. Then, we want to minimize −∑ω+1
d=2 (c+ xd)md−

m1x. Since
∑ω+1

d=1 md = n−ω−1, for each d ≥ 3, md = 0. Thus, we want to minimize
−(c+ x2)m2 −m1x. Since, c+ x2 > x, m1 = 0. Hence, m2 = n− ω − 1. This proves
the claim. Thus, if we substitute the minimizing values in the RHS of (13), we obtain
ω ≥ (n− 1) (1− c− x2) / (1− c− x2 + x). Let

ω̂ =
⌈
(n− 1)

(
1− c− x2

)
/
(
1− c− x2 + x

)⌉
. (15)

Hence, ω ≥ ω̂ is a necessary condition for a transition from s′ to s′′.
We now claim that there exist s̃′ ∈ E(Rα) and s̃′′ ∈ E(Rβ′) such that ω ≥ ω̂ is

also sufficient for a transition from s̃′ to s̃′′. Let s̃′ ∈ {s ∈ E(Rα) : g (s̃
′) ∈ Gst and

lı̂(g(s̃′)) = n − 1} and ω = ω̂, and consider that, for each τ ∈ [t + 1, t + ω], aiτ � β,
Liτ (τ ) = N\{iτ} and it+1 = ı̂(g(s̃′)). Then, let the players in N\{it+1, ..., it+ω} revise
consecutively from period t1 = t + ω + 1 to t2 = t + n. Then it is directly verifiable
that, for it1 , conditions (i)-(iv) are satisfied. Since these conditions minimize (14),
ait1 � β and Lit1 (t1) = ∅. Hence, it is immediate that, for each τ ∈ [t1 + 1, t2],
the incentives for iτ to switch to action β increase in τ and, therefore, aiτ � β and
Liτ (τ ) = ∅. Then, let the players in N\{ı̂(g(s̃′))} revise consecutively from period
t2+1 to t3 = t2+n−1. Then, for each τ ∈ [t2+1, t3], aiτ � β and Lit1 (t1) = ∅. Since,
Lı̂(g(s̃′))(t3) = Lit+1(t+ 1) = N\{ı̂(g(s̃′))}, s(t3) ∈ {s ∈ S∗ : kα(s) = 0, g(s) ∈ Gst and
lı̂(g(s)) = n − 1}. Hence, by Lemma 3, s(t3) ∈ E(Rβ′). Therefore, the claim follows
and ωαβ′ = ω̂.

Step 2. We claim that ωβ′α = ⌈(n−1)(x−c)/(1−c)⌉. Consider the transition from
s′′ ∈ E(R′

β) to s′ ∈ E(Rα). Let s(t) = s′′ for some t ≥ 0. Consider a sequence of ω
consecutive mutations such that, for each τ ∈ [t+1, t+ω], aiτ � α. Let t1 = t+ω+1
and it1 ∈ N\{it+1, ..., it+ω}. Let s̄′it1 = (L̄

′
it1

, α) ∈ Sit1 and s̄′′it1 = (L̄
′′
it1
, β) ∈ Sit1 be

as defined in Step 1. For each d ∈ {1, ..., n − ω}, define Md and md as in Step 1.
Moreover, for each d ∈ {1, ..., n − ω − 1}, define m̂d as in Step 1. Note that, in
this case,

∑n−ω
d=1 md = ω. Then, Πit1 (s̄

′′
it1
, s−it1 (t1)) =

∑n−ω
d=1 mdx

d +
∑n−ω−1

d=1 m̂dx
d −

l̄′′it1c. On the other hand, since l̄′it1 = l̄′′it1 − l̄′′βit1 +
∑n−ω

d=2 |Md| (by construction),

Πit1 (s̄
′
it1
, s−it1 (t1)) = ω − (l̄′′it1 − l̄′′βit1 +

∑n−ω
d=2 |Md|)c. Player it1 prefers action α if and

only if Πit1 (s̄
′
it1

, s−it1 (t1)) ≥ Πit1 (s̄′′it1 , s−it1 (t1)), i.e.,

ω ≥ c · (−l̄′′βit1 +
∑n−ω

d=2 |Md|) +
∑n−ω

d=1 md · xd +
∑n−ω−1

d=1 m̂d · xd. (16)

We shall now explore the situation in which the RHS of (16) is minimized. The RHS
of (16) can be rewritten as:

∑n−ω−1
d=2 m̂d · xd + (m̂1 · x− c · l̄′′βit1 ) +

∑n−ω
d=2 |Md| · c+

∑n−ω
d=2 md · xd +m1 · x. (17)
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We claim that (17) is minimized when the following two conditions hold: (i) l̄′′βit1 =

n− ω − 1 and (ii) m1 = ω.
We prove condition (i). Consider the first part of (17), i.e.,

∑n−ω−1
d=2 m̂d ·xd+(m̂1 ·

x − c · l̄′′βit1 ). We claim that if, for some d ≥ 2, m̂d > 0, then, we are not choosing

the situation at t1 that minimizes (17).52 Since s̄′′it1 is a best response conditional

on ait1 � β, m̂d > 0 implies xd > x − c. But, then if we aim to minimize (17), it is
better a situation where it1 observes the β − player at distance one by supporting a
link to her. This proves the claim. Then, in order to minimize (17), for each d ≥ 2,
m̂d = 0. Hence, m̂1 = n− ω − 1. Then, in order to minimize (n− ω − 1) · x− c · l̄′′βit1 ,
l̄′′βit1 = n− ω − 1.

We now prove condition (ii). Consider the second part of (17), i.e.,
∑n−ω

d=2 |Md| ·
c +

∑n−ω
d=2 md · xd +m1 · x. We claim that if, for some d ≥ 2, md > 0, then, we are

not choosing the situation at t1 that minimizes (17). Since s̄′′it1 is a best response

conditional on ait1 � β, md > 0 implies md · xd > md · x− |Md| · c. Hence, md · xd +
|Md| · c > md · x. Then, if we aim to minimize (17), it is better a situation where
it1 observes all the α−groups at distance one. Therefore, in order to minimize (17),
m1 = ω.

Note that, since kα(t1) = ω, condition (i) implies
∑n−ω−1

d=2 m̂d ·xd+(m̂1 ·x−c· l̄′′βit1 ) =
(n−ω−1)(x−c) and condition (ii) implies

∑n−ω
d=2 |Md|·c+

∑n−ω
d=2 md ·xd+m1 ·x = ωx.

Hence, substituting these values in the RHS of (13), we obtain ω ≥ (n−1)(x−c)/(1−
c). Let

ω̂′ = ⌈(n− 1)(x− c)/(1− c)⌉. (18)

Hence, ω ≥ ω̂′ is a necessary condition for a transition from s′′ to s′.
We now claim that there exist s̃′′ ∈ E(R′

β) and s̃′ ∈ E(Rα) such that ω ≥ ω̂′ is
also sufficient for a transition from s̃′′ to s̃′. Let s̃′′ ∈ {s ∈ E(R′

β) : g (s̃
′′) ∈ Gst and

lı̂(g(s̃′′)) = n − 1} and ω = ω̂′, and consider that, for each τ ∈ [t + 1, t+ ω], aiτ � α,
Liτ (τ ) = N\{iτ} and it+1 = ı̂(g(s̃′)). Then, let the players in N\{it+1, ..., it+ω} revise
consecutively from period t1 = t + ω + 1 to t2 = t + n. It is directly verifiable that,
for it1 , conditions (i)-(ii) are satisfied. Since these conditions minimize (17), ait1 � α
and Lit1 (t1) = ∅. Hence, it is immediate that, for each τ ∈ [t1 + 1, t2], the incentives
for iτ to switch to action α increase in τ and, therefore, aiτ � α and Liτ (τ ) = ∅.
Hence kα(t2) = n and, by Lemma 8, the claim follows. Hence ωβ′α = ω̂′. �

Proof of Lemma 7

Let x − x3 < c < x. Let s(t) ∈ S∗ such that kα(t) = 0 and g(t) ∈ Gst. First,
consider a mutation at t + 1 such that ait+1 � β. Note that, in this case, since
kα(t+1) = 0 and c < x, the choice of a best response implies that, for each τ ≥ t+2,

52Recall that we are conditioning our analysis on the choice s̄′′it1
= (L̄′′it1

, β) ∈ Sit1 at t1, that is a

best response conditional on ait1 � β. Then, we minimize (17) choosing among all situations where
s(t) ∈ E(R′β) and there are ω mutations such that, for each τ ∈ [t+ 1, t+ ω], aiτ � α.
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aiτ � β and, therefore, kα(τ) = 0. Hence, convergence to a state in {s ∈ S∗ : kα(s) =
0 and g(s) ∈ Gst} directly follows from Lemma 3 in Feri [9] (cf. footnote 48).

Hence, consider a mutation at t+ 1 such that ait+1 � α. Note that, in this case,
since kα(t+ 1) = 1 and c < x, the choice of a best response implies that, for n large
enough, for each τ ≥ t + 2, aiτ � β and, therefore, kα(τ ) ≤ 1.53 We distinguish
three cases: (i) it+1 = ı̂(g(t)) and (ii) it+1 ∈ N\{ı̂(g(t))} and {(it+1, 1), ..., (it+1, n)} ∩
g(t+ 1) = ∅ and (iii) it+1 ∈ N\{ı̂(g(t))} and {(it+1, 1), ..., (it+1, n)} ∩ g(t+ 1) �= ∅. If
it+2 = it+1, clearly s(t+ 2) = s(t) and the result follows. Hence, let it+2 ∈ N\{it+1}.

In case (i), for each Lit+1(t+ 1) ∈ 2N\{it+1} and each j ∈ N\{it+1} the payoff to j
at t+1 is either x or x− c. Since c < x, if it+2 /∈ Lit+1(t+1), Lit+2(t+2) = N\{it+2}
and, otherwise, Lit+2(t+2) = N\{it+1, it+2}. When a player j ∈ N\{it+1, it+2} revises
her strategy at period τ > t+2, Lj(τ) = ∅, since j is optimally linked with all players
via her link to it+2. When, at some period period τ ′ ≥ t + 2, iτ ′ = it+1, aiτ ′ � β
and Liτ ′ (τ

′) ∈ {∅, {it+2}}.54 Hence, at some period, say T , such that all players have
revised their strategies, s(T ) ∈ S∗, kα(T ) = 0 and g(t) ∈ Gst.

Consider case (ii). All players in N\{it+1} are arranged in a star with center
ı̂(g(t)). Since c < x, Lit+2(t + 2) = Lit+2(t) ∪ {it+1}. There are two possibilities.
First, if it+2 = ı̂(g(t)), g(t + 2) ∈ Gst. Hence, when a player j ∈ N\{it+1, it+2}
revises her strategy at period τ > t + 2, Lj(τ ) = Lj(t). When, at some period
period τ ′ > t + 2, iτ ′ = it+1, aiτ ′ � β and Lit+1(τ

′) = ∅. Hence, at some period,
say T , such that all players have revised their strategies, s(T ) ∈ S∗, kα(T ) = 0 and
g(t) ∈ Gst. Second, if it+2 ∈ N\{ı̂(g(t))}, for each j, j′ ∈ N , dj,j′(g(t + 2)) ≤ 3.
Since c > x − x3, as long as it+1 has not received a revision opportunity, when a
player j ∈ N\{it+1} revises her strategy at period τ > t + 2, Lj(τ ) = Lj(t). When,
at some period period τ ′ > t + 2, iτ ′ = it+1, aiτ′ � β and, if n is sufficiently large,
Lit+1(τ

′) = {ı̂(g(t))}. Hence, for each τ̂ > τ ′, if iτ̂ �= it+2, Liτ̂ (τ̂) = Liτ̂ (τ
′), whereas,

if iτ̂ = it+2, Lit+2(τ̂) = Lit+2(t + 2)\{it+1}. Hence, at some period, say T > τ ′, such
that iT = iτ̂ , s(T ) ∈ S∗, kα(T ) = 0 and g(t) ∈ Gst.

Finally, consider case (iii). For each j, j′ ∈ N\{it+1}, dj,j′(g(t + 1)) ≤ 2, and
dj,it+1(g(t + 1)) ≤ 3. Moreover, since ait+1 � α and, for each j ∈ N\{it+1}, aj(t +
1) = β, no player receives any indirect payoff from a link to it+1.

55 Hence, for each
τ̂ > t+2, Liτ̂ (τ̂) = Liτ̂ (t). Hence, at some period, say T > t+1, such that iT = it+1,
s(T ) = s(t). �

53Note that if a revising player chooses α, her payoff is at most 1 whereas, if she chooses β, her
payoff is at least (n− 1)(x− c).

54Note that Li
τ′
(τ ′) = {it+2} if and only if iτ ′ /∈ Lit+2(τ

′).
55A link to it+1 just provides a payoff of x.
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Abstract 
 
This paper studies an evolutionary model of network formation with endogenous 
decay, in which agents benefit both from direct and indirect connections. In addition 
to forming (costly) links, agents choose actions for a coordination game that 
determines the level of decay of each link. We address the issues of coordination 
(long-run equilibrium selection) and network formation by means of stochastic 
stability techniques. We find that both the link cost and the trade-off between 
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