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Abstract

In this paper we put forward a Bayesian Model Averaging method dealing with

model uncertainty in the presence of potential spatial autocorrelation. The method uses

spatial �ltering in order to account for di�erent types of spatial links. We contribute

to existing methods that handle spatial dependence among observations by explicitly

taking care of uncertainty stemming from the choice of a particular spatial structure.

Our method is applied to estimate the conditional speed of income convergence across

255 NUTS-2 European regions for the period 1995-2005. We show that the choice of

a spatial weight matrix - and in particular the choice of a class thereof - can have an

important e�ect on the estimates of the parameters attached to the model covariates.

We also show that estimates of the speed of income convergence across European regions

depend strongly on the form of the spatial patterns which are assumed to underlie

the dataset. When we take into account this dimension of model uncertainty, the

posterior distribution of the speed of convergence parameter appears bimodal, with a

large probability mass around no convergence (0% speed of convergence) and a rate

of convergence of 1%, approximately half of the value which is usually reported in the

literature.
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1 Introduction

In this paper we propose a framework for analyzing spatially correlated data under model
uncertainty concerning both the covariates of the speci�cation and the spatial links existing
in the data. Recently, a branch of literature which uses Bayesian tools for the analysis of
spatially correlated data under model uncertainty (in terms of variable choice) has devel-
oped, mainly around the work of James P. LeSage and coauthors. LeSage and Parent (2007)
introduce Bayesian Model Averaging (BMA) methods for spatial econometric models, and
the methods are applied in LeSage and Fischer (2007) to study determinants of income in EU
regions. These methods are also used by LeSage and Parent (2008) to evaluate the existence
of knowledge spillovers from patent activity in the EU.

Most empirical studies in the spatial econometrics literature model spatial spillovers in the
framework of spatial autoregressive (SAR) speci�cations (see Anselin (1988)) conditional on
a given spatial weight matrix which parametrizes the geographical links among cross-sections.
On the other hand, not much research is existing about the e�ects of misspeci�cation in the
spatial weights matrix on the estimates of the model parameters. Most of the existing stud-
ies stick to a single spatial weights matrix and build the econometric model conditioning
on the choice of such a spatial structure. Given a spatial structure, some empirical studies
perform robustness checks where the estimation is repeated for di�erent spatial link matrices
(see Crespo Cuaresma et al. (2009) for a recent example using European regional growth
data). A noteworthy exception is the work by LeSage and Fischer (2007), which considers
uncertainty in the spatial link matrix. LeSage and Fischer (2007) concentrate on a single
class of spatial weight matrices (K nearest neighbor matrices) and consider uncertainty con-
cerning the measurement of distance and the number of neighbors considered. The method
put forward by LeSage and Fischer (2007) uses numerical integration techniques to obtain
posterior model probabilities, thereby limiting the applicability to very large datasets, which
would prove computationally too costly. In this piece of work we develop a simple BMA
method to obtain parameter estimates after integrating out the uncertainty over the matrix
of spatial weights by means of spatial �ltering. Using spatial �ltering based on the eigenvec-
tor approach (see Getis and Gri�th (2002) and Tiefelsdorf and Gri�th (2007)), the Markov
chain used to obtain BMA estimates can rely on standard (non-spatial) estimation methods
to reconstruct the posterior distribution over the model space. This implies that larger sets
of covariates and/or spatial weight matrices can be easily incorporated to the analysis.

We apply the BMA method to check the robustness of economic growth determinants among
European regions and to obtain estimates of the speed of income convergence in the presence
of uncertainty about both the nature of the covariates entering the model and the matrix of
spatial weights. Researchers have spent a great deal of e�ort in trying to assess and quantify
the income convergence process across economic units (usually, countries, see Barro (1991)
and Barro and Sala-i-Martin (1991)). A vast amount of the existing empirical literature
focuses on estimating the income convergence speed using cross-sectional data, with a the-
oretical setting based on neoclassical economic growth models (see Mathunjwa and Temple
(2007), for a thorough analytical account of convergence in the Solow model). Many authors
have also approached the issue of income convergence using regional datasets (see Sala-i-
Martin (1996)). The use of regional data, however, poses an extra problem to the study of
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income convergence and the measurement of the speed of convergence. There is widespread
evidence (see e.g. Fischer and Stirböck (2006), Niebuhr (2001)) that spatial spillovers have
a signi�cant in�uence on economic growth and therefore observations from regional growth
datasets cannot be regarded as independently generated, even after controlling for region-
speci�c determinants. Spatial interactions, such as technological spillovers or factor mobility,
both being important forces for the process of convergence, need therefore to be speci�ed
explicitly in order to obtain estimates of the speed of income convergence within a group of
regional units. In the presence of positive spatial autocorrelation in economic growth data,
estimates of the speed of income convergence across geographical units will tend to be biased
upwards if the spatial structure of the data is left unmodeled.1

In our empirical application, we obtain the posterior distribution of the speed of income
convergence across European regions in the presence of model uncertainty concerning the
choice of regressors and spatial links. In particular, we average over models containing 16
possible spatial weight matrices corresponding to 4 di�erent classes (Queen contiguity, near-
est neighbor, exponential decay and distance band matrices). Our results indicate that the
speed of income convergence across regional units is around 1%, approximately half of the
value which tends to be obtained with models conditioning on a single spatial weight matrix.

This paper is organized as follows. Section 2 considers the issue of uncertainty about the
spatial correlation structure and embeds the problem in a general Bayesian Model Averaging
setting where uncertainty about the variables entering the speci�cation is also assumed.
Section 3 applies the methodology to a dataset on European regions in order to obtain
estimates of the speed of income convergence in Europe. Section 4 concludes.

2 Spatial autocorrelation, spatial �ltering and model un-

certainty

2.1 The econometric setting

Consider a cross-sectional growth regression from which we aim at extracting the speed
of (conditional) income convergence across N geographical units. We explicitly model the
potential existence of spatial autocorrelation by using a model of the class of spatial regression
models (Anselin (1988)), namely a spatial autoregressive (SAR) model,

y = αιN + ρWy +Xk~χk + σε (1)

where y is an N -dimensional column vector whose elements correspond to the annualized
income growth of each geographical unit, α is the intercept term, ιN is an N -dimensional
column vector of ones, Xk = (x1 . . .xk) is a matrix whose columns are stacked data for
k explanatory variables and ~χk = (χ1 . . . χk)

′ is the k-dimensional parameter vector corre-
sponding to the variables in Xk. We specify the spatial autocorrelation structure using the
matrix W, with its corresponding coe�cient ρ re�ecting the degree of spatial autocorrela-

1The patterns of regional growth and convergence in Europe have also been investigated by Boldrin and
Canova (2001).
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tion. One of the potential variables in Xk is the initial income level at the beginning of the
period in which the growth rate of income is calculated. Equation (1) constitutes a paramet-
ric spatial model where the spatial parameter ρ is often interpreted as a spillover parameter,
with positive values indicating the existence of spillovers from neighboring observations. Let
us denote the parameter associated to initial income per capita by β. Evidence of condi-
tional convergence is found whenever β is negative, thus implying that, after controlling for
other factors, economies with low initial income levels grow on average faster than others
having relatively higher initial income. The speed of convergence can be computed using a
log-linearization around the steady-state of the Solow model as λ = −(1/τ)[1− exp(−βτ)],
where τ is the length of the period considered in the growth variable (see for instance Barro
and Sala-i-Martin (2003)).

Since growth theory is ambiguous about the set Xk of explanatory variables to include,
we are confronted with a classical situation of model uncertainty concerning the covariates
which should enter the model. If the estimate of the coe�cient of interest (in our case β)
depends on the covariates entering the model, we will eventually overestimate the degree of
precision of our estimate if we do not account for this particular source of uncertainty.

In our setting, an extra degree of uncertainty arises if we do not know the actual nature
of the spatial interactions which we model through the spatial autoregressive term in (1),
that is, if we conduct inference conditional onW. However, besides re�ecting the degree of
spatial interaction across the data, Anselin (1988) notes that ρ might pick up a range of
misspeci�cations of the general model. Spatial autocorrelation will be observable whenever
the phenomenon under study is a spatial process or omitted variables cause spatial variation
in the residuals (Tiefelsdorf and Gri�th (2007)). Note that both arguments typically apply
to economic cross-section data, where economic units interact with each other and omitted
variables decrease the level of con�dence in econometric analysis. Since inference from the
SAR model is conditional on the weight matrix W, which has to be exogenously speci�ed,
and in most applications there is little theoretical guidance on which structure to put on
the weight matrix, explicitly accounting for this source of model uncertainty is a natural
generalization to uncertainty in the nature of Xk in the framework of BMA.

2.2 Spatial �ltering

The spatial �ltering literature seeks to remove residual spatial autocorrelation patterns prior
to estimation and is in principle not interested in directly estimating ρ in (1). Getis and
Gri�th (2002) propose two (nonparametric) approaches of �ltering the data before applying
regression analysis. The method utilizes a local spatial statistic (the Gi statistic, see Anselin
(1988)) to decompose the data into a purely spatial and a non-spatial part. Limitations to
this approach are that (a) it is restricted to non-negative data and (b) each variable entering
the regression has to be �ltered separately. The approach put forward by Getis and Gri�th
(2002) and Tiefelsdorf and Gri�th (2007), on the other hand, is based on an eigenvector
decomposition of a transformedW matrix, where the transformation depends on the under-
lying spatial model.
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Assume that the data follows a SAR model as in equation (1) and thus can be written as

y = (I − ρW)−1(αιN +Xk~χk + σε) =

= αιN +Xk~χk + σε+
∞∑
m=1

ρmWm(αιN +Xk~χk + σε). (2)

Spatial �ltering methods aim at �nding a good approximation for the last term in (2) which
allows to remove the residual spatial autocorrelation induced by either a pure spatial autore-
gressive process or omitted variables that tie the residuals spatially together. The spatial
link matrix is �rst transformed to satisfy symmetry and then multiplied by the demeaning
projectorM1 = I−ιN(ι′N ιN)−1ι′N in order to extract eigenvectors with underlying SAR struc-
ture. Each extracted eigenvector ~ei of [M1

1
2
(W+W′)M1] re�ects a distinctive spatial pattern

and is associated with a speci�c spatial autocorrelation level. Thus instead of equation (1)
we may estimate

y = αιN +
E∑
i=1

γi~ei +Xk~χk + σε, (3)

where each eigenvector ~ei spans one of the spatial dimensions. By introducing the eigen-
vectors into the regression, we explicitely take care of (remaining) spatial patterns in the
residuals. Furthermore spatial commonalities among the covariates in Xk are conditioned
out. This reduces the degree of multicollinearity and further separates spatial e�ects from
the �intrinsic" impact the employed regressors exert on the dependent variable.

The fact that the transformation of the spatial weight matrix does not involve the design
matrix Xk is an important advantage in the framework of model uncertainty, since the cal-
culation of the eigenvectors has to be carried out only once.2 In our application, we identify
the set of eigenvectors needed (E) with the algorithm proposed by Tiefelsdorf and Gri�th
(2007). This algorithm identi�es the minimal subset of eigenvectors until the residual spatial
correlation as measured by Moran's I statistic (see Anselin (1988)) drops below a certain
threshold value.

2.3 Bayesian Model Averaging with uncertain spatial e�ects

From a Bayesian perspective, the problem of obtaining estimates of the parameter asso-
ciated to a covariate under uncertainty in both the nature of W and Xk can be handled
in a straightforward manner using spatial �ltering techniques. Let us assume that we are
interested in the parameter corresponding to the initial income level, β. Denote the set of
potential models by M = {M1

1 ,M
1
2 , . . . ,M

1
2K , . . .M

2
1 , . . . ,M

2
2K , . . . ,M

Z
1 , . . . ,M

Z
2K}, where

K stands for the number of potential explanatory variables and Z the number of potential

2Notice that this would not be the case for models involving spatially lagged errors (see Tiefelsdorf and
Gri�th (2007)). In this case, the projection matrix used is a function of Xk. Although our method is not
a�ected by the use of this projector, the implementation for large datasets can be computationally very
costly.

5



spatial weighting matrices Wz, z = 1, . . . , Z each with associated set of eigenvectors Ez.
The cardinality of M is therefore 2K × Z. A particular model, say M z

k , is characterized
by its parameter vector θzk = (α, χk, γz) corresponding to the intercept term included in all
models, the coe�cients on the regressors entering the model and the coe�cients on the set
of eigenvectors Ez related to Wz. In the BMA framework3, the posterior distribution of β
takes now the form of

p(β|y) =
2K∑
j=1

Z∑
z=1

p(β|M z
j , y)p(M z

j |y) (4)

with y denoting the data and β the coe�cient of interest. Inference on β is based on single
inferences under models j = 1, . . . , 2K × Z weighted by their respective posterior model
probabilities, p(M z

j |y), which in turn depend on the corresponding matrix of spatial weights.
We can construct (4) making use of the fact that

p(M z
j |y) =

p(y|M z
j )p(M z

j )∑2K

j=1

∑Z
z=1 p(y|M z

j )p(M z
j )
. (5)

where p(M z
j ) denotes the prior distribution assigned to model M z

j and p(y|M z
j ) is the inte-

grated likelihood. For the sake of illustration, consider the particular case of two competing
models. In this case, the posterior odds are simply given by the product of the Bayes
Factor with the prior odds. In order to obtain (5) and thus (4), we need to specify pri-
ors for the regression coe�cients, for the variance σ and over the model space M. As is
common practice in the applied literature, we use Zellner's g-prior structure on the regres-
sion slopes, which merely requires the choice of one hyper parameter g, thus specifying
(~χ, α)|σ2 ∼ N (0, σ2[gX ′X]−1). Following Ley and Steel (2009), we move away from assum-
ing an uninformative prior over the model space, as many other BMA studies tend to do.
Instead, we assume that the prior on the model space (p(M)) is a binomial-beta prior, which
we elicit by anchoring the prior on an expected model size. The technical appendix presents
a discussion on the speci�c prior choices for g and on the model space.

In many applications, such as the one we present here, the cardinality of the model space
renders the evaluation of (4) intractable. Several methods have been proposed to overcome
this problem and Markov Chain Monte Carlo Model Composition (MC3) algorithms have
become a useful tool to evaluate subsets of the model space which account for a large posterior
model probability mass (see Fernández et al. (2001b) for an application to economic growth
determinants). Throughout the paper we rely on a random walk MC3 search algorithm to
evaluate the model space. We slightly modify the usual MC3 method in order to account for
uncertainty over a set of spatial weight matrices. Our algorithm proceeds in the following
modi�ed way:

1. Starting with a model as de�ned by a group of regressors and the set of eigenvectors Ez
associated to a spatial weight matrixWz, in each iteration step a candidate regressor
is drawn from the set of potential covariates. We add the candidate regressor to the
current model M z

j if that model did not already include it. On the other hand, the

3For a textbook introduction to BMA, see for instance Koop (2003), chapter 11.
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candidate regressor is dropped from the model if it is already contained in M z
j . Note

that both models are conditional on the same set of eigenvectors Ez. The candidate
model is thus always drawn from a neighborhood of the current one, de�ned as the
subset of the model space formed by models which di�er only by a single regressor.
The candidate model M z

c is then subject to the following acceptance probability:

p̃cj = min

[
1,
p(M z

c )p(y|M z
c )

p(M z
j )p(y|M z

j )

]
. (6)

Notice that the potential punishment for model size is embedded in both the model
prior and the Bayes Factor.

2. In the second step a candidate weighting matrix Wc (and hence its associated set
of eigenvectors Ec) is drawn uniformly from the set of remaining matrices W(−z) :=
{Wi}Zi=1, i 6= z. Since we are interested in handling uncertainty across di�erent speci�-
cations ofW the eigenvectors belonging to Ec are always forced to enter the regression
jointly. The accepted model from step 1), denote it by M z

j , is then compared with
the model containing the same regressors but a di�erent set of eigenvectors Ec. The
acceptance probability is given by:

p̂cz = min

[
1,
p(y|M c

j )

p(y|M z
j )

]
. (7)

Since both models consist of the same number of regressors subject to sampling the
prior odds on model size cancel. The reward for parsimonity with respect to the spatial
weight matrix is solely governed by the Bayes Factor. It is straightforward to introduce
a further informative prior on the space of weight matrices instead of the uniform prior
employed in our analysis.

We repeat steps 1) and 2) a large number of times and compute the corresponding BMA
statistics based on the set of models visited, instead of the full model space. We are especially
interested in the posterior distribution of the parameters of the covariates in (1), their
posterior variance and the posterior inclusion probability (PIP) of the covariates. The latter
one is de�ned as the sum of posterior model probabilities of the speci�cations including a

particular covariate, PIPl =
∑2K

j=1

∑Z
z=1 p(M

z
j such that χl 6= 0|y). The performance of this

method is assessed in the following subsection by means of a simulation study.

2.4 A simulation study

In order to test the ability of our sampler to both identify model covariates and unveil spatial
structures present in the data we conduct a small simulation study. Our focus is the posterior
distribution over the spatial link matrices and we choose a rather simple setting for the data
generating process. We draw 10 potential explanatory variables (x1, . . . ,x10) using N =255
draws from a standard normal distribution for each covariate, so as to match the sample size
of our empirical application. The spatial autocorrelation level is �xed at ρ = 0.6, a typical
level of spatial dependence present in economic data sets. Data on the dependent variable
are generated according to
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y = ρWzy + 1.5x1 + 2x4 − 0.5x10 + 0.5ε, (8)

where ε is a standard normal variable. We restrict our space of potential weighting matrices
to three di�erent classes (for a textbook discussion on weighting schemes see Anselin (1988)):
Queen contiguity matrices, K-nearest neighbor matrices and distance band matrices.

Queen contiguity matrices assign equal positive weights to observations sharing a common
border (including cases where the common border is just a vertex). We will consider a
�rst-order contiguity de�nition for neighbors in this class, and denote the spatial weighting
matrix asWQ

1 .
4 The K-nearest neighbor coding scheme evaluates airline-distances between

all observations and assigns a positive weight to the K nearest neighbors. From this class
of weighting matrices, we consider a weighting scheme based on four neighbors (WK−NN

4 )
for the simulation. Finally, distance band matrices regard geographical units that lie within
a distance band of d kilometers as neighbors. Our space of spatial weight matrices in the
simulation includes a distance band matrix based on a band of 400 kilometers (Wb

400). All
these alternative space weighting matrices belong to the class of binary weight matrices and
solely di�er with respect to the de�nition of the set of neighbors.5

We impose the spatial weights corresponding to each matrix computed on the dataset of 255
NUTS-2 regions, and thus replicate spatial patterns in our simulated data which reproduce
the geographical structure of the European regional dataset analyzed in section 3. For the
simulation we consider �ve cases, each corresponding to aWz matrix in (8):

• case z = 1: Wz is a �rst order Queen contiguity matrix (WQ
1 ),

• case z = 2: Wz is a four nearest neighbor weight matrix (WK−NN
4 ),

• case z = 3: Wz is a 400 km distance band weight matrix (Wb
400),

• case z = 4: Wz is given by 0.3WQ
1 + 0.6WK−NN

4 + 0.1Wb
400,

• case z = 5: Wz is given by 0.5WQ
1 + 0WK−NN

4 + 0.5Wb
400.

The set of potential covariates in the simulation has cardinality 10, and the set of potential
spatial weighting schemes has a cardinality of 3 (WQ

1 ,W
K−NN
4 andWb

400), thus leading to
a model space composed by 3072 models. We repeat the exercise for 50 simulated datasets
for each setting z, using an MC3 search method over the model space with 5000 replications
each time. The averaged results by case are presented in Table 1. Since the inclusion prob-
abilities of the variables included in the model were all very close to one, and the estimated
parameters also very close to the true values, we do not report them and concentrate exclu-
sively on the inclusion probabilities (percentage of models visited by the MC3 algorithm by
W matrix) for each one of the spatial weighting matrices.6

4Note that this weighting scheme might create "spatial islands" (i.e. observations without any neighbors).
5All matrices used in the analysis are row-standardized.
6We use the BRIC prior (Fernández et al., 2001a) for g (g = 1/N) and the beta-binomial prior over the

model space with prior expected model size K/2. The results on the inclusion probabilities of the explanatory
variables and the corresponding posterior distributions over parameters are available from the authors upon
request. For all �ve settings, the sampler identi�ed the true variables and the associated coe�cients with
high precision.
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WQ
1 WK−NN

4 Wb
400

Case j = 1
Percentage visited 99.66 0.34 0.00
Adj. R2 0.47 0.37 0.23
# eigenvectors 25.50 23.46 9.02
Case j = 2
Percentage visited 0.00 100.00 0.00
Adj. R2 0.29 0.42 0.18
# eigenvectors 16.98 33.82 7.18
Case j = 3
Percentage visited 0.00 0.00 100.00
Adj. R2 0.09 0.12 0.19
# eigenvectors 2.56 6.56 10.44
Case j = 4
Percentage visited 3.87 96.06 0.07
Adj. R2 0.31 0.36 0.19
# eigenvectors 16.94 27.24 8.44
Case j = 5
Percentage visited 32.96 16.89 50.15
Adj. R2 0.25 0.22 0.21
# eigenvectors 11.84 13.50 9.66

The results in each case refer to averages over 50 simulated datasets. �Percentage visited" is the percentage of

times a model with a given spatial weight matrix was visited in the MC3 algorithm, and is thus interpreted as

the corresponding posterior inclusion probability. �Adj. R2" is the average adjusted R2 of regressions based

exclusively on the eigenvectors corresponding to a particular spatial weighting matrix, and �# eigenvectors"

is the average number of eigenvectors extracted using the method by Tiefelsdorf and Gri�th (2007).

Table 1: Simulation results

The results indicate that the method can identify the underlying spatial structures with
extremely high precision for the cases where the true spatial weighting matrix is a member
of a single class. Not surprisingly, the results for cases 4 and 5, where the spatial weighting
matrix is a weighted average of matrices from di�erent classes, are less spectacular, but still
very satisfactory.

3 Income convergence and spatial interactions across Eu-

ropean Regions

In this section we assess the robustness of growth determinants and estimate the speed of
income convergence of European regions in presence of both model uncertainty in terms of
model covariates and the form of spatial interactions. Our dataset contains information on
50 potential covariates for 255 NUTS-2 European regions. The dependent variable refers to
the average annual growth rate of real income per capita over the period 1995-2005, de�ated
using national price data. Information about coverage and de�nitions of the variables and
abbreviations is presented in the Data Appendix. We consider linear models such as (1) in
the spatial �ltering representation given by (3).
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Figure 1: Summary statistics for di�erent weight matrices: total links and non-zero links

We allow for four types of spatial weighting matrices for each one of the following classes:
Queen matrices,K-nearest neighborhood, distance band and exponential decay. For the class
of Queen matrices we consider WQ

z , z = 1, 2, 3, 4, ranging from a �rst order neighborhood
matrix up to a fourth order neighborhood. The class of K-nearest neighborhood matrices is
represented by four variants, WK−NN

z , z = 4, 5, 6, 12, each one based on z neighbors. The
space of spatial weight matrices in our empirical study includes further four distance band
matricesWb

z, z = 400, 600, 800, 1000, where each one of them identi�es neighbors based on
bands of z kilometers. Finally, the set of exponential decay matrices has a representative
element given by [We

φ]ij = [dij]
−φ, where dij is the (airline) distance between observations

i and j and the parameter φ governs the decay of the weighting scheme. We consider four
possible exponential decay matrices, given by φ = 1, 2, 3, 4. A unit φ parameter implies that
observations are weighted according to inverse distances, while higher values of φ lead to a
sharper decay of weights as distance increases. Figure 1 summarizes the number of links and
the percentage of strictly positive links for each one of the matrices in the set of potential
spatial weight matrices. As Figure 1 exempli�es, there are strong di�erences in the spatial
structure underlying each one of the matrices in the sense of the amount of neighboring
units assumed to a�ect economic performance in a given region. The correlation of spatially
lagged income (Wzy) for the 16 matrices ranges from 0.50 to 0.96.
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We apply the spatial �lter proposed by Tiefelsdorf and Gri�th (2007) to each of our W
matrices and extract the relevant subsets of eigenvectors based on a cut-o� of 0.1 in Moran's
I statistic. Table 4 shows the number of selected eigenvectors for each spatial link matrix
and the adjusted R2 resulting from the regression of the dependent variable solely on a con-
stant and the full set of eigenvectors. The results reveal that a large part of variation in the
data can be explained exclusively by spatial patterns as proxied by the eigenvectors. This
complicates the estimation of the �pure" speed of income convergence, free from the spatial
e�ects created by economic growth poles.

WQ
1 WQ

2 WQ
3 WQ

4 WK−NN
4 WK−NN

5 WK−NN
6 WK−NN

12

Number of eigenvectors 15 15 10 8 18 14 18 19
Adj. R2 0.5888 0.5342 0.5250 0.5126 0.5515 0.5398 0.5248 0.5131

We
1 We

2 We
3 We

4 Wb
400 Wb

600 Wb
800 Wb

1000

Number of eigenvectors 19 17 13 17 13 12 12 13
Adj. R2 0.5630 0.5663 0.5887 0.5778 0.5211 0.4877 0.4759 0.4017

Table 2: Number of eigenvectors and adjusted R2: Spatially �ltered income per capita growth

In a �rst stage, we obtain BMA estimates for the e�ect of the covariates on economic growth
conditioning individually on each one of the di�erent classes of spatial weighting matrices7.
Since sensitivity analyses reported in the spatial econometric literature are often restricted
to one particular class of spatial weight matrices, the di�erences in inference resulting across
classes of weighting matrices is of particular interest. We therefore assess the dependence of
the relative importance of di�erent covariates with respect to spatial weighting matrices. For
that purpose, we obtained posterior inclusion probabilities for each variable in our dataset in
six di�erent BMA settings. We �rst obtain BMA statistics based on a linear model without
spatial interactions (equation (1) with the constraint ρ = 0 imposed or, alternatively, equa-
tion (3) with γi = 0 for i = 1, . . . , E). Secondly we obtain BMA statistics based on spatial
weight uncertainty but constraining the spatial links to belong to each one of the individual
classes of spatial weight matrices (Queen, exponential decay, K-neighborhood and distance
band). Finally we calculate BMA statistics where the space of spatial weight matrices is
composed by all 4 classes and hence 16 W matrices. Table 3 presents the results in terms
of posterior inclusion probability (PIP), mean (PM) and standard deviation (PSD) of the
posterior distribution of the parameters. Figure 2 plots the posterior inclusion probability
of the variables which achieve the highest values in this statistic for the BMA exercises
conditioning on di�erent classes of spatial weight matrices. Table 4 presents the posterior
inclusion probabilities for each one of the spatial weight matrices in the analysis.

The results in Figure 2 and Table 3 present interesting di�erences across estimates depending
on the class of spatial weight matrices which is conditioned upon. The choice of a particular
class of spatial weight matrices as a parametrization of the links across regions may have an
important e�ect on the resulting posterior inclusion probabilities, as can be seen in Figure

7The benchmark BRIC prior implies setting g = 1/K2. Following Sala-i-Martin et al. (2004) we expect a
typical growth model to be composed of seven regressors a priori and therefore set the prior expected model
size equal to seven.
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Figure 2: Posterior inclusion probabilities of covariates based on di�erent classes of spatial
weight matrices: all classes ({WQ,We,WK−NN ,Wb}), Queen spatial matrices ({WQ}),
K-nearest neighbors spatial matrices ({WK−NN}), exponential decay distance matrices
({We}), distance band matrices ({Wb}) and no spatial structure ({∅}).

2 for the case of the human capital variable ShSH (share of working age population with
high education). The results of BMA using the class of K-nearest neighbor matrices and
BMA using distance band spatial weight matrices imply that the importance of ShSH as an
explanatory factor of di�erences in income growth is small to negligible. On the other hand,
the results based on BMA using one of the remaining spatial weight matrices (Queen and
exponential decay), as well as the results based on models without spatial autoregression,
depict ShSH as one of the most important variables for explaining income growth in Euro-
pean regions. The results of our preferred speci�cation, where uncertainty is generalized to
take place both within and across classes of spatial weight matrices imply that the human
capital variable is indeed a robust determinant of economic growth in European regions.
Similarly, the results for AccessAir (potential air accessibility) di�er extremely if the spatial
link is parametrized using a spatial weight matrix with exponential decay as compared to
any of the other classes.

The posterior probabilities of models averaged across spatial weighting matrices are presented
in Table 4. There are three individual weighting matrices which receive practically all of the
evidence in terms of posterior probability: WQ

4 , W
e
3 and, to a minor extent, WQ

3 . These
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Figure 3: Joint distribution of regressors and weighting matrices based on the model involving
all 16 matrices. The distribution is shown for the 20 most important variables according to
the associated posterior inclusion probabilities (PIP).

matrices present a relatively di�erent number of links (see Figure 1). The e�ects of spatial
weight uncertainty on the relative importance of explanatory variables as determinants of
regional growth can be grasped by examining the joint posterior inclusion distribution of co-
variates and spatial weight matrices, which is depicted in Figure 3.8 Figure 3 shows that the
importance of regressors in terms of posterior inclusion probability tends to remain similar
across spatial structures. An interesting exception is the physical capital investment variable
(shGFCF), whose relevance as a robust determinant of growth is exclusively concentrated in
models including the exponential decay weighting matrix with φ = 3,We

3. The result sheds
a particularly interesting light on the modeling choice of spatial links for cross-sectional re-
gional growth regressions, since most empirical applications blindly condition on one of the
elements of theW space, and the choice in the case of economic growth applications tends
to be a spatial weighting matrix with exponentially decaying weights with distance.

The choice of a spatial weight matrix (or a group of them) is particularly important when it
comes to obtaining an estimate for the speed of income convergence, embodied in the esti-

8Figure 3 is constructed with estimates based on the 3,000 models with highest inclusion probability, while
the results reported in Table 4 are based on MC3 frequencies. This implies that some small quantitative
di�erences exist between the two.
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mate of the parameter attached to the initial level of income per capita in the regional growth
regression. In Figure 4 we present the posterior density of the speed of income convergence
parameter computed over the whole model space (unconditional distribution) and over the
set of models which include initial income as a regressor (conditional distribution), averaged
over di�erent conditioning sets of spatial weighting matrices. In particular, in order to ex-
emplify the di�erences depending on the conditioning set in terms of W matrices, Figure 4
shows the results for the BMA exercise in three di�erent settings for the spatial links: (a)
models without spatial weighting matrix, (b) models with spatial weighting matrices of the
class of distance bands matrices and (c) models with spatial weighting based on all classes
put forward above.
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Figure 4: Unconditional and conditional posterior distribution over the speed of income
convergence parameter based on 3,000 models with highest inclusion probabilities a) without
spatial e�ects ({∅}), b) with distance band matrices ({Wb}) and c) with the full set of spatial
weighting matrices ({WQ,We,WK−NN ,Wb})
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WQ
1 WQ

2 WQ
3 WQ

4 WK−NN
4 WK−NN

5 WK−NN
6 WK−NN

12

PIP 0.0234 0.0000 1.7728 36.2936 0.0000 0.0016 0.0000 0.0000
We

1 We
2 We

3 We
4 Wb

400 Wb
600 Wb

800 Wb
1000

PIP 0.0000 0.0000 61.8796 0.0000 0.0000 0.0290 0.0000 0.0000

Table 4: Posterior inclusion probability over space of weighting matrices (in %)

The convergence speed estimates for the model space which does not include spatial e�ects
appear systematically higher than in the cases where spatial spillovers are explicitly mod-
eled, as is expected if unmodeled positive spatial autocorrelation is present in the data. As
we allow for more �exibility when modeling spatial autocorrelation patterns, the estimate of
the �pure" speed of convergence (free of the e�ect of spatial autocorrelation) decreases. The
di�erences are quantitatively very large. If we concentrate on the median of the conditional
posterior distributions in Figure 4, the estimate of the speed of convergence falls from levels
above 2% (a value which has become something of a stylized fact when it comes to cross-
sectional growth regressions) in the posterior distribution based on models without spatial
e�ects to 1% when the full set of 16 spatial weight matrices is conditioned upon. If a smaller
set of spatial weighting matrices is conditioned upon, the resulting posterior distribution
over the speed of convergence parameter lies somewhat between the two extremes, with a
modal value of 2%.

We obtain an interesting insight to the importance of assessing model uncertainty in the
framework of spatially autocorrelated data by comparing conditional and unconditional pos-
terior distributions of the speed of convergence across European regions in Figure 4. While
the two distributions do not di�er strongly for the BMA estimates based on standard OLS
and those based on the class of distance band matrices, as we allow for more �exibility when
modeling spatial links a bimodal unconditional distribution with a zero mode emerges. This
is the case since some of the spatial structures allow us to model the growth di�erences
between rich and poor regions based on purely geographical patterns, without the need of
including conditional convergence. This results in a group of models which do not include
the initial level of income per capita as a regressor but are able to explain growth di�erentials
relatively well. Table 3 and Table 4 show that such an e�ect is related to the inclusion of
Queen contiguity matrices in the conditioning set.

This implies that the estimates obtained in previous research concerning the regional speed
of income convergence using models which condition on a single spatial link matrix tended
to overestimate the extent of the income convergence process. This result is particularly
important for economic policy exercises implying the ceteris paribus condition in models with
spatial autocorrelation. The interpretation of the income convergence speed in neoclassical
economic growth models is based on the assumption that all factors a�ecting economic
growth remain constant with the exception of income itself. In the framework of models with
spatial spillovers in the form of spatial autoregressive speci�cations, an extra assumption for
the interpretation of the speed of convergence is that the income levels of other regions
remain constant, so that ensuring the lack of spatial correlation in the residuals of the
growth regression is an important prerequisite for the analysis. Our results give strong
evidence that the quantitative assessment of income convergence across regions requires a
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systematic treatment of uncertainty in the nature of spatial growth spillovers.

4 Conclusions

We put forward a Bayesian Model Averaging method for dealing with model uncertainty in
the presence of potential spatial autocorrelation of unknown form. We propose using spatial
�ltering methods to, on the one hand, exploit large sets of possible classes of spatial weight-
ing matrices and, on the other hand, achieve computational gains as compared to the direct
estimation of spatial autoregressive models. Using simulations, we show that the method is
able to identify correctly covariates and spatial patterns present in the data.

We use our method to evaluate the robustness of growth determinants across European
regions for the period 1995-2005 and, in particular, to estimate the speed of income con-
vergence. We show that the choice of a type of speci�cation in terms of a particular class
of spatial weighting matrices can have an important e�ect on the estimates of the parame-
ters attached to the model covariates. We also show that estimates of the speed of income
convergence across European regions depend strongly on the form of the spatial patterns
which are assumed to underly the dataset. When we take into account this dimension of
model uncertainty, the posterior distribution of the speed of convergence parameter appears
bimodal, with a large probability mass around no convergence (0% speed of convergence)
and a rate of convergence of 1%, approximately half of the value which is usually reported
in the literature. Our results indicate that previous research concerning the regional speed
of income convergence in models which condition on single spatial link matrices tended to
overestimate the catching-up process in income levels.
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Technical Appendix

Priors over the parameter space conditional on a model speci�cation

BMA belongs to the class of shrinkage estimators, where shrinkage over models is governed
by the parameter g, which elicits our prior over slope parameters. The choice of g is thus
crucial for posterior inference. Fernández et al. (2001a) propose an automated way to choose
g based on an exhaustive simulation study. The benchmark prior advocated by Fernández
et al. (2001a) amounts to setting g = 1/max(N,K2). This prior structure bridges between
the unit information prior (UIP, g = 1/N) proposed by Kass and Raftery (1995a) and Raftery
(1995b) and the risk information criterion (RIC, g = 1/K2) by Foster and George (1994).
The use of UIP implies that the Bayes factor can be interpreted asymptotically (and there-
fore approximated) as the di�erence of the Schwarz information criterion (Schwarz (1978))
values for the two corresponding models. Other approaches include mixtures of g-priors
and variants of the Zellner-Siow prior (Liang et al. (2008)). Throughout the paper we use
the benchmark prior in Fernández et al. (2001a), which implies that for the setting in our
empirical application the RIC is preferred when choosing g.

Priors over the model space

A prior over models in M has to be chosen in order to obtain BMA estimates of the pa-
rameters. Two typical prior speci�cations have been usually imposed in the literature: a) an
uninformative �at prior over all models, which implies that the posterior odds ratio resem-
bles solely the Bayes factor and comparison of models is governed by their relative marginal
likelihoods, and b) a prior that discriminates among models according to the number of re-
gressors they include, so that a larger prior probability mass falls over models of a given size
(see Sala-i-Martin et al. (2004)). This second alternative is instrumentalized by assuming
that each covariate enters the regression with probability ϑ, which implies that the prior
mass for model j which includes kj variables (in addition to the eigenvectors used for spatial
�ltering) amounts to p(M z

j ) = ϑkj (1− ϑ)K−kj . The uninformative prior in a) is nested in b)
by imposing ϑ = 1/2, which results into equal model probabilities of 2−K for all models for
each spatial matrix, thus 2−K×Z is the prior inclusion probability of each model in our case.

Ley and Steel (2009) show that �xing ϑ = 1/2 puts most mass on models withK/2 regressors,
since they are dominant in number. Their recommendation is thus to treat ϑ as random
and placing a (hyper)prior on it. The proposal of Ley and Steel (2009) is to impose that
the model size follows a Binomial-Beta(a, b) distribution (Bernardo and Smith (1994)) with
a = 1, so that

P (k = kj) =
Γ(1 + b)

Γ(1) + Γ(b) + Γ(1 + b+K)

(
K

kj

)
Γ(1 + kj)Γ(b+K − kj) kj = 0, . . . , K. (9)

The prior can be elicited by anchoring the prior expected model size, m.9 Ley and Steel
(2009) quantify the in�uence that a poorly speci�ed prior exerts on posterior results when ϑ

9Note that b is then implicitly de�ned through b = (K −m)/m.
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is �xed, which leads to the relative merits of BMA being less pronounced and its predictive
power deteriorating. In contrast, the results in Ley and Steel (2009) indicate that the choice
of m has no in�uential impact on posterior inference and the prior over models is purely
non-informative.
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Data Appendix

Country Region
Austria Burgenland Salzburg

Kärnten Steiermark
Niederösterreich Tirol
Oberösterreich Vorarlberg
Wien

Belgium Prov. Antwerpen Prov. Luxembourg (B)
Prov. Brabant Wallon Prov. Namur
Prov. Hainaut Prov. Oost-Vlaanderen
Prov. Liège Prov. Vlaams Brabant
Prov. Limburg (B) Prov. West-Vlaanderen
Région de Bruxelles-Capitale

Bulgaria Severen tsentralen Yugoiztochen
Severoiztochen Yugozapaden
Severozapaden Yuzhen tsentralen

Cyprus Cyprus Severovýchod
Czech Republic Jihovýchod Severozápad

Jihozápad Strední Cechy
Moravskoslezsko Strední Morava
Praha

Denmark Denmark
Estonia Estonia
Finland Åland Länsi-Suomi

Etelä-Suomi Pohjois-Suomi
Itä-Suomi

France Alsace Île de France
Aquitaine Languedoc-Roussillon
Auvergne Limousin
Basse-Normandie Lorraine
Bourgogne Midi-Pyrénées
Bretagne Nord - Pas-de-Calais
Centre Pays de la Loire
Champagne-Ardenne Picardie
Corse Poitou-Charentes
Franche-Comté Provence-Alpes-Côte d'Azur
Haute-Normandie Rhône-Alpes

Germany Arnsberg Lüneburg
Berlin Mecklenburg-Vorpommern
Brandenburg - Nordost Mittelfranken
Brandenburg - Südwest Münster
Braunschweig Niederbayern
Bremen Oberbayern
Chemnitz Oberfranken
Darmstadt Oberpfalz
Detmold Rheinhessen-Pfalz
Dresden Saarland
Düsseldorf Schleswig-Holstein
Freiburg Schwaben
Giessen Stuttgart
Hamburg Thüringen
Hannover Trier
Karlsruhe Tübingen
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Kassel Unterfranken
Koblenz Weser-Ems
Köln Leipzig

Greece Anatoliki Makedonia, Thraki Kriti
Attiki Notio Aigaio
Dytiki Ellada Peloponnisos
Dytiki Makedonia Sterea Ellada
Ionia Nisia Thessalia
Ipeiros Voreio Aigaio
Kentriki Makedonia

Hungary Dél-Alföld Közép-Dunántúl
Dél-Dunántúl Közép-Magyarország
Észak-Alföld Nyugat-Dunántúl
Észak-Magyarország

Ireland Border, Midlands and Western
Southern and Eastern

Italy Abruzzo Molise
Basilicata Piemonte
Calabria Bolzano-Bozen
Campania Trento
Emilia-Romagna Puglia
Friuli-Venezia Giulia Sardegna
Lazio Sicilia
Liguria Toscana
Lombardia Umbria
Marche Valle d'Aosta
Veneto

Latvia Latvia
Lithuania Lithuania
Luxembourg Luxembourg (Grand-Duché)
Malta Malta
Netherlands Drenthe Noord-Brabant

Flevoland Noord-Holland
Friesland Overijssel
Gelderland Utrecht
Groningen Zeeland
Limburg (NL) Zuid-Holland

Poland Dolnoslaskie Podkarpackie
Kujawsko-Pomorskie Podlaskie
Lódzkie Pomorskie
Lubelskie Slaskie
Lubuskie Swietokrzyskie
Malopolskie Warminsko-Mazurskie
Mazowieckie Wielkopolskie
Opolskie Zachodniopomorskie

Portugal Alentejo Lisboa
Algarve Norte
Centro (PT)

Romania Bucuresti - Ilfov Sud - Muntenia
Centru Sud-Est
Nord-Est Sud-Vest Oltenia
Nord-Vest Vest

Slovak Republic Bratislavský kraj Východné Slovensko
Stredné Slovensko Západné Slovensko
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Slovenia Slovenia
Spain Andalucia Extremadura

Aragón Galicia
Cantabria Illes Balears
Castilla y León La Rioja
Castilla-la Mancha Pais Vasco
Cataluña Principado de Asturias
Comunidad de Madrid Región de Murcia
Comunidad Foral de Navarra Comunidad Valenciana

Sweden Mellersta Norrland Sm
◦
aland med öarna

Norra Mellansverige Stockholm
Östra Mellansverige Sydsverige
Övre Norrland Västsverige

United Kingdom Bedfordshire, Hertfordshire Kent
Berkshire, Bucks and Oxfordshire Lancashire
Cheshire Leicestershire, Rutland and Northants
Cornwall and Isles of Scilly Lincolnshire
Cumbria Merseyside
Derbyshire and Nottinghamshire North Yorkshire
Devon Northern Ireland
Dorset and Somerset Northumberland, Tyne and Wear
East Anglia Outer London
East Riding and North Lincolnshire Shropshire and Sta�ordshire
East Wales South Western Scotland
Eastern Scotland South Yorkshire
Essex Surrey, East and West Sussex
Gloucestershire, Wiltshire and Tees Valley and Durham
North Somerset
Greater Manchester West Midlands
Hampshire and Isle of Wight West Wales and The Valleys
Herefordshire, Worcestershire and Warks West Yorkshire
Inner London

Table A.1: European regions in the sample
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Variable name Description Source

Dependent variable
gGDPCAP Growth rate of real GDP per capita Eurostat

Factor accumulation/convergence
GDPCAP0 Initial real GDP per capita (in logs) Eurostat
gPOP Growth rate of population Eurostat
shGFCF Share of GFCF in GVA Cambridge Econometrics

Infrastructure
INTF Proportion of �rms with own ESPON

website regression
TELH A typology of levels of household ESPON

telecommunications uptake
TELF A typology of estimated levels of ESPON

business telecommunications access and uptake
Seaports Regions with seaports ESPON
AirportDens Airport density ESPON
RoadDens Road density ESPON
RailDens Rail density ESPON
ConnectAir Connectivity to commercial airports by car ESPON
ConnectSea Connectivity to commercial seaports by car ESPON
AccessAir Potential accessibility air ESPON
AccessRoad Potential accessibility road ESPON

Socio-geographical variables
Settl Settlement structure ESPON
OUTDENS0 Initial output density
EMPDENS0 Initial employment density
POPDENS0 Initial population density
RegCoast Coast ESPON
RegBorder Border ESPON
RegPent27 Pentagon EU 27 plus 2 ESPON
RegObj1 Objective 1 regions ESPON
Capital Capital city
Airports Number of airports ESPON
Temp Extreme temperatures ESPON
Hazard Sum of all weighted hazard values ESPON
Distde71 Distance to Frankfurt
DistCap Distance to capital city

Technological innovation
PatentT Number of patents total Eurostat
PatentHT Number of patents in high technology Eurostat
PatentICT Number of patents in ICT Eurostat
PatentBIO Number of patents in biotechnology Eurostat
PatentShHT Share of patents in high technology Eurostat
PatentShICT Share of patents in ICT Eurostat
PatentShBIO Share of patents in biotechnology Eurostat
HRSTcore Human resources in science and technology (core) Eurostat LFS

Human capital
ShSH Share of high educated in working age population Eurostat LFS
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ShSL Share of low educated in working age population Eurostat LFS
ShLLL Life long learning Eurostat LFS

Sectoral structure/employment
ShAB0 Initial share of NACE A and B Eurostat

(Agriculture)
ShCE0 Initial share of NACE C to E Eurostat

(Mining, Manufacturing and Energy)
EREH0 Employment rate - high Eurostat LFS
EREL0 Employment rate - low Eurostat LFS
ERET0 Employment rate - total Eurostat LFS
URH0 Unemployment rate - high Eurostat LFS
URL0 Unemployment rate - low Eurostat LFS
URT0 Unemployment rate - total Eurostat LFS
ARH0 Activity rate high Eurostat LFS
ARL0 Activity rate low Eurostat LFS
ART0 Activity rate total Eurostat LFS

Table A.2: Variables, description and sources
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