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Abstract

We analyze the performance of Bayesian model averaged exchange rate forecasts
for euro/US dollar, euro/Japanese yen, euro/Swiss franc and euro/ British pound
rates using weights based on the out-of-sample predictive likelihood. The paper also
presents a simple stratified sampling procedure in the spirit of Sala i Martin et alia
(2004) to obtain model weights based on predictive accuracy. Our results indicate
that accounting explicitly for model uncertainty when constructing predictions of
euro exchange rates leads to improvements in predictive accuracy as measured by
the mean square forecast error. While the forecasting error of the combined forecast
tends to be systematically smaller than that of the individual model that would have
been chosen based on predictive accuracy in a test sample, random walk forecasts
cannot be beaten significantly in terms of squared forecast errors. Direction of
change statistics, on the other hand, are significantly improved by Bayesian model
averaging.
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1 Introduction

Since the influential paper by Meese and Rogoff (1983), which showed the predictive

superiority of a random walk model over exchange rate determination models, a myr-

iad of studies have been written evaluating the forecasting ability of multiple modelling

techniques for exchange rates. Although modern developments in the specification of

cointegration and error correction models have led to some progress in improving out-

of-sample forecasts for relatively long horizons (see for example, MacDonald and Taylor,

1993, MacDonald and Taylor, 1994, or Mark, 1995), this evidence is not as robust as

many authors seem to claim (see Faust et alia, 2003). In particular, models that perform

well for a given currency pair and sample do not necessarily deliver good forecasts for

different currencies, or do not predict well in other subsamples.

Most of the studies on forecasting models for exchange rates concentrate on a model or

set of models, whose predictive ability is compared with that of simple univariate time se-

ries models, prominently the random walk model. This methodological approach ignores

systematically a dimension of uncertainty, namely that related to the choice of variables

which enters the model. Most econometric exchange rate models take the theoretical

structure behind the specification (which gives rise to the choice of variables) for granted

and therefore do not exploit the predictive improvement which may be caused by com-

bining forecasts from different models.

Bates and Granger (1969) and Newbold and Granger (1974) initiated the literature on

forecast combination, which is extensively surveyed in recent contributions by Hendry and

Clements (2004) and Timmermann (2006). Bayesian model averaging (BMA) presents a

systematic methodology which integrates in a statistically solid framework the determi-

nation of weights for such combinations. In this paper we analyze the forecasting ability

of BMA of exchange rate forecasts based on the out-of-sample predictive likelihood for

the exchange rate of the euro against the US dollar, British pound, Japanese yen and

Swiss franc. This method weights the forecasts of different exchange rate models based

on their predictive ability and not on in-sample fit, like standard BMA techniques do.

Wright (2003) presents results based on “classical” Bayesian model averaging (based on

in-sample fit) for a relatively small set of exchange rate models, with results which are

supportive of the averaging technique but not too impressive. Recently, BMA methods

based on predictive likelihood have been studied theoretically by Eklund and Karlsson

(2007) and applied to forecasts of Swedish inflation by Jacobson and Karlsson (2004).

While these studies apply Markov Chain Monte Carlo methods in order to exploit the

model space efficiently, here we present a new method to obtain the model weights based
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on the sampling procedure put forward by Sala-i-Martin et alia (2004).

Our results for the EUR/USD, EUR/JPY, EUR/CHF and EUR/GBP exchange rates

indicate that accounting explicitly for model uncertainty when constructing predictions

of exchange rates tends to lead to improvement over the use of the single best forecasting

model in terms of predictive accuracy, although the results of the averaged forecasts per-

form poorly compared to the traditional random walk benchmark. The forecast averaging

technique also tends to improve over the single best model in terms of direction of change

statistics, reaching values which are significantly over 50% in several cases.

The paper is structured as follows. Section 2 presents the methodology of BMA using the

out-of-sample predictive likelihood and describes the sampling procedure used. Section 3

gives the results of the forecasting competition for euro exchange rates

2 Bayesian model averaging using the out-of-sample

predictive likelihood

2.1 Bayesian model averaging and exchange rate models

The empirical literature on exchange rate forecasting tends to concentrate on a given theo-

retical framework that determines the nature of the variables to be used in the econometric

specification (and most probably, also the functional relationship linking them). In the

case of the monetary model of exchange rate determination (see for example Frenkel, 1976

or Dornbush, 1976, for the original formulations), the variables that should be included in

the empirical model depends on the equilibrium conditions assumed in theory. If the un-

covered interest rate parity (UIRP) is not assumed to hold, for instance, then interest rate

differentials could play a role in the determination of exchange rates. On the other hand,

if the UIRP is assumed to be fulfilled, the interest rate differential contains information on

exchange rate expectations and the extra assumption of rational expectations would im-

ply that the interest rate variable should not be included in the econometric specification

(see for example the derivations in Groen, 2002). The same way, while macroeconomic

models aimed at exchange rate prediction concentrate on monetary variables and do not

tend to use data on financial markets, models using variables such as stock indices have

shown good predictive power at similar forecasting horizons (Chu and Lu, 2006, is a recent

example of this literature).

In this paper we propose averaging over different alternative models using Bayes factors so
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as to evaluate the relative importance of different variables as predictors of the exchange

rate. In the situation where there are M competing models, {M1, . . . ,MM} Bayesian

inference about the quantity of interest, which in our case will be the predictive density at

forecasting horizon h, P (yh) is based on its posterior distribution (that is, the distribution

given the data, Y),

P(yh|Y) =
M∑

m=1

P(yh|Y,Mm)P(Mm|Y), (1)

where P(Mk|Y) are the posterior model probabilities,

P(Mk|Y) =
P(Y|Mk)P(Mk)∑M

m=1 P(Y|Mm)P(Mm)
. (2)

The posterior model probabilities can thus be obtained as the normalized product of the

integrated likelihood for each model (P(Y|Mk)) and the prior probability of the model

(P(Mk)). Notice that for the simple case m = 2 the posterior odds for a model against

the other can be readily written as the product of the Bayes factor and the prior odds.

Further assuming equal priors across models, the posterior odds are equal to the Bayes

factor (P(Y|M2)/P(Y|M1)).The Bayes factor, in turn, can be accurately approximated

(see Leamer, 1978, and Schwarz, 1978) as

P(Y|M2)

P(Y|M1)
= N (k1−k2)/2

(
Lik2

Lik1

)
, (3)

where N is the number of observations, kj and Likj are respectively the number of pa-

rameters and the likelihood of model j. This simple approximation allows us to compute

(2) and the corresponding statistics based on (2).

Since our only interest in the exercise is prediction, we redefine the posterior model prob-

abilities based on the predictive densities of the models being entertained for the fore-

casting horizon considered, h. This approach to model averaging based on out-of-sample

predictive likelihoods instead of in-sample fit has been recently proposed by Kapetanios et

alia (2006), for instance. In practice, this amounts to replacing the in-sample residuals by

out-of-sample forecasting errors in (2) when computing the corresponding likelihood. The

forecasting errors are obtained from a model estimated on a subsample of the available

data, which is used in order to predict the remaining sample. The corresponding Bayes

factor can thus be approximated by

P(Y|M2)

P(Y|M1)
= T

(k1−k2)/2
F

(
MSFE1

MSFE2

)TF
2

, (4)
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where MSFEj is the mean square forecasting error of model j based on the TF out-of-

sample observations, that is,

MSFEk(h) =

TF−h∑
j=0

(yT0+j+h − yf
T0+j+h)2/(TF − h), (5)

where yt refers to the exchange rate in period t, yf
t is the corresponding forecast, obtained

with data up to period t − h, and T0 is the last in-sample observation, so that T0 + h is

the first observation to be forecast in the subsample used to obtain the model weights.

This implies that for a given prior on the model space, the posterior distribution of yh

can be obtained as a weighted average of the model-specific estimates weighted by the

posterior probability of the respective models. If the cardinality of the model space is

computationally tractable, (4) can be obtained directly and (1) can be computed. In

particular, the expected value of yh, E(yh|Y), the point forecast, can be computed as

follows

E(yh|Y) =
M∑

m=1

E(yh|Y,Mm)P(Mm|Y), (6)

Several methods can be used in order to approximate the expression in (2) when the

cardinality of the model space makes the problem intractable. The leaps and bounds al-

gorithm, the use of Markov chain Monte Carlo model composite (MC3) methods or the

use of Occam’s window are possible methods of setting bounds to the number of models

to be evaluated when computing (2).1 In the empirical application presented below, the

number of models is given by all possible combinations of 16 potential variables in three

potential functional forms (given by multivariate time series models in the form of vector

autoregressions in levels, VAR, in first differences, DVAR or error correction models, VEC

) with a lag length between one and six lags. This results in 6 × 3 × 216 = 1, 179, 648

possible models. In this paper we propose a simple sampling method based on the strat-

ified sampler proposed by Sala-i-Martin et alia (2004) in order to evaluate the sums in (2).

In the same fashion, posterior inclusion probabilities for the different variables can be

obtained by summing the posterior probability of models containing each variable. This

measure captures, thus, the relative importance of the different variables as predictors of

exchange rate movements.

1See the influential papers by Raftery (1995) and Raftery et alia (1997) for a discussion of these
methods and a general introduction to Bayesian model averaging.
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2.2 Sampling procedure

Sala-i-Martin et alia (2004) propose a simple sampling procedure aimed at evaluating the

expression given by (2) when the cardinality of the model space makes the computation

of the total sum in the denominator intractable. Here we use a generalization of this pro-

cedure based on sampling from the model space assigning more weight to models which

tend to deliver relatively good predictions of the exchange rate.

The stratified sampling procedure is carried out as follows. Let the total sample be divided

into the following subsamples: observations 1 to T0 correspond to the first in-sample set

and observations T0 + 1 to T0 + TF are used to obtain the forecasting errors. Using the

prior distribution of models, P (Mj), a model specification (given by a set of variables

entering the model, a specification of the relationship among variables - VAR, DVAR or

VEC - and a lag length) is chosen and estimated for the first in-sample period, (1, T0). A

prediction for the exchange rate observation corresponding to period T0 + h is computed,

the model is reestimated for the sample (1, T0 + 1) and a new forecast is obtained for the

observation corresponding to T0 + 1 + h. This procedure is repeated until the prediction

for period T0 + TF is achieved. The corresponding squared forecast errors are obtained

for this model, a new model is sampled and the procedure is repeated. This is done a

large number of times. In order to avoid sampling many models with poor forecasting

ability, the sampling probabilities are updated every N replications using the posterior

model probabilities computed up to that replication. The corresponding updated sampling

probabilities are a linear combination of the prior and the posterior model probabilities

weighted by a factor ω and (1 − ω), respectively. The full procedure is repeated until

convergence is achieved in the object to be estimated (in our case, E(yh|Y)).

3 Empirical results

3.1 Data and models

The forecasting exercise is carried out for the exchange rate of the euro (EUR) against

the US dollar (USD), Japanese yen (JPY), British pound (GBP) and Swiss franc (CHF).

The full dataset spans the period January 1980 - January 2006 at monthly frequency,

where the euro exchange rate prior to 1999 refers to synthetic euro data. Table 1 presents

the definitions of the variables used as potential covariates in the multivariate time series

models. Each variable is considered both for the domestic (euro area) and corresponding

foreign economy, so that 16 potential variables are considered for each currency. This set

contains the usual macroeconomic variables implied by the monetary model of exchange
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rate determination, financial market series such as stock and earning indices and sentiment

indicators. The source of the data is Datastream in all cases.

Include Table 1 here

The multivariate time series specifications used have the following form. For a given group

of k variables (which are grouped together with the exchange rate variable in the vector

Xt, which is thus of dimension k+ 1) and lag length P , the VAR specification is given by

Xt = Γ0 +
P∑

i=1

ΓiXt−i + εt, (7)

where Γ0 is a (k+ 1)× 1 vector of intercept terms, Γi for i = 1, . . . , P are (k+ 1)× (k+ 1)

matrices of parameters and εt is assumed to be a vector disturbance with expected value

zero and variance-covariance matrix Σ. The DVAR specification is given by

∆Xt = Γ0 +
P∑

i=1

Γi∆Xt−i + εt, (8)

where ∆ is the first difference operator, ∆ = (1 − L), where L is the lag operator. The

VEC specification is

∆Xt = Γ0 + αθXt−1 +
P∑

i=1

Γi∆Xt−i + εt, (9)

where θ is a 1×(k+1) vector which identifies the cointegration relationship (for simplicity

we consider exclusively VEC models with a single cointegration relationship) and α is a

(k + 1) × 1 vector of adjustment parameters to the long-run relationship given by the

cointegrating vector.

The model averaging procedure is carried out using the sampling procedure described

above. In particular, we assume a prior inclusion probability of 0.25 for each variable

considered, which implies that the prior expected number of included variables in the

multivariate model is 4. A uniform prior is assumed over the lag length, ranging from one

to six, and also a uniform prior is assumed over the model specification (VAR, DVAR or

VEC).2 It should be noticed that the model space also includes univariate autoregressive

2For an inclusion probability π for each variable, the probability of a model including s variables is
πs(1 − π)S−s, where S is the total number of variables considered. If the prior probability attached to
a lag length l is given by πl (assumed equal across lag lengths) and the prior probability attached to
a model specification (VAR, DVAR, VEC) is 1/3, the prior probability of model i with s variables is
P (Mi) = 1

3πlπ
s(1− π)S−s.
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time series models (both in levels and first differences), which correspond to sampling

zero variables from the potential set. The results are reported for 100,000 replications of

the stratified sampler, where the sampling probabilities are updated every 100 replications

with a mixing factor ω = 0.8.3 We will consider that the sampling procedure has converged

if the absolute difference between the posterior expected value of the exchange rate vector

defined for the period (TF+h, T ) in replication g and replication g + 500 is smaller than

0.01%. The first in-sample period is defined to be between January 1980 and December

1990 (T0 in the notation above) and the period January 1991 - December 1998 (T0 + TF

in the notation above) will be used to obtain the model weights and named the “test

sample”. Based on these weights, the period January 1999 - January 2006 is used to

evaluate the out-of-sample forecasting ability of the model averaging technique. Forecasts

are obtained for horizons ranging from one month to one year ahead.

3.2 Forecasting results

The results of the forecasting exercise are presented in Table 2 and Table 3. For each

currency and each forecasting horizon these tables presents the relative root mean square

forecasting error (RMSFE) of the model average as compared to the random walk model

(no-change forecast) for the period January 1999 - January 2006, together with the relative

root mean square forecasting error for the same period corresponding to the individual

(sampled) model with the lowest forecasting error in the period January 1991 - Decem-

ber 1998 (named “Best Model” in the table). The ratios are built so that values above

one imply better forecasting ability of the random walk. Direction of change statistics

(DOC), defined as the proportion of times that a depreciation or appreciation was cor-

rectly forecast are also provided in the tables. We also provide the Diebold-Mariano test

statistic (Diebold and Mariano, 1995) and the binomial test statistic for the null hypoth-

esis that the direction of change probability is equal to 0.5 (hypothesis corresponding to

the random walk model). The identity of the best sampled model is given in the Table

by its specification (AR, VAR, DVAR or VEC), followed by the identity of the variables

included in the model and the lag length. The names of the variables corresponds to the

names given in Table 1, the superscript d indicates the domestic economy (euro area) and

the superscript f indicates the corresponding foreign economy.

Include Table 2 and Table 3 here

3As in Sala i Martin et alia (2004), we will impose a minimal sampling probability for a variable of
0.1 and a maximum sampling probability of 0.8, so as to avoid that certain variables are sampled too
seldom (see the Technical Appendix to Sala i Martin et alia (2004)).
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The results presented in Table 2 and 3 indicate a very relevant improvement in terms

of RMSFE when combining forecasts as compared to the model that would have been

chosen based on the forecasting ability in the test sample. This is true for all forecasting

horizons in the case of the EUR/USD exchange rate, and all but one in the case of the

EUR/JPY (8 months ahead). The single best model improves over the model averaged

forecast at two and three forecasting horizons for the EUR/CHF and EUR/GBP rates

respectively (at horizons 9 and 10 in the first case and 5, 9 and 11 in the second case).

Despite improvements over single best models, the combined forecasts do not appear sys-

tematically and significantly better than random walk forecasts. Only for the EUR/CHF

forecasts do the BMA predictions improve over the random walk benchmark and pass

the Diebold-Mariano test. On the other hand, the evidence against the best single mod-

els gathered by comparing forecasts with the random walk model is overwhelming: the

Diebold-Mariano test favours the no-change forecast in most of the comparisons.

The results concerning DOC give clear evidence of the supremacy of BMA forecasts for

the EUR/USD exchange rate over the forecasts produced by the individual best model. In

a couple of cases, the BMA forecasts present DOC forecasts for this exchange rate which

appear significantly over the 0.5 benchmark. The DOC results for the EUR/JPY rate

also favour he BMA technique strongly: with the exception of the 8 and 9 months-ahead

forecasts, averaging improves directional forecasts, rendering the accuracy of long-run

forecasts (above 9 months-ahead) significantly above 0.5.

Correctly predicted directions of change in the case of average forecasts appear signifi-

cantly better than the “toss of coin” benchmark in short-run forecasts (2 and 3 months

ahead) for the EUR/GBP exchange rate, where improvements over the single best model

appear in most cases, and in long-run forecasts (12 months ahead) for the EUR/CHF

rate. In this last case the proportion of correctly forecast directions of change for the

BMA technique, furthermore, appears greater than 0.7, although the results for other

forecasting horizons in this exchange rate do not tend to systematically support model

averaging.

Include Figure 1, Figure 2 and Figure 3 here

In Figure 1 we present the posterior inclusion probabilities of the variables in Table 1,

Figure 2 presents the inclusion probabilities of the different model specifications and Fig-

ure 3 the posterior probabilities of the lag length parameter for the different exchange

rates at the forecasting horizons considered. For the interpretation of Figure 1, it should

be stressed that the prior model inclusion probabilities of the different variables equals
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0.25 (see section 3.1 above). This implies that posterior inclusion probabilities above 0.25

in Figure 1 indicate that, after observing the data, we consider the inclusion of that vari-

able in the model more probable than a priori assumed. Several interesting conclusions

can be drawn from these figures. Probably the most striking feature is the heterogeneiy

observed across exchange rates. While no variable can be labelled robust (not even in the

sense of attaining posterior inclusion probabilities above the prior) for the EUR/USD and

EUR/GBP exchange rates, some variables attain high posterior inclusion probabilities for

the EUR/JPY and EUR/CHF. This implies that the big bulk of posterior inclusion prob-

ability for the EUR/USD and the EUR/GBP is concentrated on univariate specifications

of the exchange rate, regardless of the fact that the individual models that receive the

highest weight in the BMA procedure tend to be multivariate models. The importance of

univariate models mirrors itself in extremely low posterior inclusion probabilities for error

correction models for thee exchange rates, as shown in Figure 2. Among vector autore-

gressive models, the posterior inclusion probabilities of models in levels versus models in

first difference tends to be both currency-specific and forecasting horizon-specific. Inter-

estingly, both in the EUR/USD and the EUR/JPY exchange rate, for short horizons the

statistical evidence changes from favoring models in first differences to models in levels in

a relatively monotonic manner.

The results for the EUR/JPY exchange rate provide evidence of the importance of in-

cluding money supply and (eurozone) industrial production variables in error correction

specifications for medium-term forecasts (8 and 9 months ahead). As can be seen by com-

paring the results with those in Table 2, this result is driven by the superior performance

of the individual best model, whose predictions appear systematically better than those

of the averaged alternative.

For the case of the EUR/CHF exchange rate, robust variables (with very high poste-

rior inclusion probability) are present only for prediction horizons over 6 months ahead.

Within this range of medium to long-term forecasts, the results concerning the relative

importance of the different macroeconomic variables changes depending on the forecasting

horizon considered. While eurozone industrial production and the corresponding Swiss

stock market index seem to be relevant for the quality of 7 to 11 months-ahead forecasts,

earning indices, the Swiss short term interest rate and the eurozone sentiment indicator

appear as robust predictors for one year ahead forecasts. It is noticeable, however, that

the improvements brought about by model averaging for these horizons are not system-

atic, as shown in Table 1.
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The inclusion probabilities for the different lag lengths of the time series models enter-

tained, presented in Figure 3, favor relatively small models for all exchange rates consid-

ered, with lag lengths over three months having negligible posterior inclusion probabilities

for all exchange rates studied.

4 Conclusions

We analyze the performance of Bayesian model averaged exchange rate forecasts using

weights based on the out-of-sample predictive likelihood. Our results for the EUR/USD,

EUR/JPY, EUR/CHF and EUR/GBP exchange rates indicate that accounting explicitly

for model uncertainty when constructing predictions of exchange rates tends to lead to

improvement over the use of the single best forecasting model in terms of predictive ac-

curacy. While the forecasting error of the combined forecast tends to be systematically

smaller than that of the individual model which would have been chosen based on pre-

dictive accuracy in a test sample, the results of the averaged forecasts perform poorly

compared to the traditional random walk benchmark. Although improvements over this

baseline are observed at some forecasting horizons and exchange rates, none of them is

significant using the Diebold-Mariano test.

The results are more promising when comparing forecasts in terms of direction of change.

In this case, the BMA alternative tends to improve over the single best model and presents

direction of change statistics significantly over 50% in several cases.

The evaluation of posterior inclusion probabilities of the variables used in the Bayesian

model averaging exercise reveals that the set of univariate specifications appears still im-

portant for prediction, in particular for the EUR/USD and EUR/GBP exchange rates.

None of the variables in the set attains a posterior inclusion probability exceeding the prior

inclusion probability for these two exchange rates, and error correction models present

negligible inclusion probabilities. The variables which appear relevant for the EUR/JPY

and EUR/CHF exchange rates, however, appear to be dependent on the forecasting-

horizon considered. Furthermore, the evidence of out-of-sample performance of (best)

models based on these variables does not seem too convincing. These results reinforce

the common view that finding fundamental variables which can be used for exchange rate

prediction is a hard task to undertake, and that the criticism of exchange rate models

embodied in Meese and Rogoff’s (1983) results is still intact after almost 25 years.

10



References

[1] Bates, J. M. and C. W. J. Granger (1969). The Combination of Forecasts, Operations

Research Quarterly, 20, 451468.

[2] Diebold, F.X. and R.S. Mariano (1995). Comparing Predictive Accuracy. Journal of

Business and Economic Statistics, 13, 253-263.

[3] Dornbusch R. (1976). Expectations and Exchange Rate Dynamics. Journal of Polit-

ical Economy, 84, 11611176.

[4] Eklund, J. and S. Karlsson (2007). Forecast Combination and Model Averaging Using

Predictive Measures, Econometric Reviews, 26, 329 363.

[5] Faust, J., Rogers, J. H. and J. H. Wright (2003). Exchange Rate Forecasting: The

Errors Weve Really Made, Journal of International Economics, 60, 35-60.

[6] Frenkel J. (1976). A Monetary Approach to the Exchange Rate: Doctrinal Aspects

and Empirical Evidence. Scandinavian Journal of Economics, 78, 200224.

[7] Granger, C. W. J. and P. Newbold (1974). Experience with Forecasting Univari-

ate Time Series and the Combination of Forecasts, Journal of the Royal Statistical

Society. Series A, 137, 131165.

[8] Groen, J. J. J. (2002). Cointegration and the Monetary Exchange Rate Model Re-

visited, Oxford Bulletin of Economics and Statistics, 64, 361-380.

[9] Hendry, D. F. and M. P. Clements (2004). Pooling of Forecasts, The Econometrics

Journal, 7, 1-31.

[10] Chu C.-S. J. and H.-M. Lu (2006). Random Walk Hypothesis in Exchange Rate

Reconsidered, Journal of Forecasting, 25, 275-290.

[11] Jacobson T. and S. Karlsson (2004). Finding Good Predictors for Inflation: a

Bayesian Model Averaging Approach, Journal of Forecasting, 23, 479-496.

[12] Kapetanios G., Labhard V. and S. Price (2006). Forecasting Using Predictive Like-

lihood Model Averaging Economics Letters, 91, 373379.

[13] Leamer, E. E. (1978). Specification Searches. New York, John Wiley & Sons.

[14] MacDonald, R. and M. P. Taylor (1993). The Monetary Approach to the Exchange

Rate: Rational Expectations, Long-Run Equilibrium and Forecasting, IMF Staff

Papers, 40, 89107.

11



[15] MacDonald, R. and M. P. Taylor (1994). The Monetary Model of the Exchange Rate:

Long-Run Relationships, Short-Run Dynamics, and How to Beat a Random Walk,

Journal of International Money and Finance, 13, 276-90.

[16] Mark, N. C. (1995). Exchange Rates and Fundamentals: Evidence on Long-Horizon

Predictability. American Economic Review, 85, 201-218.

[17] Meese, R. and K. Rogoff (1983). Empirical Exchange Rate Models of the Seventies:

Do They Fit Out-of-Sample? Journal of International Economics, 14, 3-24.

[18] Raftery, A.E. (1995). Bayesian Model Selection in Social Research. Sociological

Methodology, 25, 111-196.

[19] Raftery, A.E., Madigan, D. and J. A. Hoeting (1997). Bayesian Model Averaging for

Regression Models. Journal of the American Statistical Association, 92, 179-191.

[20] Sala i Martin, X. Doppelhofer, G. and R. Miller (2004). Determinants of Long-Term

Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach, American

Economic Review, 94, 813-835.

[21] Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics, 6,

461-464.

[22] Timmermann, A. (2006). Forecast Combinations, in Elliot, G., Granger, C. W. J. and

A Timmermann (eds.) Handbook of Economic Forecasting, 1. Amsterdam, Elsevier

North Holland.

[23] Wright, J.H. (2003). Bayesian Model Averaging and Exchange Rate Forecasts, Board

of Governors of the Federal Reserve System, International Finance Discussion Papers

No. 779.

12



V
ar

ia
b
le

D
efi

n
it

io
n

an
d

tr
an

sf
or

m
at

io
n

E
x
ch

an
ge

ra
te

(y
)

S
en

ti
m

en
t

in
d
ic

at
or

(x
1
)

S
ta

n
d
ar

d
iz

ed
le

ad
in

g
in

d
ic

at
or

in
d
ic

es
:

If
o-

In
d
ex

(e
u
ro

ar
ea

),
IS

M
in

d
ex

(U
S
),

C
B

I
in

d
ex

(U
K

),
K

of
in

d
ex

(S
w

it
ze

rl
an

d
),

L
ea

d
in

g
ec

on
om

ic
in

d
ic

at
or

(J
ap

an
)

M
on

ey
su

p
p
ly

(x
2
)

M
0

or
M

1
d
ep

en
d
in

g
on

av
ai

la
b
il
it

y,
lo

gg
ed

S
h
or

t-
te

rm
n
om

in
al

in
te

re
st

ra
te

(x
3
)

3
m

on
th

in
te

rb
an

k
off

er
ra

te

In
d
u
st

ri
al

p
ro

d
u
ct

io
n

(x
4
)

In
d
u
st

ri
al

p
ro

d
u
ct

io
n

in
d
ex

,
lo

gg
ed

S
to

ck
in

d
ex

(x
5
)

S
to

ck
m

ar
ke

t,
D

at
as

tr
ea

m
In

d
ic

es
-S

ta
n
d
ar

d
iz

ed
In

d
ic

es
,

lo
gg

ed

E
ar

n
in

g
in

d
ex

(x
6
)

E
ar

n
in

gs
fr

om
st

o
ck

m
ar

ke
t,

D
at

as
tr

ea
m

In
d
ic

es
-S

ta
n
d
ar

d
iz

ed
In

d
ic

es
,

lo
gg

ed

L
on

g-
te

rm
n
om

in
al

in
te

re
st

ra
te

(x
7
)

10
ye

ar
b

on
d

ra
te

(b
en

ch
m

ar
k
)

S
h
or

t-
te

rm
re

al
in

te
re

st
ra

te
(x

8
)

3
m

on
th

in
te

rb
an

k
off

er
ra

te
m

in
u
s

in
fl
at

io
n

ra
te

T
ab

le
1:

V
ar

ia
b
le

s
in

th
e

B
ay

es
ia

n
m

o
d
el

av
er

ag
in

g
ex

er
ci

se

13



E
U

R
/U

SD
St

ep
s

R
M

SF
E

D
-M

te
st

R
M

SF
E

D
-M

te
st

D
O

C
B

in
om

ia
l

te
st

D
O

C
B

in
om

ia
l

te
st

B
es

t
M

od
el

ah
ea

d
(B

M
A

)
(B

M
A

)
(B

es
t

M
od

el
)

(B
es

t
M

od
el

)
(B

M
A

)
p=

0.
5

(B
M

A
)

(B
es

t
M

od
el

)
p=

0.
5

(B
es

t
M

od
el

)
Sp

ec
ifi

ca
ti

on
1

0.
99

0
-0

.2
99

1.
06

3
1.

18
3

0.
57

1
1.

30
9

0.
53

6
0.

65
5

V
A

R
(x

d 2
,x

f 2
,x

d 5
,x

d 7
),

la
gs

=
3

2
1.

01
0

0.
41

8
1.

17
5

2.
49

0
0.

48
2

-0
.3

29
0.

42
2

-1
.4

27
V

A
R

(x
d 2
,x

d 5
,x

d 7
,x

d 8
),

la
gs

=
2

3
1.

01
2

0.
35

2
1.

33
7

2.
68

0
0.

53
7

0.
66

3
0.

41
5

-1
.5

46
V

E
C

(x
d 2
,x

d 4
,x

d 6
),

la
gs

=
5

4
1.

00
6

0.
56

0
1.

34
8

2.
45

6
0.

42
0

-1
.4

44
0.

37
0

-2
.3

33
V

A
R

(x
d 2
,x

d 4
),

la
gs

=
2

5
1.

00
8

0.
69

2
1.

51
8

3.
27

9
0.

48
8

-0
.2

24
0.

42
5

-1
.3

42
V

A
R

(x
d 1
,x

d 2
,x

f 2
,x

d 4
,x

d 7
,x

d 8
),

la
gs

=
5

6
1.

00
9

0.
55

0
1.

32
6

2.
26

3
0.

50
6

0.
11

3
0.

44
3

-1
.0

13
V

E
C

(x
f 2
,x

d 4
,x

d 6
,x

f 8
),

la
gs

=
5

7
1.

01
1

0.
45

6
1.

27
0

3.
26

8
0.

55
1

0.
90

6
0.

39
7

-1
.8

12
D

V
A

R
(x

f 2
,x

d 4
,x

f 5
,x

d 6
,x

f 7
),

la
gs

=
6

8
1.

01
0

0.
41

3
1.

46
8

2.
60

8
0.

53
2

0.
57

0
0.

42
9

-1
.2

54
V

A
R

(x
d 1
,x

d 2
,x

f 2
,x

d 3
,x

d 4
,x

d 5
),

la
gs

=
5

9
1.

00
7

0.
29

6
1.

33
4

3.
70

1
0.

59
2

1.
60

6
0.

28
9

-3
.6

71
V

E
C

(x
f 2
,x

d 4
,x

d 5
,x

d 6
),

la
gs

=
6

10
1.

00
2

0.
10

2
1.

67
7

3.
39

4
0.

53
3

0.
57

7
0.

36
0

-2
.4

25
V

A
R

(x
d 2
,x

d 4
,x

d 6
),

la
gs

=
6

11
1.

00
1

0.
02

9
1.

88
8

3.
83

0
0.

59
5

1.
62

7
0.

36
5

-2
.3

25
V

E
C

(x
d 2
,x

d 4
),

la
gs

=
5

12
0.

99
9

-0
.0

32
1.

69
5

3.
19

3
0.

56
2

1.
05

3
0.

41
1

-1
.5

22
V

A
R

(x
d 2
,x

d 4
),

la
gs

=
5

E
U

R
/J

P
Y

St
ep

s
R

M
SF

E
D

-M
te

st
R

M
SF

E
D

-M
te

st
D

O
C

B
in

om
ia

l
te

st
D

O
C

B
in

om
ia

l
te

st
B

es
t

M
od

el
ah

ea
d

(B
M

A
)

(B
M

A
)

(B
es

t
M

od
el

)
(B

es
t

M
od

el
)

(B
M

A
)

p=
0.

5
(B

M
A

)
(B

es
t

M
od

el
)

p=
0.

5
(B

es
t

M
od

el
)

Sp
ec

ifi
ca

ti
on

1
0.

99
2

-0
.2

25
1.

01
3

0.
34

0
0.

56
0

1.
09

1
0.

54
8

0.
87

3
D

V
A

R
(x

d 5
),

la
gs

=
2

2
1.

01
6

0.
60

4
1.

17
2

1.
90

1
0.

48
2

-0
.3

29
0.

44
6

-0
.9

88
V

A
R

(x
d 2
,x

d 4
),

la
gs

=
2

3
1.

00
1

0.
05

6
1.

37
4

2.
63

4
0.

51
2

0.
22

1
0.

39
0

-1
.9

88
V

A
R

(x
d 2
,x

d 4
,x

f 7
,x

f 8
),

la
gs

=
5

4
1.

00
8

0.
40

3
1.

34
8

2.
45

6
0.

48
1

-0
.3

33
0.

37
0

-2
.3

33
V

A
R

(x
d 2
,x

d 4
),

la
gs

=
2

5
1.

00
8

1.
03

6
1.

52
9

2.
99

1
0.

47
5

-0
.4

47
0.

36
3

-2
.4

60
V

A
R

(x
d 2
,x

d 4
),

la
gs

=
5

6
1.

00
6

0.
36

3
1.

69
6

3.
66

9
0.

54
4

0.
78

8
0.

35
4

-2
.5

88
V

E
C

(x
d 2
,x

d 4
),

la
gs

=
5

7
1.

00
9

0.
36

2
1.

29
4

3.
10

0
0.

55
1

0.
90

6
0.

41
0

-1
.5

85
V

E
C

(x
f 2
,x

d 4
,x

d 6
,x

f 7
),

la
gs

=
6

8
1.

28
0

1.
86

8
1.

13
4

1.
10

1
0.

39
0

-1
.9

37
0.

59
7

1.
70

9
V

E
C

(x
d 2
,x

f 2
,x

d 4
,x

d 6
),

la
gs

=
1

9
1.

08
4

0.
71

4
1.

10
3

0.
85

3
0.

57
9

1.
37

6
0.

63
2

2.
29

4
V

E
C

(x
d 2
,x

f 2
,x

d 4
,x

d 6
),

la
gs

=
1

10
1.

00
2

0.
06

8
1.

33
3

2.
36

2
0.

61
3

1.
96

3
0.

40
0

-1
.7

32
V

A
R

(x
d 2
,x

d 4
,x

d 5
,x

d 6
),

la
gs

=
2

11
1.

00
0

0.
01

6
1.

32
1

2.
30

7
0.

59
5

1.
62

7
0.

33
8

-2
.7

90
V

E
C

(x
d 1
,x

d 2
,x

d 4
,x

d 8
),

la
gs

=
6

12
0.

99
9

-0
.0

32
1.

42
9

2.
23

9
0.

61
6

1.
99

0
0.

42
5

-1
.2

87
V

E
C

(x
d 2
,x

d 4
),

la
gs

=
3

T
he

D
-M

te
st

st
at

is
ti

c
is

as
ym

pt
ot

ic
al

ly
di

st
ri

bu
te

d
as

a
st

an
da

rd
no

rm
al

un
de

r
th

e
nu

ll
hy

po
th

es
is

of
no

di
ffe

re
nc

e
in

pr
ed

ic
ti

ve
ac

cu
ra

cy
.

T
he

bi
no

m
ia

l
te

st
st

at
is

ti
c

is
as

ym
pt

ot
ic

al
ly

di
st

ri
bu

te
d

as
a

st
an

da
rd

no
rm

al
un

de
r

th
e

nu
ll

hy
po

th
es

is
of
p

=
0.

5.

T
ab

le
2:

F
or

ec
as

ti
n
g

re
su

lt
s

fo
r

eu
ro

/U
S

d
ol

la
r

an
d

eu
ro

/J
ap

an
es

e
ye

n
ex

ch
an

ge
ra

te
s

14



E
U

R
/C

H
F

St
ep

s
R

M
SF

E
D

-M
te

st
R

M
SF

E
D

-M
te

st
D

O
C

B
in

om
ia

l
te

st
D

O
C

B
in

om
ia

l
te

st
B

es
t

M
od

el
ah

ea
d

(B
M

A
)

(B
M

A
)

(B
es

t
M

od
el

)
(B

es
t

M
od

el
)

(B
M

A
)

p=
0.

5
(B

M
A

)
(B

es
t

M
od

el
)

p=
0.

5
(B

es
t

M
od

el
)

Sp
ec

ifi
ca

ti
on

1
1.

02
5

0.
58

1
1.

19
8

2.
23

5
0.

56
0

1.
09

1
0.

46
4

-0
.6

55
D

V
A

R
(x

f 2
,x

d 5
,x

f 8
),

la
gs

=
2

2
0.

99
6

-0
.4

05
1.

01
7

0.
13

8
0.

54
2

0.
76

8
0.

61
4

2.
08

6
V

A
R

(x
d 6
,x

f 6
),

la
gs

=
1

3
0.

97
4

-0
.6

92
1.

00
5

0.
03

6
0.

53
7

0.
66

3
0.

59
8

1.
76

7
V

A
R

(x
d 6
,x

f 6
),

la
gs

=
1

4
0.

97
1

-1
.4

71
1.

00
0

-0
.0

03
0.

55
6

1.
00

0
0.

61
7

2.
11

1
V

A
R

(x
d 6
,x

f 6
),

la
gs

=
1

5
0.

97
8

-0
.9

75
1.

29
1

1.
23

5
0.

46
3

-0
.6

71
0.

62
5

2.
23

6
V

A
R

(x
d 3
,x

d 6
,x

f 6
,x

f 8
),

la
gs

=
1

6
0.

92
5

-1
.7

88
0.

99
4

-0
.0

32
0.

50
6

0.
11

3
0.

49
4

-0
.1

13
V

A
R

(x
d 6
,x

f 6
),

la
gs

=
1

7
1.

06
9

1.
13

7
1.

65
0

2.
80

5
0.

51
3

0.
22

6
0.

44
9

-0
.9

06
V

A
R

(x
d 4
,x

f 5
,x

f 7
),

la
gs

=
4

8
0.

97
0

-0
.1

79
1.

08
9

0.
44

8
0.

62
3

2.
16

5
0.

66
2

2.
84

9
V

A
R

(x
d 1
,x

d 6
,x

f 6
,x

f 8
),

la
gs

=
1

9
1.

12
1

1.
45

2
1.

11
9

0.
89

8
0.

55
3

0.
91

8
0.

48
7

-0
.2

29
V

E
C

(x
d 4
,x

f 5
,x

f 7
),

la
gs

=
3

10
1.

26
8

2.
56

6
1.

18
3

1.
64

3
0.

42
7

-1
.2

70
0.

57
3

1.
27

0
V

E
C

(x
d 2
,x

d 4
,x

d 7
,x

f 8
),

la
gs

=
1

11
1.

28
8

3.
56

5
1.

32
2

3.
59

5
0.

32
4

-3
.0

22
0.

32
4

-3
.0

22
V

E
C

(x
d 4
,x

f 5
,x

f 7
),

la
gs

=
1

12
0.

99
8

-0
.0

10
0.

89
4

-0
.7

27
0.

74
0

4.
09

6
0.

61
6

1.
99

0
V

A
R

(x
d 1
,x

d 2
,x

d 6
,x

f 6
,x

f 8
),

la
gs

=
1

E
U

R
/G

B
P

St
ep

s
R

M
SF

E
D

-M
te

st
R

M
SF

E
D

-M
te

st
D

O
C

B
in

om
ia

l
te

st
D

O
C

B
in

om
ia

l
te

st
B

es
t

M
od

el
ah

ea
d

(B
M

A
)

(B
M

A
)

(B
es

t
M

od
el

)
(B

es
t

M
od

el
)

(B
M

A
)

p=
0.

5
(B

M
A

)
(B

es
t

M
od

el
)

p=
0.

5
(B

es
t

M
od

el
)

Sp
ec

ifi
ca

ti
on

1
1.

00
2

0.
04

6
1.

01
6

0.
43

1
0.

54
8

0.
87

3
0.

46
4

-0
.6

55
D

V
A

R
(x

d 3
,x

d 5
,x

f 5
),

la
gs

=
2

2
0.

98
8

-0
.5

81
1.

03
0

1.
08

7
0.

65
1

2.
74

4
0.

54
2

0.
76

8
D

V
A

R
(x

f 2
,x

d 3
,x

f 5
),

la
gs

=
3

3
1.

00
0

0.
00

9
1.

16
1

2.
13

4
0.

59
8

1.
76

7
0.

48
8

-0
.2

21
V

E
C

(x
f 2
,x

f 5
,x

d 7
),

la
gs

=
3

4
1.

03
2

0.
86

2
1.

21
1

2.
48

0
0.

54
3

0.
77

8
0.

48
1

-0
.3

33
V

E
C

(x
f 2
,x

d 5
,x

d 7
),

la
gs

=
3

5
1.

03
6

1.
13

7
1.

02
4

0.
67

9
0.

51
3

0.
22

4
0.

53
8

0.
67

1
V

E
C

(x
f 2
,x

d 3
),

la
gs

=
1

6
1.

03
5

1.
19

6
1.

10
7

2.
17

3
0.

49
4

-0
.1

13
0.

46
8

-0
.5

63
D

V
A

R
(x

f 6
,x

d 7
),

la
gs

=
3

7
1.

01
4

0.
57

6
1.

16
6

2.
38

8
0.

53
8

0.
67

9
0.

43
6

-1
.1

32
V

E
C

(x
f 4
,x

f 6
,x

d 7
,x

f 8
),

la
gs

=
4

8
1.

00
6

0.
28

6
1.

09
5

1.
96

0
0.

53
2

0.
57

0
0.

49
4

-0
.1

14
D

V
A

R
(x

f 5
,x

f 6
,x

d 7
,x

f 8
),

la
gs

=
3

9
1.

01
0

0.
40

2
1.

00
0

-0
.0

04
0.

53
9

0.
68

8
0.

52
6

0.
45

9
V

E
C

(x
f 2
,x

d 3
),

la
gs

=
1

10
1.

00
2

0.
10

2
1.

13
1

2.
16

3
0.

50
7

0.
11

5
0.

41
3

-1
.5

01
V

E
C

(x
d 1
,x

f 2
,x

d 3
,x

d 4
,x

d 6
,x

f 6
,x

d 7
,x

d 8
),

la
gs

=
1

11
1.

01
9

0.
64

8
0.

97
3

-1
.0

23
0.

47
3

-0
.4

65
0.

54
1

0.
69

7
V

E
C

(x
f 2
,x

f 3
,x

f 5
,x

f 6
),

la
gs

=
1

12
1.

01
9

0.
84

7
1.

16
6

2.
02

6
0.

45
2

-0
.8

19
0.

42
5

-1
.2

87
V

A
R

(x
d 1
,x

f 3
,x

d 7
,x

f 7
,x

f 8
),

la
gs

=
1

T
he

D
-M

te
st

st
at

is
ti

c
is

as
ym

pt
ot

ic
al

ly
di

st
ri

bu
te

d
as

a
st

an
da

rd
no

rm
al

un
de

r
th

e
nu

ll
hy

po
th

es
is

of
no

di
ffe

re
nc

e
in

pr
ed

ic
ti

ve
ac

cu
ra

cy
.

T
he

bi
no

m
ia

l
te

st
st

at
is

ti
c

is
as

ym
pt

ot
ic

al
ly

di
st

ri
bu

te
d

as
a

st
an

da
rd

no
rm

al
un

de
r

th
e

nu
ll

hy
po

th
es

is
of
p

=
0.

5.

T
ab

le
3:

F
or

ec
as

ti
n
g

re
su

lt
s

fo
r

eu
ro

/S
w

is
s

fr
an

c
an

d
eu

ro
/B

ri
ti

sh
p

ou
n
d

ex
ch

an
ge

ra
te

s

15



EUR/USD EUR/JPY

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

x1
d x1

f
x2

d x2
f

x3
d x3

f
x4

d x4
f

x5
d x5

f
x6

d x6
f

x7
d x7

f
x8

d x8
f

Po
st

er
io

r i
nc

lu
si

on
 p

ro
ba

bi
lit

y

1 month ahead 2 months ahead 3 months ahead 4 months ahead 5 months ahead 6 months ahead
7 months ahead 8 months ahead 9 months ahead 10 months ahead 11 months ahead 12 months ahead

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x1
d x1

f
x2

d x2
f

x3
d x3

f
x4

d x4
f

x5
d x5

f
x6

d x6
f

x7
d x7

f
x8

d x8
f

Po
st

er
io

r i
nc

lu
si

on
 p

ro
ba

bi
lit

y

1 month ahead 2 months ahead 3 months ahead 4 months ahead 5 months ahead 6 months ahead
7 months ahead 8 months ahead 9 months ahead 10 months ahead 11 months ahead 12 months ahead

EUR/CHF EUR/GBP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x1
d x1

f
x2

d x2
f

x3
d x3

f
x4

d x4
f

x5
d x5

f
x6

d x6
f

x7
d x7

f
x8

d x8
f

Po
st

er
io

r i
nc

lu
si

on
 p

ro
ba

bi
lit

y

1 month ahead 2 months ahead 3 months ahead 4 months ahead 5 months ahead 6 months ahead
7 months ahead 8 months ahead 9 months ahead 10 months ahead 11 months ahead 12 months ahead

0.00

0.02

0.04

0.06

0.08

0.10

0.12

x1
d x1

f
x2

d x2
f

x3
d x3

f
x4

d x4
f

x5
d x5

f
x6

d x6
f

x7
d x7

f
x8

d x8
f

Po
st

er
io

r i
nc

lu
si

on
 p

ro
ba

bi
lit

y

1 month ahead 2 months ahead 3 months ahead 4 months ahead 5 months ahead 6 months ahead
7 months ahead 8 months ahead 9 months ahead 10 months ahead 11 months ahead 12 months ahead

Figure 1: Posterior inclusion probability, variables
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Figure 2: Posterior inclusion probability, model specification
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Figure 3: Posterior inclusion probability, lag length
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